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Executive Summary 
During the first 6 months of the project, in this Work Package (WP) the team has focused on the 
identification and validation of the requirements related to the main areas of research in the 
project (FUSA, DL, and platforms), and on the definition of the success criteria to be achieved in 
each milestone (T1.1). Also, effort has been devoted to the selection and setup of the baseline 
hardware platforms on which case studies will be run as well as the identification of the baseline 
SAFEXPLAIN software stack (T1.2). During these first 6 months, we have also defined an early set 
of safety requirements and patterns to steer WP2, WP3, WP4 starting in m4 (T1.3). 

This document therefore captures: the case study and FUSA standards requirements, the success 
criteria set for each milestone of the project, the result of the selection of the platform and 
software stack, and FUSA principles to consider in SAFEXPLAIN. 
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1. Requirements and Success Criteria 
At the top level, D1.1 captures the following types of requirements. 

 Safety Assessment (SA): this requirements set relates to the considerations that shall be 
taken into account in SAFEXPLAIN when addressing the challenges associated to functional 
safety. Requirements cover the scope of safety assurance case templates, lifecycle 
considerations, safety analyses, architecture designs and certification-related activities.  

 Deep Learning (DL): the requirements are focusing on (i) compliance with safety 
requirements, including specificability and evaluation metrics; and (ii) explainability related 
requirements for DL components including: representation types, architecture, and 
feasibility of implementation. 

 Tool Set Support and Platform: under this umbrella we consider all technological 
requirements to support SAFEXPLAIN goals in terms of supported functionalities, time 
predictability, and mixed-criticality execution. Requirements cover several aspects related 
to performance, libraries and toolchain support, platform observability, controllability, 
monitoring of relevant metrics, as well as functional and non-functional software 
verification in general.  

 Case studies: these are end-user type of requirements to ensure that the case studies can 
be integrated with the software stack developed in the other main lines of the project (SA, 
DL, and tool set support) on the target platform so as to assess the benefits of the project. 
The case study requirements also ensure that the explanations and metrics developed in 
other WPs are aligned with and applicable to the use cases throughout their respective 
development.  

 Platform selection: Underpinning all these are the requirements on the platform that 
should achieve the requirements set by the different lines of the project. This is specifically 
covered in Section 2.  

In each of these main lines the requirements were broken down into subcategories as follows. 

1.1. Requirements 

1.1.1. Safety Assessment (WP2) 

Requirements related with the safety assessment (WP2) determine the scope of the activities that 
the project will perform towards the safety certifiability of Machine Learning (ML)-based solutions. 
To this end, the following aspects are considered: 

 Standards. Safety activities of the project shall be based on existing emerging standards. 
As the spectrum of available and emerging standards in the topic is very wide, this 
requirement relates to the selection of a set of reference standards, which is covered in 
Section 3.1 of this report. 

 Safety assurance cases. A safety case defines the arguments and evidence required to 
demonstrate a given goal (i.e., that a DL subsystem is sufficiently safe for its purpose) in a 
structured way. These requirements cover the scope of the safety cases that will be 
produced as an outcome of SAFEXPLAIN. 

 Safety architectural patterns: These requirements cover the aspects that shall be 
considered when designing safe system architectures including ML components. These 
architecture patterns will be based on mechanisms such as redundancy, diversity, 
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diagnostic mechanisms and supervision elements later introduced in Section 3.2. 
Requirements specify the needs in terms of residual risk calculation, adversarial attacks 
and platforms on which the architectures templates shall be tailored. 

 Safety assessment and expert reviews: Requirements for the final assessment of WP2 
outcomes through external expert reviews are addressed in this last group. 

1.1.2. Deep Learning (WP3) 

The requirements for WP3 belong to the following main categories: 

 Alignment with Safety assessment: The alignment with WP2 is critical and should be 

performed in interactive mode to maintain the agreements in terms of common 

definitions, compliance means, and architecture. 

 Addressing DL uncertainties: The explainability should address both data and DL model. 

 Addressing V&V requirements: The extracted explanations should focus on different 

audiences such as DL developer and safety experts. The information should be represented 

in agreed forms to support safety argumentations. 

 Feasibility: The explainable AI methods should leverage the latest developments of Service 

Oriented Architecture (SoA) methods, with focus on feasibility to implement on agreed 

platform (WP4) and with DL components to be used in UCs. 

1.1.3. Tool Set Support and Platform (WP4) 

The objectives on the tool set support and platform (WP4) have been broken down into two main 
areas: (i) the hardware platform itself together with the available libraries and tool-chain support, 
and (ii) the support for SAFEXPLAIN objectives in terms of DL explainability, verification, and safe 
mixed criticality execution.  

The first area relates to the selection of a hardware platform and software environment on which 
to develop SAFEXPLAIN solutions. These elements are not meant to be developed in the scope of 
the project and hence whose design, development, and implementation cannot be affected. The 
work done in WP1 has thus focused on identifying and selecting the hardware platform and 
software environment that better fits the needs of the project under a reasonable budget. We 
report on the selection criteria and results in Section 2. 

The second area, instead, relates to the set of techniques and supporting tools that are meant to 
be designed and developed within the scope of the project and we will develop to capture the 
project objectives and, ultimately, to support the subset of safety requirements addressed in the 
project. We distinguish the following main scopes: 

 Timing characterization. This covers the requirements related to the software timing 
analysis part of the project, mainly related to the analysis techniques and tools to be 
deployed for the timing analysis of the complex DL functionalities supported by the 
SAFEXPLAIN framework. 

 Observability and controllability. These requirements relate to exploiting the main means 
for collecting low-level information on the execution of DL applications on the target 
platform (via hardware events) and on the control over Quality of Service (QoS) and 
hardware configuration to support FUSA and mixed-criticality objectives. 

 DL Libraries integration on Validation toolset. This set of requirements is addressing the 
development of a partially automated framework for the execution and verification of the 
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DL functionalities in the use cases by providing flexible monitoring functionalities to gather 
relevant metrics, including those specifically identified in SAFEXPLAIN. All in all, this ensures 
DL libraries used and possible adapted in the project properly execute on top of the 
SAFEXPLAIN validation toolset. 

1.1.4. Case Studies (WP5) 

The requirements around the case studies covered two main lines: 

 Requirements on the case studies. These cover the stubbing and changes required in the 
case studies to run on the selected hardware and software platform. This also involves the 
creation and specification of training datasets to train the required DL components, 
specifications and the performance requirements of the DL models and finally the test 
cases to cover and validate the stipulated safety scenarios.  Requirements from other WP’s 
were collected to coordinate the respective work, such as identifying the case studies 
safety scenarios, the algorithms architectures and some early simplified models to test the 
software stack prototype. 

 Requirements from the case studies. These requirements capture needs emanating from 
the case studies towards the rest of the software stack. They include the hardware and 
software requirements on the platform and the relevant DL components (explanations and 
metrics) from WP3 which are required to meet the safety requirements. Some entries 
explicate technical needs, such as the availability on the platform of resources such as 
accelerators and the compatibility with different DL frameworks. Others ensure that 
incremental prototypes from other WP’s work, and related requirements which may arise, 
are provided at major milestones so that to monitor and enforce a common direction 
throughout the project. 

 

1.2. Success Criteria 
There are 4 main control points or Milestones in the project: MS1 (Requirements, success criteria 
and platforms selection), MS2 (Concept development, technology prototyping, and case studies 
preliminary porting), MS3 (Technology consolidation and case studies integration), MS4 (Final 
Assessment).  

For each requirement we define a success criterion in at least one of the four Milestones. The goal 
is to “land” each requirement into a specific point in time in the project in which we assess the 
total fulfilment of the requirement. 

For some requirements we analyse its partial fulfilment in different milestones, the last of which 
assess the competition of the requirement.  

1.3. Summary 
Attachment 1 (REQs&SC.pdf) provides a view of all the requirements identified as well as the 
milestones in which its fulfilment is partially or totally assessed. 
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2. Platform Selection and Setup 

2.1. Hardware Platform 
During the kick-off meeting of the project, and the weeks following it, we reviewed the case study 
requirements in terms of sustained performance and library support. During the KoM, all project 
partners agreed on the convenience of converging to one common target board across use cases. 
This would have allowed narrowing the scope of the implementation and demonstration activities 
without restricting the scope and validity of the project results. 

In order to facilitate the selection process, the case study providers were asked to express their 
initial requirements on the Hardware (HW)/ Software (SW) stack. The result of this activity are 
summarized in Table 1. From the analysis of those requirements, the Jetson AGX Orin series 
(together with the respective SW stack) has been considered by all partners and eventually 
identified as a good candidate for the final selection. 

Among the three main variants of the Orin, the Jetson AGX Orin Development Kit have been 
considered as a promising candidate from a performance perspective since, based on the 
information available on NVIDIA website, it provides comparable performance to the powerful 
AGX Orin 64GB module (https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/) with the advantage of an almost ready-to-use setup, with a consolidated 
Software Development Kit (SDK) and supporting all main accelerator libraries. It is also possible to 
purchase the 64GB module but in that case we also need to procure cable, power unit, and a carrier 
board. A summary table from NVIDIA website is reported below. 

Table 1. AGX Orin summary comparative chart (form NVIDIA website). 

After looking into procurement times for the Jetson AGX Orin Development Kit, we observed a 
reasonable approx. 8 weeks lead time. The price of the board was also reasonable, landing at 
~2K/2.5K Euros + VAT. 

2.2. Software Stack 
Once the board was agreed among partners, the next step was to converge on a software stack 
that allows all partners to run their case study while allowing the technical WPs to carry out their 
intended work. Table 3 captures the requirements identified by each case study on the different 
element of the software stack. 

The main goal of the SW stack selection was to identify the exact version of support libraries and 
tool-chain to be fixed as part of SAFEXPLAIN software development environment. By doing this we 
wanted to avoid late issues from incompatibilities among software packages. As final step, 
partners agreed in a version of all the software packages that satisfy the requirements of all the 
case studies. Those versions are shown in Table 4. 

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/


 

 

Table 2. Case study providers have expressed their initial requirements on the HW/SW stack as summarized below. 

Partner Domain Short description 
Required HW 
features 

HW Prospects 

SW 
Components 
and Libraries 

Programming 
Languages 

SW 
Environment 

Data Perf req. 

AIK Space 

Autonomous navigation. 
Image acquisition for 
estimating the 
spacecraft position 

Nvidia GPU 

Jetson AGX Orin Series? 

TensorFlow C++ Std Linux Env. 

Camera 
images + 
sensor 
time 
series (if 
possible) 

To be 
assessed 

Xilinx FPGA PyTorch Python 
In-house 
automated 
framework 

Intel Myriad VPU 
Platform 
Inference 
Engine   

Google Edge TPU 
[others]    

NAV Auto Pedestrian detection  

NVMe storage Jetson AGX Xavier 64GB 

Jetson JetPack 
5.0< 

Python 3.7< Std Linux Env. 
Training 
dataset 

20-30 FPS 

ARM CPU Jetson AGX Xavier 32GB 

NVIDIA GPU  
Jetson AGX Xavier 
Industrial 

Webcam/Dashcam/ 
other  

Jetson AGX Orin 32GB 

 Jetson AGX Orin 64GB 

IKR Railway 

Automatic Train 
Operation (ATO) Level 4 
Fully autonomous. 
Detect and localization 
of obstacles on tracks + 
distance estimation 

 

Jetson AGX Orin 

Yolo 

C 

 

Public 
Dataset 
(from 
Auto) 

To be 
assessed 

Stereo Vision 
with OpenCV 
API 

Real field 
images 
(not sure) 

TensorFlow AI 
framework 

Train 
simulator 

Proprietary C 
Lib  

Jetson SW Stack  
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Table 3. Requirements each of the SAFEXPLAIN case studies put on the different elements of the software stack. 

 

 
automotive railway space conclusion 

Operating System Ubuntu 18.4 and above, preferably 20.4 
Ubuntu 18.4 and 
above, preferably 20.4 
kernel linux 5.10> 

AI top-level 
libraries 

Preferably 
PyTorch 1.12 
and above 

 PyTorch and 
Tensorflow+keras, 
we want both 
options to 
experiment. 

use case on pytorch; can be 
imported as ONNX and used 
with tensorRT (issues for 
integration with explainability? 
especially during training) 

pytorch (main 
framework) 1.12> 
tensor RT 8.4> 
optional, 

Performance-
improving libraries 

 Jetpack 
5.0.2, 
TensorRT 
v8.4.1 

Jetpack, TensorRT 
JetPack SDK latest version (v5), 
use of GPU with tensorRT and 
Nvidia accelerators 

JetPack 5.X 

Application 
software 

Apollo OpenCV 4.4> OpenCV, python libraries 

Cuda 11.4> 
OpenC 4.4> 
python 3.8 or 3.9 
supporting Apollo v4 or 
v7 

 

 
Table 4. Version of each software package agreed by every parnter in the project. 

Software Version 

Jetpack     5.1 

Jetson Linux     35.2.1 

Ubuntu Version   20.04 

Kernel Version   5.10.65-tegra 

Tensor RT     8.5.2 

cuDNN     8.6.0 

CUDA     11.4.19 

OpenCV     4.5.4 

Python     3.8.10    

PyTorch     1.14 

Vulcan     1.3.203 

Vulcan SC     1.0  
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3. FUSA principles  
With the aim of identifying the main functional safety principles that will guide the technical 
solutions of the project, this section first surveys existing and emerging safety standards, technical 
reports and guidelines on the three principal disciplines of the project (i.e., functional safety, deep 
learning and high-performance embedded platforms) for the three industrial domains of the case 
studies (railway, automotive and space). Based on selected standards, this section then describes 
early directions and baseline safety principles to start designing safe DL-based solutions. Note that 
the project will keep checking for new or updates on standards in its next phases. 

3.1. Standards 
The deployment of safety-critical systems requires to comply with legal regulations in place on 
each country or state. This often involves a certification process where an independent 
certification institution must approve, through a conformity assessment, that the system is 
suitable and safe enough for its intended use (i.e., that it is compliant with the active legal 
directives). Currently, the most common certification approach is standard based, i.e., a 
conformity assessment is achieved by proving adherence to the applicable safety standards. 

In traditional functional safety approaches, freedom from unacceptable risk is pursued by dealing 
with systematic and random faults on the system to prevent them from causing destructive effects 
(e.g., loss of lives or environmental damage). With the advent of autonomous systems, new 
challenges arise such as addressing, not only the malfunctioning of the system (functional safety), 
but also the functional insufficiencies or deficiencies of the system that could lead to hazardous 
situations (also known as Safety of the intended functionality (SOTIF)). Therefore, the normative 
landscape is also evolving to cover these autonomous systems, often based on Artificial 
Intelligence (AI) techniques that require high performance computing platforms. Next subsections 
survey existing and emerging standards in these complementary disciplines and concludes with a 
selection of most interesting standards to take as reference in the initial phases of the project.  

3.1.1. Functional Safety Standards 

Functional safety standards, such as, IEC-61508 [1], ISO-26262 [2], EN-5012x [3], define the 
requirements for the development of safety related electrical and/or electronic systems with the 
purpose of avoiding unacceptable risks in the system. As illustrated in Figure 1, many of these 
standards apply to the specific domain for which they have been conceived (e.g., automotive, 
railway, elevation, avionics, space). However, except for the avionics and space domains, several 
industrial safety standards use as a reference the generic IEC 61508 [1] safety standard, sharing 
many similarities. 

 
Figure 1: Functional safety standards and their relationship 
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 IEC 61508 (Generic), ISO 26262 (Automotive), EN 5012x (Railway) 

As it can be seen in Figure 1, IEC 61508 [1] is a reference generic functional safety standard and 
many domain specific standards are based on it (e.g., industrial machinery (ISO 13849) [4] robotics 
(ISO 10218) [5] tractors, machinery for agriculture (ISO 18497 [6]), process industry (EN 61511 
[7]),…)). Functional safety standards for Automotive (ISO 26262 [2]) and Railway (EN 50126, EN 
50128, EN 50129 [3]) fall into this category.  

These standards are based on the prevention of systematic errors (through rigorous process 
measures throughout the system lifecycle) and control and protection against random errors (e.g., 
by diagnostic mechanisms that move the system to a safe state). Safety functions are classified by 
a criticality level (i.e., Safety Integrity Level (SIL), Automotive Safety Integrity Level (ASIL)) based 
on their severity, frequency of exposure and controllability of the hazardous events. The higher 
the criticality level, more stringent are the procedures, measures, and requirements of functional 
safety standards. 

When it comes to the use of AI, IEC 61508 edition 2 only mentions artificial intelligence as a fault 
correction technique in the software architecture design and development (e.g., for fault 
forecasting, fault correction or maintenance activities supported by artificial intelligence). Despite 
this limitation of considering it only for fault correction, the standard does not recommend (NR) 
its usage in systems with an integrity level higher than SIL 1 (Table 5). This requirement may be 
adapted in future editions of IEC 61508. 

Table 5: Extract from IEC 61508-3 (ed 2) – Software design and development – software architecture design 

Technique SIL 1 SIL 2 SIL 3 SIL 4 

Artificial Intelligence – Fault correction --- NR NR NR 

 ECSS-Q-ST-30C/ECSS-Q-ST-40C/ECSS-Q-HB-80-03A - Space 

ECSS is a cooperative effort of the European Space Agency (ESA), national space agencies and 
European industry associations, aiming to develop and maintain common standards for space 
activities. The listed standards of this section belong to the series of ECSS Standards meant to be 
applied together for the management, engineering and product assurance in European space 
projects and applications.  

o ECSS-Q-ST-30C Rev.1 (Dependability): This standard [8] defines how to assure the 
dependability for space systems and the requirements for it. The dependability 
requirements for functions implemented in software, and the interaction between 
hardware and software, are identified in this Standard. A classification of these 
functions in accordance with their criticality is presented. 

o ECSS-Q-ST-40C Rev.1 (Safety): This Standard [9] defines the safety program and the 
safety technical requirements aiming to protect every person/element involved in 
space activity from flight and ground personnel, the environment and the civilian 
population, launch vehicles, ground support equipment, private and public property 
etc… from hazards associated with European space systems. As in the case of previous 
functional safety standards, risk reduction is pursued by the: 

 identification of all safety related risks with respect to the design, development 
and operations of space products  

 assessment of the risks based on qualitative and quantitative analysis  
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 application of a hazard reduction precedence and of control measures of the 
residual risks. 

o ECSS-Q-HB-80-03A Rev.1 (Software dependability and safety): This standard [10] 
provides a general description of the entire software dependability and safety 
workflow, considering the different activities at system and software level, the lifecycle 
phases and the customer-supplier relationships. Some software Reliability, Availability, 
Maintainability and Safety (RAMS) techniques are presented. The given techniques are 
the result of a selection of the existing techniques relevant to the requirements defined 
in the ECSS Standards. 

 DO-178C – Avionics- Software Considerations in Airborne Systems and Equipment 
Certification  

DO-178C standard covers the complete software lifecycle (planning, development and integral 
processes) to guarantee correctness and robustness in software systems for civil airborne 
applications. The Design Assurance Level (DAL determines the amount of rigor required by the 
design assurance process. DAL categorization is determined by the impact that the specific 
system's failure could have in terms of Aircraft Safety. The more critical the DAL, the more activities 
and objectives are required. 

3.1.2. AI and Autonomous Systems Standards 

In recent years, as a result of the increasing popularity of autonomous systems, new standards are 
emerging to cover the safety challenges involved by the increasing level of autonomy and 
technologies on which they rely, such as artificial intelligence (AI). In this section we survey existing 
and emerging standards in this field. While the main focus is on safety-related standards, we also 
mention some related to information technology as they introduce interesting terminology and 
concepts such as explainability. 

 ISO/IEC TR 5469 - Artificial intelligence – Functional safety and AI systems 

ISO / IEC 5469 standard aims to cover the application of AI-based solutions on safety-critical 
systems by identifying the properties, safety risk factors, available methods and potential 
constraints towards the appropriate adoption of AI approaches in safety functions. The standard 
is not associated to any application domain. At the time of writing, this standard is still at a 
development phase and the information on this section is based on early drafts. 

This standard is of particular interest for AI-based systems development, as it covers different 
aspects of AI safety functions. For instance, it defines a high-level lifecycle that combines the V-
model and ML lifecycle activities, it identifies the properties to be considered and evaluates the 
potential compliance of AI-based solutions with existing functional safety standards. 

On the platform side, the standard identifies the technology elements required for ML model 
creation and execution and differentiates among those which can be covered by traditional 
functional safety techniques from those that require further considerations. It also mentions that 
GPU based systems may have special failure modes to be addressed and some architectural 
considerations are proposed (like the use of supervisors, redundancy and diversity and detection 
mechanisms). 

 ISO/IEC 24029 - Artificial intelligence — Assessment of the robustness of neural networks 

Robustness, resiliency, reliability, accuracy, safety, security, privacy are properties seek when 
designing any system. Among these, robustness is a crucial property. In the context of AI systems, 

https://www.bing.com/ck/a?!&&p=e09615aad3a538c6JmltdHM9MTY3NTY0MTYwMCZpZ3VpZD0zYzcyNzc3MC04MmNhLTZiZjctMDhkZC02NTU0ODZjYTZkOTEmaW5zaWQ9NTI3OQ&ptn=3&hsh=3&fclid=3c727770-82ca-6bf7-08dd-655486ca6d91&psq=rams+software&u=a1aHR0cHM6Ly93d3cuc29oYXIuY29tL3JlbGlhYmlsaXR5LXNvZnR3YXJlL3JhbXMtc29mdHdhcmUuaHRtbA&ntb=1
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this property brings new challenges as they can sometimes have unexpected behaviour and are 
hard to explain due to their non-linear nature. Robustness is capital when it comes to validation. 
In many organizations, software validation is an essential step in order to put the software into 
production.  

The techniques used in AI systems are also subject to validation. However, common techniques 
used in AI systems require specific approaches in order to ensure adequate testing and validation. 

This document [11] provides an overview about the existing methods/approaches to measure the 
robustness of neural networks. 

 ISO/DIS 21448 - Road vehicles — Safety of the intended functionality 

In ISO 26262 the functional safety is defined as the absence of unreasonable risk due to hazards 
caused by a malfunctioning behaviour of the electrical/electronical system. But in some 
electrical/electronical systems relying on the environment to build awareness on the situation, 
even if those systems are free from malfunctions, there can be hazardous behaviour caused by the 
intended functionality. This is where the focus of ISO 21448 is, which is known as the safety of the 
intended functionality (SOTIF). SOTIF is then the absence of unreasonable risk due to a hazard 
caused by functional insufficiencies such as: 

o the inability of the function to correctly perceive the environment. 
o the lack of robustness of the function, system, or algorithm with respect to sensor 

input variations, heuristics used for fusion, or diverse environmental conditions.  
o the unexpected behaviour due to decision making algorithm and/or divergent human 

expectations. 
Functional safety (addressed by the ISO 26262 series) and SOTIF are distinct and complementary 
aspects of safety. This standard provides a general argument framework and guidance on the 
applicable design, verification and validation measures, as well as activities during the operation 
phase to ensure the safety of the intended functionality. 
ISO 21448 includes an interesting Annex about the implications of Machine Learning, which 
mentions the need of methods to mitigate ML component performance insufficiencies and to 
mitigate systematic faults introduced by the training process and their corresponding data 
collection processes. 

 ISO PAS 8800 - Road Vehicles - Safety and Artificial Intelligence 

This document sets the definition of safety-related properties and risk factors that impact the 
insufficient performance and malfunctioning behaviour of AI for road vehicles. 

It sets a framework that addresses all development phases and life cycle of IA components. This 
framework takes into consideration the derivation of suitable safety requirements on the function 
and factors related to data quality and completeness. It provides architectural measures for the 
control and mitigation of failures and defines tools used to support AI as well as verification and 
validation techniques. The evidence required to support an assurance argument for the overall 
safety of the system is additionally described.  

The objectives of this standard are the following (see Figure 2): 

o Define suitable safety principles, methods and evidence satisfying objectives with ISO 
26262 [2] and ISO 21448 [12] 

o Harmonize concepts described in ISO/TR 4804 [13] and ISO 21448 [12] Annexes’ 
o Rely on generic guidance from ISO/IEC TR 5469 [14] 
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At the time of writing, this standard is still at a development phase and information is based on 
early drafts. 

 
Figure 2: ISO 8800 relation to other standards [15] 

 ISO/TR 4804 – Road Vehicles- Safety and cybersecurity for automated driving systems- 
Design, verification and validation 

This technical report provides a summary of widely known safety by design, verification and 
validation (V&V) methods and recommendations of automated driving systems. The purpose of 
this summary is to provide an overview about the general steps for developing, verifying and 
validating automated driving systems, focusing on safety and cybersecurity, and also to propose 
guidelines and a framework to be followed during the lifecycle of the project. This document also 
aims to present guidance to deal with the risks introduced by automated driving systems.  

This standard includes an Annex B called: “Using deep neural networks to implement safety-
related elements for automated driving systems”. This annex aims to provide an overview of the 
challenges for achieving and assuring the safety of DNNs in automated driving systems. This 
chapter proposes potential solutions and architecture principles that can be used as guidance for 
the development of supervised deep learning.  

In the future, this standard will be replaced by ISO/TR 5083 [16] (next subsection). 

 ISO/TR 5083 - Road vehicles — Safety for automated driving systems — Design, verification 
and validation 

At the time of writing this technical report is under development and there is no public 
information, but as it will replace ISO/TR 4804 [13], similar topics will be addressed: guidance for 
developing and validating an automated safety system for road vehicles, taking into account both 
safety and cybersecurity. 

 IEEE 2846 – Road Vehicles - Assumptions in Safety-Related Models for Automated Driving 
Systems 

This standard [17] applies to road vehicles. The purpose is to provide an open, transparent, and 
technology-neutral standard that offers useful guidance for evaluating the performance of 
automated driving systems. 
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It defines a minimum set of assumptions for a set of scenarios regarding reasonably foreseeable 
behaviours of other road users. This minimum set of scenarios shall be considered in the 
development and testing phase of safety-related models for automated driving systems (ADS).  

This standard defines a list of common attributes, models and methods that help verify whether a 
safety-related model takes the minimum set of assumptions into consideration.  

An informative annex provides several examples to show how the proposed minimum set of 
assumptions could be employed in ADS development.  

This standard, specifically, covers:  

o Approaches to identify the applicable defined scenario(s) 
o Approaches for determining the applicability of assumptions for the given scenario(s) and 

for updating these assumptions across the temporal evolution of a scenario. 
o Approaches to qualify and validate assumptions considering different kinds of 

performance targets of interest. 

 VDE-AR-E2842-61 – Generic- Development and trustworthiness of autonomous / cognitive 
systems 

The VDE-AR-E 2842-61, ‘Development and trustworthiness of autonomous/cognitive systems’ is 
German application rule that defines a general framework for developing trustworthy solutions 
and autonomous/cognitive systems.  

Trustworthiness is considered a generic concept mandatory to guarantee functional safety, 
security, privacy, usability, reliability, and intended functionality (among others). This rule presents 
a reference life cycle with the logical flow to the involved activities, taking the safety life cycle of 
ISO 26262 as a reference, analogous to current functional safety standards.  

This standard tries to cope with the ’uncertainty’ related to artificial intelligence. It defines the 
Uncertainty Confidence Indicator (UCI) for dealing with these uncertainty-related failures and 
different UCI levels according to the safety required by the application. This application rule 
proposes demonstrating the achievement of the specific UCI-level requirements in an assurance 
case. Nevertheless, VDE-AR-E 2842-61 does not specify how to deal with these uncertainty-related 
failures or how to define this assurance case. 

 ANSI/UL4600 – Fully autonomous vehicles - Safety Standard for Autonomous Vehicles 

ANSI/UL 4600 is a safety standard focusing on the safety for the evaluation of autonomous 
products. It is the first standard addressing fully autonomous vehicles such as self-driving cars 
along with applications in mining, agriculture, maintenance, and other vehicles including 
lightweight unmanned aerial vehicles.  

This standard aims to cover the ability of autonomous products to perform safely and as intended 
with no human interaction. It also addresses the reliability of the hardware and software needed 
for machine learning, sensing of the operating environment and other safety aspects of 
autonomous operation. 

The standard’s scope includes risk analysis and safety-relevant aspects of design process, testing, 
tool qualification, autonomy validation, data integrity and human-machine interaction for non-
drivers. ANSI/UL 4600 defines Safety Performance Indicators (SPI) as operational metrics for the 
verification and validation of autonomous systems. 

 CoDANN I and II – Avionics- Concepts of Design Assurance for Neural Networks  
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CoDANN I and II ( [18]and [19]) reports are the result of the joint effort between the European 
Union Aviation Safety Agency (EASA) and Daedalean AG between July 2020 and May 2021. 

The main goal of this project was to analyse the usage in safety-critical applications of systems 
employing machine learning/neural networks. Focusing in particular on the challenges with 
respect to trustworthiness, such as the ability to provide performance guarantees, as well as the 
applicability of existing functional safety guidance such as DO-178C. 

An important outcome of this report is the W-shaped development process. It adapts the classical 
V- shaped cycle to machine learning applications. It also provides an outline of the essential steps 
for learning assurance and their connection with traditional development assurance processes. 

A follow-up to this first report was made public in 2021. The goals of this second report were:  

o Investigate topics left out in first report 
o Mature the concept of learning assurance 
o Investigate remaining trustworthy AI building blocks 

 EASA Concept Paper: First guidance for Level 1 & 2 machine learning applications 

This document aims at guiding applicants when introducing AI/ML technologies into safety-related 
systems or in applications related to any domain covered by the EASA Regulation.  

This document [20] provides a first set of usable objectives and it only covers an initial set of AI/ML 
techniques. Therefore, nowadays it does not constitute a definitive or detailed guidance, but it will 
continue evolving according to a defined roadmap. 

It has dedicated sections to explainability and trustworthiness.  

 ISO/IEC 22989 - Information technology - Artificial intelligence — Artificial intelligence 
concepts and terminology 

This document [21] establishes standardized terminology and describes concepts in the field of AI. 
The standardized concepts and terminology are needed to help AI technology to be better 
understood and used by a broader set of stakeholders.  

It also allows the comparison and classification of different solutions in terms of resilience, 
reliability, accuracy, safety, trustworthiness, security and privacy. This classification and 
comparison help stakeholders to better select the appropriate solutions for their applications. 

 IEC TS 6254 - Information technology — Artificial intelligence — Objectives and approaches 
for explainability of ML models and AI systems 

When AI is used for taking decisions in a system it is important that people understand how those 
decisions are made. But providing useful and clear explanations of the behaviour of an AI system 
is a difficult task. IEC TS 6254 focuses on explainability, which is the capacity of explaining the 
processes undertaken by the machine learning model and its output in a way that it is 
understandable for a human being. 

It presents objectives, approaches, and methods to reach explainability of Machine Learning (ML) 
models and AI systems, outputs and results. It also provides guidelines on the applicability and 
properties of the approaches and methods for improving explainability throughout the AI system’s 
life cycle, as defined in ISO/IEC 22989 [21] At the time of writing, this standard [22] is still at a 
development phase and information is based on early drafts. 
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 ISO/IEC DIS 5338 - Information technology — Artificial intelligence — AI system life cycle 
processes 

At the time of writing, this standard [23] is still at a development phase and there are no details or 
information from the main concepts and principles that will be presented on it. 

 Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS) 

Even if it is not a standard, this document [24] introduces a methodology for the assurance of 
Machine Learning for use in autonomous systems. It comprises a set of safety cases and process 
that allow integrating safety assurance in ML development components as well as the generation 
of explicit evidence justifying that the components have the acceptable safety level when 
integrated into autonomous system applications.  

It covers the following ML lifecycle stages: ML safety assurance scoping, safety requirements 
elicitation, data management, model learning, model verification and model deployment.  

In AMLAS, safety considerations are only meaningful once scoped within the wider system and 
operational context. 

3.1.3. Standards/guidelines for HPEC platforms 

On the platform side, functional safety standards such as those presented in Section 3.1.1, 
advocate for simple, predictable and proven-in-use solutions. Functional safety standards require 
the verification of the predictability of behaviour, including properties such as performance, 
resources, response time and worst-case execution time (IEC 61508-3 7.9.2.14). They recommend 
determining the use of resources by each process and the distribution of demands under average 
and worst-case conditions (IEC-61508-7 C.5.20/C.5.22). This may become particularly challenging 
in modern and emerging high-performance embedded platforms as those needed to run AI based 
solutions, due to their complex parallel architectures, shared resources, lack of in-service 
experience and detailed public information...In mixed-criticality systems, standards recommend 
solutions based on deterministic scheduling methods supported by an upper estimation of 
execution time and program sequence and timing supervision units such as watchdogs. ISO 26262-
11 section dedicated to multicores, warns about the fact that multicores are subject to timing 
faults and it highlights the importance of independence of execution by dedicated analyses and 
countermeasures such as, the specification of timing constraints and detection of timing 
requirement violations, doing an upper estimation of resources, evaluating the influence of 
hardware and software interactions and evaluating timing and execution failure modes.  

In order to bridge this gap between functional safety standards and the increasing complexity of 
platforms required to achieve the performance needs of AI applications, in this section we 
summarize existing and emerging guidelines focused on multi-core processors. 

 CAST-32A – Avionics - Certification Authorities Software Team (CAST) position paper 

Based on the need of the aerospace domain to adopt multicore processors, the Certification 
Authorities Software Team (CAST) published a position paper identifying the main objectives that 
shall be met by a safety critical airborne system executed on a multicore platform in terms of 
safety, performance, and integrity. Since its release on 2016, further efforts have been devoted to 
officialising the outcomes of this position paper on an official guidance by the FAA and EASA, which 
is collected in AMC-20-193 presented in next subsection. 
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 AMC-20-193 – Avionics - General Acceptable Means of Compliance (AMC) for Airworthiness 
of Products, Parts and Appliances. Use of multi-core processors 

The goal of this AMC produced by EASA, is to identify items that might have an impact in the safety, 
integrity and performance of airborne system software executed on a multicore processor. It 
provides guidelines for DO-178 [25] aerospace projects developed in multi-core platforms. 

It recommends the practices to be considered when working with multicore processors, including 
considerations for dynamic allocation and multicore interference mitigation. AMC applies to 
systems and equipment that contain two or more cores activated and contain software application 
or hardware item with safety implications. Even if the AMC is specific for the aerospace domain, 
most of the approaches and methods described on it could be applied to other domains handling 
the development and certification of safety-critical systems on multicore platforms. 

AMC-20-193 supplements the guidance in CAST-32A position paper. 

3.1.4. Summary of standards of interest for the project 

This section summarizes the properties that make previously introduced standards and guidelines 
interesting for SAFEXPLAIN. Table 6 categorize them based on their relation to functional safety, 
the guidance they provide for AI based developments, and the extend at which the topics of 
explainability and high-performance platforms are covered. This is represented by the following 
symbols: ‘-’ (none or very little), ‘+’ (low), ‘++’ (medium) and ‘+++’ (high). In addition, Table 6 also 
describes if each document is already published, if there is an available draft or if it is still under 
development (ongoing) and it specifies the domain of application. 

Based on this, the initial phases of SAFEXPLAIN will mainly focus on the following standards and 
documents (marked in blue colour in Table 6) and will closely monitor the standardization 
evolution on the presented topics: 

o For functional safety, IEC 61508 is taken as reference standard. As a generic industrial 
standard for functional safety, it allows identifying and stablishing cross-domain safety 
principles. However, consistency with domain specific functional safety standards for 
automotive (ISO 26262), railway (EN 5012x) and space (ECSS standard set) will 
continuously be checked. 

o Similarly, for AI and autonomous systems, ISO/IEC 5469 [26] is envisioned to cover 
functional safety and artificial intelligence in a domain-independent way, and it will 
probably share many commonalities with the ongoing automotive ISO/PAS 8800 [27]. In 
addition, ISO/PAS 21448 [12] stablishes the procedures and requirements to guarantee 
Safety of the Intended Functionality (SOTIF), and even if it is targeted to the automotive 
domain, the project will identify the common principles applicable to autonomous 
systems in other domains. In addition, ISO/PAS 21448 complements ISO/IEC 5469 and 
ISO/PAS 8800 with a specific Annex for ML. Based on the main safety principles derived 
from these standards, later stages of the project may consider others to further extend 
specific topics (e.g., ISO/TR 4804 [13] that will be replaced by ISO/TR 5083 for verification 
and validation methods, and VDE-AR-E2842-61 [28] and UL 4600 [29] for uncertainty 
management). 
Other standards, such as ISO/IEC DIS 5338 [23] and ISO/IEC 22989 [14] for IT, will also be 
considered to a lesser extend for terminology and AI system life cycle processes, as 
recommended by ISO/IEC 5469. 

https://www.rapitasystems.com/do178
https://www.rapitasystems.com/do178
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o To deal with the increasing hardware platform complexity, mainly AM(C) 20-193 is [30] 
considered, as it is the evolution of CAST-32A [31]. 

It should be noted that the spectrum of available and emerging standards is very wide, with many 
other additional standards for other domains where autonomous systems can be applied, such as, 
agriculture, machinery, or robotics. At this stage of the project, these standards are not considered 
as they do not fit within the application domain of the case studies. 

Table 6: Summary and classification of standards 

Standards / 
guideline 

Status 
Function
al safety 

AI / ML / 
DL 

Explainabilit
y 

HPEC 
platforms 

Domain 

FUNCTIONAL SAFETY 

IEC 61508  PUBLISHED +++ - - - Generic 

ISO 26262 PUBLISHED +++ - - - Automotive 

EN 5012x PUBLISHED +++ - - - Railway 

ECSS-Q-ST-40C PUBLISHED +++ - - - Space 

ECSS-Q-HB-80-
03A 

PUBLISHED 
+++ 

- - - Space 

ECSS-Q-ST-30C PUBLISHED +++ - - - Space 

DO-178C PUBLISHED +++ - - - Avionics 

AI AND AUTONOMOUS SYSTEMS 

ISO/IEC TR 5469 ONGOING +++ +++ + - Generic 

ISO/PAS 21448 PUBLISHED ++ ++ - - Automotive 

ISO/IEC TR 24029 PUBLISHED - ++ + - Generic 

ISO/PAS 8800 ONGOING +++ +++ - - Automotive 

ISO/TR 4804 PUBLISHED ++ ++ - - Automotive 

ISO/TR 5083 ONGOING ++ ++ - - Automotive 

VDE-AR-E2842-61 PUBLISHED + + - - Generic 

ANSI/UL 4600 PUBLISHED + + - - Automotive 

CoDANN I and II PUBLISHED ++ +++ + - Avionics 

EASA Concept 
Paper 

PUBLISHED - +++ ++ - Avionics 

ISO/IEC 22989 PUBLISHED - +++ - - IT 

ISO/IEC TS 6254 ONGOING - +++ +++ - IT 

ISO/IEC DIS 5338 DRAFT - +++ - - IT 

IEEE 2846 PUBLISHED + - - - Automotive 

AMLAS PUBLISHED - +++ - - Generic 

HPEC / MULTICORE PLATFORMS 

CAST-32A PUBLISHED - - - +++ Avionics 

AM(C) 20-193 PUBLISHED - - - +++ Avionics 

3.2. Baseline safety principles 
The project will adopt an incremental strategy based on safety patterns where DL is introduced in 
the system with different roles and relevance. The safety implications and requirements of the DL 
component will determine the safety principles that shall be applied to it. In this sense, ISO / IEC 
TR 5469 classifies the application of the AI technology on the safety system based on 6 usage levels: 
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 Level A1 applies to safety-relevant systems where AI technology is used and it is possible to 
make automated decision of the system function using AI technology.  

 Level A2 applies to safety-relevant systems where AI technology is used but it is not possible 
to make automated decision of the system function using AI technology (e.g., AI technology is 
present in the system for diagnostics). 

 Level B1 applies to safety-relevant systems where AI technology is only used in the 
development phase (e.g., an offline support tool) and automated decision making of the 
function developed using AI is possible. This usage level is out of scope of SAFEXPLAIN. 

 Level B2 applies to safety-relevant systems where AI technology is only used in the 
development phase (e.g., an offline support tool) but no automated decision making of the 
function is possible. This usage level is out of scope of SAFEXPLAIN. 

 Level C applies to safety-relevant systems where AI technology is not part of a safety function 
but can have an impact on it.  

 Level D applies to safety-relevant systems where AI technology is not part of a safety function 
and does not have an impact on it due to sufficient segregation and behaviour control. 

Depending on the DL-usage level and the complexity of the ML technology, ISO / IEC 5469 provides 
different recommendations and requirements. Next subsections summarize the baseline safety 
principles in terms of safety lifecycle and architectural design. 

3.2.1. Safety lifecycle 

Functional safety standards, such as, IEC 61508, ISO 26262 or EN 5012x, define well known 
procedures and technical requirements for the management of functional safety across the 
complete product lifecycle. While many of these considerations can be kept when developing ML-
based systems, some aspects shall be extended to cover specific aspects of ML, like data 
management, training process or new hazards involved by the nature of AI algorithms. As 
summarized in previous Subsection 3.1, emerging standards and initiatives are working on this 
direction. This subsection aims to relate these novel approaches with the traditional functional 
safety lifecycle. 

Next Figure 3 depicts the high-level relation of the FUSA lifecycle with the AI lifecycle approach 
proposed by AMLAS. As it can be seen, the FUSA lifecycle follows a V-model approach, which can 
be decomposed into hardware and software V-models. When incorporating ML components in the 
system architecture design, the traditional software V-model shall be accommodated to ML 
particularities. Following AMLAS, we introduce the concepts of “data management”, “model 
learning” and “model verification” into the SW module realization phases (design, implementation 
and testing). However, the inclusion of ML components has further implications in all phases of 
the lifecycle, starting from the hazard and risk analysis, requirements specification, up to model 
deployment and validation. Therefore, additional phases for “ML safety assurance scoping”, “ML 
requirements” and “ML deployment” are contemplated.  
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Figure 3: Relation between FUSA lifecycle (IEC 61508) and AI lifecycle (AMLAS) 

The process proposed in AMLAS is aligned with the requirements and recommendations provided 
by the ISO/IEC TR 5469 standard, which in many cases refers to IEC 61508 techniques even for ML 
systems development. In Table 7, we summarize main ISO/IEC TR 5469 requirements and 
recommendations together with AMLAS guidance of each of the AI lifecycle step. 

Table 7: ISO / IEC TR 5469 and AMLAS requirements and recommendations for each AI lifecycle step 

 ISO / IEC TR 5469 AMLAS 

ML Safety 
Assurance 
Scoping 

The current draft indicates that: 
- Requirements or properties can be 
based on existing standards although 
other may need to be newly defined. 
- Hazard and risk analysis phase can be 
based on IEC 61508 or other functional 
safety standards, with some 
modifications to address the black-box 
nature of ML. 

Definition of the system safety 
requirements, description of the system, 
ML component (including its interfaces) 
and operating environment of system. 
 

Hazard identification and risk analysis. 
 

Safety requirement allocation from 
system to ML component. 
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 ISO / IEC TR 5469 AMLAS 

ML 
Requirements 
Assurance 

In its current draft, it does not define 
specific requirements for ML 
requirement specification. Instead, it 
makes the following analysis: 
- Common FUSA practices can be 
applied (e.g., IEC 61508-3 techniques 
for software requirements 
specification). 
- In some cases it is difficult to define 
safety requirements for AI algorithm 
and refers to IEC TS 62988-1 and IEC 
61496 as an example of the definition 
of a person detection function. 

Specification of the ML safety 
requirements from the allocated system 
safety requirements. 
 

Refinement the ML safety requirements 
into performance and robustness 
requirements. 
 

Definition of the assumptions about the 
system or operating environment. 
 

ML safety requirements verification. 

Data 
Management 
Assurance 

Training data: 
- has to provide complete 

representativeness of the input 
domain. 

- has to reflect the distribution of the 
application context. 

Identification of the sources of data 
drift (seasonal change, changes in the 
process that can induce this data drift, 
unforeseen input by operators, 
different lighting conditions in training 
data than operational data …) and 
establish correction of the model (re-
training, the estimation and inclusion of 
correction factors, supervision 
correction...). 
 

Test data: 
- Shall be representative of all safety-

relevant scenarios identified during 
HARA. 

- Shall cover variations of situations 
involving safety risks. 

- Shall be diverse enough and 
sufficient to verify the proper 
training (right training outcome) for 
those safety-relevant scenarios 
from HARA and the mentioned 
variations. 

- Shall ensure the stable outcome of 
testing for those safety-relevant 
scenarios from HARA and the 
mentioned variations. 

Clearly specify sets of data attributes 
that lead to each of the safety risks 
identified in HARA. 
 

Data requirements shall specify the 
characteristics that the collected data 
have to meet, including relevance, 
completeness, accuracy and balance: 
- Relevance requirements: shall specify 

the extent to which the data match 
the intended operating domain into 
which the model is to be deployed. 

- Completeness requirements: shall 
specify the extent to which the 
development data must be complete 
with respect to a set of measurable 
dimensions of the operating domain. 

- Accuracy requirements for the data 
shall be specified. 

- Balance requirements shall specify the 
required distribution of samples in the 
data sets. 

A data requirement justification report 
shall be provided that the specified ML 
data requirements are sufficient to ensure 
it is possible to develop a machine 
learning model that satisfies the ML safety 
requirements of previous phase. 
 

Training and verification data should be 
collected by different people/teams. 
 

Decisions made when collecting, 
processing and augmenting the data 
should be recorded to explain how the 
data sets meet the data requirements. A 
data generation log shall be kept, which 
details the decisions made in each sub‐
process to obtain data with the desired 
features. 
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Ensure the independence between test 
and training data and therefore, 
independence between the teams 
collecting the data and the teams 
performing the tests. 
 

Ensure that data are free of malicious 
modifications or alterations (ensure the 
credibility of data source and data 
collection processes).  

Generate data sets in accordance with 
data requirements for the development 
and verification stages (training, 
verification, validation). 
 

Analyse the datasets to verify whether 
they can meet the data requirements and 
it should be explicitly documented. This 
data set should consider accuracy, 
relevance, completeness and balance of 
the data sets. 
 

When existing data sets are re-used, 
additional validation tasks may be 
required to ensure that the labels are 
sufficient for the context into which the 
model is to be deployed.  

Model Learning 
Assurance 

Achieve an appropriate level of 
transparency: should not be as low as 
poses risks in terms of fairness, 
security, and accountability, neither as 
high than lead to confusion due to 
information overload. 
 

A trade-off between explainability and 
performance of the system, reaching an 
overall performance in terms of the 
quality of the decision achieving the 
highest level of explainability. 
 

The information about the AI system's 
decision-making should be clear, 
coherent, accurate, complete and 
understandable by experts and end 
users. 
 

A methodical and formally documented 
evaluation of model interpretability 
shall be done, subject to evaluation of 
the consequences on functional safety 
risks. 
 

Incorporate forms of concept drift 
detection that differentiate between 
drift and noise present in the system, 
allowing to adapt the model over time. 
 

Analyse the vulnerability factors 
associated with AI technology (special 
emphasis in random HW failures). 
 

Guarantee portability between training 
and inference platforms (i.e., 

Record the decision of the most 
appropriate ML model for the problem 
and for satisfying safety requirements, 
and the expert knowledge or previous 
experience that led to its election. 
 

The process followed in generating the ML 
model has to be documented, justifying 
the key decisions (including the choice of 
the development tools) and those choices 
that impact on the performance and 
robustness of the model. 
 

The results from evaluating the ML model 
with the internal test data have to be 
documented, providing evidence of 
satisfying the ML safety requirements.  
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translational errors due to memory 
incompatibilities of data management). 
 

Fault detection during training (e.g., 
ground truth verification, cross 
checking ...). 

Model 
Verification 
Assurance 

Detect and mitigate training errors 
during the training phase. 
 

Safety risk mitigation techniques shall 
clearly address each safety risk 
identified during HARA and its role in 
maintaining functional safety. 
 

Approaches focused on guaranteeing 
interpretability or explainability of the 
model are desirable (how an AI system 
is constructed, analysis of the model to 
gain a partial "explanation" of the 
output behaviour…). 
 

For each ML safety requirement at least 
one verification activity shall be 
undertaken. 
 

The verification activities: 
- should be sufficiently independent of 

the development activities and 
include the measures taken to verify 
the ML model. 

- shall be comprehensive. 
- shall clearly demonstrate coverage 

with respect to variability and 
combinations relevant to the ML 
safety requirements. 

The results of the ML safety requirements 
verification have to be recorded.  
 

The verification strategy should include 
the range of tests undertaken and the 
rationale for performing each test with 
bounds and test parameters where 
appropriate. In addition, the approaches 
taken to manage verification data in such 
a way as to ensure that data leakage did 
not occur should be documented. 

Model 
Deployment 
Assurance 

Once an AI system is approved and in 
operation, its own incident statistics 
can be used to provide ongoing 
evidence of safety performance. 
 

Most IEC 61508-3 techniques can be 
applied for safe model deployment, 
including: 
- Fault detection during inference. 
- Diverse monitor and diverse 
redundancy. 
- Cyclic behaviour, with guaranteed 
maximum cycle time.  
 

In addition to the previous techniques 
proposed by IEC 61508-3, IEC 5469  
defines a set of control and mitigation 
measures related to architectural 
considerations (supervision function, 
redundancy, ensemble concept and 
diversity...).  

Measures shall be put in place to monitor 
and check validity throughout the 
operation of the system of the key system 
and environmental assumptions. 
 

Mechanisms shall be put in place to 
mitigate the risk posed if any of the 
assumptions are violated. 
The system shall monitor the outputs of 
the ML model during operation, as well as 
the internal states of the model, together 
with erroneous inputs to identify when 
erroneous behaviour occurs. 
erroneous input, outputs, and model 
states, shall be documented in the 
erroneous behaviour log. 
When integrating the model into the 
system the suitability of the target 
hardware platform shall be considered 
The system in which the ML model is 
deployed shall be designed such that the 
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system maintains an acceptable level of 
safety even in the face of the predicted 
erroneous outputs that the model may 
provide. 

3.2.2. Safe Inference Platform 

For the inference of the ML-based system, traditional functional safety approaches shall be 
followed for the mitigation and control of possible errors. However, the intrinsic complexity of the 
HW and SW that build these systems challenge the efficiency and coverage that can be attained 
with existing techniques. In addition, with ML systems, the concept of unintended behaviour (or 
model insufficiencies) shall be handled too. ISO/IEC TR 5469 classifies the elements of the ML 
model as: 

 Application independent technology elements: executable code, low level libraries, set of 
calculations… In general, safety techniques of traditional functional safety standards could 
be applied. 

 Application dependent technology elements: application graph, deep learning model… 
These elements depend heavily on data and are likely not covered by existing techniques 
in FUSA standards. 

This subsection explains basic concepts and common architectural design patterns on FUSA 
standards and provides an initial overview on how they relate to ML-based solutions together with 
the recommendations of ISO/IEC TR 5469 on the platform. 

3.2.2.1. Architectural safety patterns from traditional FUSA (IEC 61508) 

Functional safety standards such as IEC 61508 and those based on it (e.g., ISO 26262 and IEC 5012x) 
define the average probability of dangerous failure of a safety function according to its SIL. In 
addition, the highest SIL that can be claimed for a safety function is limited by the following 
concepts (see Table 8): 

 Hardware fault tolerance (HFT): is the ability to perform the safety function in the presence 
of N faults. An HFT of N means that N+1 faults could cause the loss of the safety function. 

 Safe Failure Fraction (SFF): ratio of average safe (𝜆𝑆) + dangerous detected (𝜆𝐷𝐷) failure 
rates and total average failure rate (i.e., safe (𝜆𝑆) + dangerous (𝜆𝐷), where 𝜆𝐷 is the sum 
of dangerous detected (𝜆𝐷𝐷) and dangerous undetected (𝜆𝐷𝑈)): 

 

𝑆𝐹𝐹 =  
∑ 𝜆𝑆 +  ∑ 𝜆𝐷𝐷

∑ 𝜆𝑆 +  ∑ 𝜆𝐷𝐷 + ∑ 𝜆𝐷𝑈
 (eq. 1) 

𝜆S 𝜆DD 𝜆DU

𝝀𝑺 
𝝀𝑫𝑫 

𝝀𝑫𝑼 
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Table 8: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements 

Pattern HFT 
Safe Failure Fraction (SFF) 

<60% 60% -90% 90% - 99% ≥ 99% 

1oo1(D) 0 Not 
allowed 

SIL 1 SIL 2 SIL 3 

2oo2(D) 0 Not 
allowed 

SIL 1 SIL 2 SIL 3  

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4 

According to eq. 1, the SFF can be improved by increasing the portion of safe and dangerous 
detected failure rates and by correspondingly reducing the dangerous undetected (𝜆𝐷𝑈) ones. 
This can be achieved through diagnostic mechanisms that provide the required Diagnostic 
Coverage (DC): 

𝐷𝐶 =  
∑ 𝜆𝐷𝐷

∑ 𝜆𝐷𝐷 + ∑ 𝜆𝐷𝑈
 (eq. 2) 

Next, we summarize different generic architecture patterns to achieve the required SIL, HFT and 
SFF requirements. 

 Single channel architecture without diagnostics (1oo1, HFT = 0) 

A safety function is usually performed by more than one subsystem (e.g., sensor, logic, actuator). 
In single-channel architectures, this is a serial combination of elements as shown in the example 
of Figure 4. In this case, the maximum SIL of the safety function is determined by the element with 
the lowest SIL (i.e., SIL 1 in the example of Figure 4) and the probability of dangerous failure of the 
safety function is the addition of the probabilities of dangerous failure of all elements. 

  
Figure 4: Single channel without diagnostic (1oo1) 

In this architecture, any dangerous failure of a subsystem element, causes a failure of the safety 
function. According to Table 8, with this architecture, the safe failure fraction shall be at least 60% 
for SIL 1 safety functions and higher for greater SILs. To this end, the safe portion of the failure 
rate shall be high enough or otherwise diagnostic mechanisms shall be applied as explained in next 
architecture. 

 Single channel architecture with diagnostics (1oo1D, HFT = 0) 

In order to increase the safe failure fraction of each element, periodic diagnostic mechanisms, 
executed every Diagnostic Test Interval (DTI), shall detect the error and perform an action (refer 
to Figure 5 for an example) to reach and maintain the safe state in a period of time that prevents 
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the hazardous event. In this case, undetected dangerous failures of a subsystem element cause 
the loss of the safety function. 

 
Figure 5: Single channel with diagnostics (1oo1D) 

 Dual-channel architecture (2oo2(D), HFT = 0) 

The 2oo2 is a two-channel architecture that consists of two parallel channels, each performing the 
safety function. A voter checks the consistency among both channels and in case of discrepancy, 
it performs an action to reach and maintain the safe state. Therefore, in this architecture, both 
channels shall be error free in order to keep the execution (i.e., HFT = 0) but higher Diagnostic 
Coverage than in previous approaches is easier to achieve thanks to the comparison voting. 
Common cause failures among the two channels shall also be contemplated, as they could result 
in dangerous undetected system failures. A way to reduce this, is by employing diversity, i.e., by 
using different solutions and technologies to build the redundant channels. 

As in the single channel architecture, the dual channel architecture can be implemented with 
additional diagnostics (2oo2D), reducing the amount of dangerous undetected faults. 

 
Figure 6: Dual channel with diagnostics (2oo2D) 

 Dual-channel architecture (1oo2(D), HFT = 1) 

This dual-channel architecture is similar to previous, but instead of comparing the outputs, each 
channel has the ability of performing the safety function independently (e.g., each opening a safety 
relay and both connected in series as shown in the example of Figure 7). In this case, a single fault 
does not lead to the loss of the safety function, as the second channel is still able to run it (HFT = 
1). Simultaneous dangerous failures on both channels could lead to loss the safety function, 
therefore common cause failures shall be considered. 
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Figure 7: Dual channel with diagnostics (1oo2D) 

 Triple Module Redundancy (TMR) with majority voter (2oo3, HFT = 1) 

Previous concepts can be extended to an increasing number of channels, such as triple-channel 
architectures. A common approach is to use a majority voter to select the correct output among 
the three channels. This means that a single fault can be detected and tolerated (HFT = 1) but two 
faults in combination can lead to the loss of the safety function. As in previous cases, this 
architecture is commonly complemented with diagnostics mechanisms in each channel and with 
cross-monitoring among channels. 

 
Figure 8: Triple Module Redundancy (TMR) with majority voter (2oo3) 

 Triple Module Redundancy (TMR) (1oo3, HFT = 2) 

Instead of applying the majority voter, each channel could also independently perform the safety 
function, analogously to the example explained in the 1oo2 dual channel architecture. In this case, 
the 3 channels need to fail in order to lose the safety function, and therefore 2 faults are tolerated 
(HFT = 2). As in previous cases, this architecture is commonly complemented with diagnostics 
mechanisms in each channel and with cross-monitoring among channels. 

 
Figure 9: Triple Module Redundancy (TMR) (1oo3) 

3.2.2.2. Architectural safety patterns for AI 

Same architectural properties described in previous subsection can be applied for safety systems 
with AI components with some particularities. Following the ISO / IEC TR 5469 approach, 
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architectural safety patterns for AI could include 3 levels of complementary mechanisms depicted 
in Figure 10 and explained below: redundancy and diversity, monitors / detection mechanisms, 
and supervisors. 

 
Figure 10: Complementary architectural patterns for safe AI [32] 

The selection of techniques and the design of the specific architecture will depend on the safety 
requirements of Table 8 such as SIL, HFT and SFF. In addition, the DL-usage level introduced in 
Section 3.2, will determine the SIL, HFT and SFF requirements allocated to the ML component.  

1) Redundancy and Diversity 
As shown in previous Table 8, in order to meet the IEC 61508 requirements for SIL 3, some form 
of redundancy is required, unless it is proven that the SFF is higher than 99%, which can be very 
challenging in complex systems with AI. Following previously described architectural patterns, 
several DL-models can be used to build a redundant architecture. In addition, for higher robustness 
and effectiveness, redundancy can be combined with diversity. This diversity can be introduced at 
different points as proposed by the authors of [33]. 

 
Figure 11: Diversity approaches [33] 

1. Inputs: different sensors set in distinct locations/positions can be used as input 
sources in order to capture the same object in varying angles, with different 
perspective, divergent physical principles of measurement, and sensor-specific 
characteristics. 

2. Training data: models can be trained by different input data sets, different labelling 
rules, which will result in different models. 

3. Training: different technologies, processes and people can be employed to train the 
several redundant models. For example, changing the initialization point of the 
weights, either with the same or different data for training, will potentially result in 
diverse models. 



 

  21 

 

D 1.1 Requirements, Success Criteria and platforms 
Version  0.1 

4. DL model technology: with diversity of AI technology itself, selected algorithm, 
number of layers, or its configuration. 

5. Inference platform: the redundant DL models can be deployed into different 
hardware platforms and/or with different low-level software libraries. 

These diversity approaches shall be combined to sufficiently cover potential faults on the hardware 
and software (mainly (4) and (5)) as well as model insufficiencies caused by an incorrect or 
insufficient training process (1), (2), (3), (4). 

2) Monitors / detection mechanisms 

In the same way as for traditional FUSA approaches of Subsection 3.2.2.1, redundancy and 
diversity techniques can be complemented with diagnostics. The usage of a monitor and diagnostic 
mechanisms can detect when an AI technology is producing potentially unsafe actions, either due 
to functional insufficiencies or due to a fault. Therefore, traditional functional safety mechanisms 
for fault detection shall be complemented with new mechanisms that detect functional 
insufficiencies. 

The monitor or the detection mechanisms oversee the behaviour of the ML component(s) with 
reference to safety. According to ISO/IEC TR 5469, such mechanisms could include:  

 Plausibilization methods that check the model output for consistency (for example 
checking impossible positions, objects detected, sizes). 

 Input observation methods that guarantee that the input is statistically close to the training 
dataset. 

 Attention mechanisms such as heat maps. 

 Detection mechanisms for abnormal neural behaviour. 

 Safety envelope concept: a typical example of this method is the doer/checker approach 
where a safe and unsafe region is specified. The primary channel implements AI 
functionality while the other channel supervises the primary channel. These two channels 
are constantly cross checking. Once the output of the doer enters the unsafe region, the 
checker function implements a pre-defined reaction (e.g., safe state).  

 
Figure 12: Doer-Checker diagram 

With this approach, the checker subsystem could rely on traditional non-AI software and 
implement the safety functions while the doer is in charge of the untrusted functionality. 
Therefore, we could have a Doer at low safety integrity level while the Checker must be at 
higher SIL. According to ISO/IEC 5469, this solution can be considered either usage level C 
or usage level D.  
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In all this cases, the monitor must be driven by an independent power supply and can be developed 
using either non-AI techniques or using AI techniques.  

3) Use of a (non-AI) supervisor function  

A supervisor consists of a simpler safe controller based on classical deterministic algorithms and 
with limited capacities. This controller operates independently from the ML-based system and 
shall be able to reach a safe state. The supervisor verifies the output of the ML-subsystem 
corresponding to a given input. 

Thanks to the presence of a supervisor, in case of disagreement in the outputs generated by the 
DL based software or any kind of failure/malfunction of DL-based components detected by the 
supervisor or when the outputs are judged not reliable, the safe state can be reached.  
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Acronyms and Abbreviations 
 

AMC Acceptable Means of Compliance 

AI Artificial Intelligence 

AMLAS Assurance of Machine Learning in Autonomous Systems 

ADS Automated Driving Systems 

ASIL Automotive Safety Integrity Level 

CAST Certification Authorities Software Team 

DL Deep Learning 

DNN Deep Neuronal Network 

DAL Design Assurance Level 

DC Diagnostic Coverage 

DTI Diagnostic Test Interval 

E/E/PE Electrical/Electronic/Programmable Electronic 

ECU Electronic Control Unit 

ESA European Space Agency 

EASA European Union Aviation Safety Agency 

FAA Federal aviation Administration 

FUSA Functional Safety 

GPU Graphics Processing Unit 

HW Hardware 

HFT Hardware fault tolerance 

HPEC High Performance and Embedded Computing. 

HPC High Performance Computing 

IT Information Technology 

KPI Key Performance Indicator 

ML Machine learning 

MS Milestome 

NR Not Recommend 

PST Process Safety Time 

QoS Quality of Service 

SFF Safe Failure Fraction 

SIL Safety Integrity Level 

SOTIF Safety of the intended functionality 

SPI Safety Performance Indicators 

SoA Service Oriented Architecture  

SW Software 



 

  24 

 

D 1.1 Requirements, Success Criteria and platforms 
Version  0.1 

SDK Software Development Kit 

TMR Triple Module Redundancy 

UCI Uncertainty Confidence Indicator 

VAT Value Added Tax  

V&V Verification & Validation 

WP Work Package 
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Subject Shall/shouldwhat when

R2.1 IKR

X

Safety assurance case templates shall

be provided to define the arguments and identify the evidence that 

demonstrates that DL subsystem is safe for its purpose

during development

R2.1 R2.1 R2.1 R2.1

R2.2 IKR

X

Safety assurance case templates shall

include a definition of processes, methods and lifecycle considerations for DL-

software specification, design and implementation based on selected 

standards

during development

R2.2 R2.2 R2.2 R2.2

R2.3 IKR
X

Safety assurance case templates shall

include a definition of processes, methods and lifecycle considerations for DL-

software V&V
during development

R2.3 R2.3 R2.3 R2.3

R2.4 IKR
X

New methods for safety analysis shall

be provided to consider the quantification of DL-software failure rate in the 

assessment of the overall system residual risk

during development and 

operation R2.4 R2.4 R2.4

New methods for safety analysis  that consider DL-

software failure rate quantification

shall be proposed

R2.4 R2.4

R2.5 IKR

X
Different safety architectural design patterns for safe DL 

deployment (HW and SW techniques) shall be defined and explored

during development

R2.5 R2.5 R2.5

Initial safety architectural design patterns  for safe DL 

deployment (HW and SW techniques) for DL-usage 

level D & C & A

shall be defined and early evaluations done on the selected platform

R2.5

R2.5     

R2.7

Consolidated safety architectural design 

patterns  for safe DL deployment (HW and SW 

techniques) for DL-usage level D, C & A

shall be tailored and evaluated on the selected platform

R2.5

R2.6 IKR
X The architectural design patterns for safe DL deployment 

(HW and SW techniques) shall consider mechanisms to reduce the impact of adversarial attacks

during development and 

operation R2.6 R2.6 R2.6 R2.6

Consolidated safety architectural design 

patterns 

shall consider mechanisms to reduce the impact of adversarial attacks

R2.6

R2.7 IKR
X The architectural design patterns for safe DL deployment 

(HW and SW techniques) shall be tailored to specific platforms
during development

R2.7 R2.7 R2.7 see R2.5 R2.7

R2.8 IKR
X

A safety-security concept for a selected case-study shall be developed and assessed by an external certification authority
during development

R2.8
R2.8

R2.8  R2.8
A safety concept for the railway case study shall be defined and assessed by external certification authority (e.g., TUV)  

and internal experts (EXI) (not necessarily positively) R2.8
R2.8 The safety concept in SCm30.2.2 shall be positively assessed by certification experts after taking into consideration 

their recommendations

R2.9 IKR

X
New guidelines and/or adaptations to existing and 

ongoing standards should

be proposed based on feedback obtained from external certification 

authorities and domain experts (e.g., ESA)

during development

R2.9

R2.9

R2.9  R2.9

Main project concepts and outcomes applied to 

the  case studies
shall be ready for review by domain experts (e.g., EXI)

R2.9

R2.9
Recommendations for future standard 

improvement and extension to admit 

guidelines and arguments in SCm36.2.2

shall be consolidated

IKR
X

All partners shall

use as reference the same selected and agreed standards from where a 

common and useful substrate should be extracted R2.10

A common substrate of selected safety standards shall be identified

R2.10 All partners shall select the safety standards that will be used as reference

R23.1 BSC

X X A common set of definitions and means of compliance 

(including evaluation metrics) required from WP3 to WP2 

to achieve safety goals shall

be agreed between WP2 and WP3, support the following evaluation 

dimensions of DL components (model/data) under test: explainability, 

traceability, safety, robustness, confidence, during development and testing R23.1 R23.1

The first draft of evaluation framework and metrics shall be prepared and agreed (WP2-3). Address the following dimensions: explainability, 

traceability, safety, robustness, confidence, failure rate, easy to implement safety 

patterns.

Regarding explainability, allow determining whether explanations are sufficient for 

actionable decisions in an application
R23.1

R23.1 WP2 and WP3 shall consolidate the metrics of SCm06.3.1 to evaluate DL components 

R23.1

R23.1, 

R23.2

Common set of definitions and compliance 

means

shall be finalized and agreed with WP2 to achieve safety goals

R23.1

R3.1 BSC
X AI library and the underneath framework on which it 

builds shall

provide visibility (i.e. we need to see the source code of the AI library) to 

understand it and potentially change it during testing R3.1 R3.1 AI library and the underneath framework on which it builds shall  R3.1 R3.1 R3.1

BSC

X X

FUSA-aware DL library implementations shall achieve sufficient performance and adherence to safety standards during testing R3.2

FUSA-aware DL library 

implementations 

shall reach 75% performace of the non-FUSA aware libraries performance (e.g. 

frames per second for camera-based object detection) for the automotive 

case study

BSC R3.2

FUSA-aware DL library 

implementations 

shall realize explainable AI architectures in SCm30.3.6 on the target platform used 

by the case studies, and be integrated in the case studies

R3.3 RISE X The explanations of DL components shall

support different presentations (text, tabular, graph, visual) upon req. from 

safety. Low-dimensional human understandable concepts (text 

representation) shall be extracted  where applicable and feasible during development R3.3 R3.3

The audience for human understandable representations (e.g., safety experts, 

end users, DL developers) shall be identified R3.3 R3.3 First set of XAI algorithms shall support different representations (text, tabular, graph, visual) R3.3

R3.3, R3.4, 

R3.9

DL software implementations shall realize explainable AI architectures in SCm30.3.6 on the target platform 

used by the case studies

R3.3

R3.4 RISE X The explanations of DL components shall

support local explanation (explain specific case) and global explanation 

(explain global behaviour of the DL components) during development R3.4 R3.4 R3.4 First set of XAI algorithms shall support both local and global explanations R3.4 see R3.3 R3.4

RISE X DL components shall

be designed and implemented in accordance with the safety requirements and 

constraints determined in WP2 during development R3.5 DL components shall

be specificable (data/model) in accordance with SCm18.2.1 and 

SCm18.2.2 specification for SP1 R3.5

Explainable AI architectures shall be realized in accordance with SCm30.3.1, SCm30.3.2, SCm30.3.3 and 

SCm30.3.4 specification and design principles for all safety patterns

R3.5 DL component specifications shall be finalized and agreed with WP2 to achieve safety goals

R3.6 RISE X X Reference safe architectures of DL components shall be proposed that include the usage of supervisor (safety cage architecture) during development R3.6 R3.6 R3.6

An online safety DNN architecture based on 

supervisors

shall be designed to support online monitorability by allowing self-

monitoring and self-diagnosis of DL in CAIS for SP1 (if needed), 

including outlier detection and types of input data missing in the 

training set R3.6 R3.6 An online safety supervision architecture based on DNN supervisors

shall be prototyped to support online monitorability by allowing self-

monitoring and self-diagnosis of DL in CAIS for all safety patterns, 

including outlier detection and types of input data missing in the training 

set R3.6

R3.7 RISE X Datasets used for DL training/test/validation shall

be evaluated with the proposed metrics in R23.4 and should cover: relevance, 

completeness, balance and accuracy during development R3.7 R3.7 R3.7 R3.7

Datasets used in UCs shall be evaluated by the defined data explanation metrics

R3.7

R3.8 RISE X Approaches to improve dataset coverage shall

be proposed in accordance with the metrics (R3.7) that include using GAN-

based algorithms to generate relevant data points during development R3.8 R3.8 R3.8 R3.8

Approach to improve datasets shall be proposed (example: GAN) aiming for improving the data evaluation 

results R3.8

R3.9 RISE     X         Explainable DL approaches shall

be proposed for all DL components that are used by 03 UCs to meet the safety 

requirements during development R3.9 R3.9 R3.9

DL software implementations shall realize explainable AI architectures on the target platform for SP1

R3.9 see R3.3 R3.9

R3.10 RISE     X         Explainable DL components shall

be prototyped for popular classes (examples: MLP, CNN, RNN/LSTM,

Transformers ) during testing and operation R3.10 R3.10 R3.10 Explainable DL components shall

be designed and prototyped for CNN and MLP types. Specifically for 

YOLO version that is selected by UCs R3.10 R3.10

Explainable DL components shall be designed and prototyped for other DL types (RNN/LSTM, 

transformers) R3.10

R3.11 RISE   X         The DL  components shall provide explanations in alignment with information requirements from the 

defined V&V process

during development 

R3.11 R3.11

R3.11, 

R3.12

A “XAI by design” architecture shall be designed to support explainability/traceability requirements 

resulted from WP2 for SP1 (Safety Pattern 1). The architecture should 

allow adoption by all UCs 

R3.11

R3.11, 

R3.12

“XAI by design” architecture(s) shall support explainability/traceability requirements resulted from WP2 for 

all safety patterns

R3.11

R3.12 RISE   X         The DL  components shall

provide traceability in alignment with information requirements from the 

defined V&V process during development R3.12 R3.12 R3.12

see R3.11

R3.12

R3.13 RISE   X         The DL  components shall

be measurable and characterizable by the evaluation metric categories as in 

R23.4 during development R3.13 R3.13 R3.13 Explainable DL components shall

be measured and characterized by the evaluation metrics as defined 

in SCm18.2.1 and SCm18.2.2 R3.13 R3.13

R3.14 BSC

X X
a proof-of-concept for how to specify DNNs as a collection 

of explainable modules together with data/model 

specification shall be provided by WP3 during testing R3.14 R3.14 R3.14

R3.14 A proof-of-concept for how to specify DNNs as a 

collection of explainable modules together with 

data/model specification

shall be developed

R3.14

EXI X X X X X The Case Studies shall use the standardized APIs provided by the platform software, if available during testing and operation

R345.1

R5.22

The use-case runnables shall be able to run on the testing platform R345.1

R5.22 The platform shall

provide containerized support to deploy the use-case applications

R345.1

R5.11

R45.3, 

R4.5, R4.6, 

R4.18 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw 

API, requirements for reproducibility and monitoring

BSC

X X X X

Case studies shall

provide information about layers, type of layers, sw components and dataflow, 

all hyper-parameters that identify a DL model and that can require explainable 

requirements during testing R35.1

All Use Cases (UCs) shall provide information about case studies architecture, components and dataflow

R35.1 UC partners shall provide DL descriptions (layers, hyperparameters) that need explanation

R35.2 RISE X X X X X The defined evaluation criteria/metrics in R23.4 shall

be measureble for the proposed DL components (model/data) and approaches 

that are needed to support 03 UCs during development and testing R35.2 R35.2 R35.2 R35.2

The evaluation metrics shall be measured for all UCs

R35.2

R35.3 AIKO X X X X Explainable DL components shall be usable to evaluate the case studies during testing and operation R35.3 R35.3 R35.3 WP3 shall provide requirements on case studies implementations, if any R35.3 R35.3

R4.1

BSC X X X Platform should provide adequate observability channels (e.g Performance Monitoring 

Counters) on CPU, SoC and interconnect events during testing R4.1 R4.1
The selected HW platform(s) should

provide adequate observability channels (e.g Performance Monitoring Counters) on 

CPU, SoC and interconnect events R4.1 R4.1 R4.1

R4.2 BSC

X
X

BSP/Hypervisor/RTOS should

allow (not prevent) configuration of control registers for QoS and collection of 

hardware events during testing R4.2 R4.2
The selected HW platform(s) run-time should

allow (not prevent) configuration of control registers for QoS and collection of hardware 

events R4.2 R4.2 R4.2

R4.3 BSC X X Platform should provide debug support via IDE for Windows and Linux during testing R4.3 R4.3 The selected HW platform(s) should provide debug support via IDE for Windows and Linux R4.3 R4.3 R4.3

R4.4 BSC X X Platform should allow collecting end-to-end timing of selected libraries and applications during testing R4.4 R4.4 The selected HW platform(s) should allow collecting end-to-end timing of selected libraries and applications R4.4 R4.4 R4.4

R4.5 BSC
X X X X

Platform and case study shall

shall allow reproducibility of the results by allowing the control of the 

execution conditions (hardware state) during testing and operation R4.5 R4.5 R4.5 R345.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw 

API, requirements for reproducibility and monitoring R4.5

R4.6 BSC
X X X X

Platform and case study shall

shall allow reproducibility of the results by allowing the control of the software 

state, and input vectors/space during testing and operation R4.6 R4.6 R4.6 R345.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw 

API, requirements for reproducibility and monitoring R4.6

R4.7 BSC The monitoring platform shall allow collecting a relevant set of metrics identified in WP3, with special focus 

on those meant to support understandability and explainability.

during testing R4.7 R4.7 R4.7 R4.7 R4.7 A initial version of the platform monitor 

supporting the collciton of SAFEXPLAIN custom 

metrics

shall be provided R4.7 R4.7 The platform monitor shall support a relevant set of SAFEXPLAIN custom metrics, with special focus on 

those related to understandability and explainability.

BSC X Library enabling platform-level support for timing 

interference control/mitigation

shall be provided during testing

R4.8

An initial identification of sources of timing 

interference in the platform

shall be provided

R4.8

A consolidated analysis of sources of timing 

interference in the adopted platform 

configuration

shall be provided 

R4.8, 

R4.11

Platform-level configuration to support 

Safety Pattern requirements on 

controllabilty, predictability, and 

performance shall 

be updated to accommodate emerging requirements and refinements, if 

any.

R4.8, 

R4.11

Platform-level support for controllabilty and 

predictability

shall be identified

R4.8, 

R4.11

Platform-level configuration to support Safety 

Pattern requirements on controllabilty, 

predictability, and performance

shall be provided

R4.8, R4.9, 

R4.11

SW library for HEM configuration and 

control/mitigation of sources of timing 

interference in the platform

shall

be updated to accommodate emerging requirements and refinements, if 

any.

R4.8, R4.9, 

R4.11

A consolidated SW library for HEM configuration 

and control/mitigation of sources of timing 

interference in the platform

shall be provided

BSC X A library enabling collection of timing information on top 

of the target HW and SW configuration

shall be provided

during testing R4.9

Evidence that HEMs can be read on the SAFEXPLAIN 

board

shall be provided

see R4.8

R4.8, R4.9, 

R4.11

An initial SW library for HEM configuration and 

control/mitigation of sources of timing interference 

in the platform

shall be provided

see R4.8

BSC X A statistical method and tool for timing analysis of DL 

libraries and use cases

shall be provided

during testing R4.10

At least one statistical timing analysis 

technique/method , compatible with SP1 

requirements

shall be developed

R4.10

A consolidated version of at least one statistical 

timing analysis technique/method , compatible 

with Safety Patterns requirements

shall be provided

R4.10

Statistical timing analysis methods and  

tools, compatible with the adopted 

platform configuration,

shall 

be updated to accommodate emerging requirements and refinements, if 

any.

R4.10

A baseline version of at least one statistical timing 

analysis tool, partially compatible with the adopted 

platform configuration

shall be provided R4.10 At least one statistical timing analysis tool, 

compatible with the adopted platform 

configuration

shall be consolidated

R4.11

BSC X Hardware configurations to meet FUSA requirements and 

Safety patterns

shall be identified

during testing R4.11 R4.11 R4.11

The initial architectural safety patterns shall be assessed with respect their requirement on HW and SW platform level configuration

R4.11 R4.11

The proposed DL safety patterns in shall be concretely mapped to HW ans SW platform level solutions 

R4.11 R4.11

The mapping of safety patterns to HW 

ans SW platform level solutions shall

be updated to accommodate emerging requirements and refinements, if 

any.

R4.12

BSC X Partially automated support for collecting timing 

information on the target HW and SW configuration

shall be developed

during testing R4.12 R4.12 R4.12

Manual or partially automated support for collecting 

timing information from program execution 

shall be provided

R4.12 R4.12

Support for partially automated collection of 

timing information from program execution 

shall be provided

R4.12 R4.12

Support for partially automated 

collection of timing information from 

program execution 
shall 

be updated to accommodate emerging requirements and refinements, if 

any.

R4.13

BSC X Guidelines and practices for statistical predictability 

approaches, hardware observability & configuration 

shall be developed

N/A R4.13 R4.13 R4.13 R4.13 R4.13

A final set of guidelines and practices 

for statistical predictability 

approaches, hardware observability 

shall be provided

EXI X The platform software shall

provide standardized facilities to monitor the control flow and manage the 

execution of multiple applications with mixed criticality during operation R4.14

A baseline version the platform monitor with 

standard monitoring capabilities (i.e., alive, deadline, 

shall be provided R4.14 A monitoring concept shall be proposed

R4.14 The monitoring concept shall be finalized

R4.14 A testing concept shall be proposed

R4.14 The platform monitor shall implement the monitoring concept

R4.15 EXI X The platform software shall

provide standardized facilities to manage exchange (transmission and 

reception) of information between applications during operation R4.15 R4.15 R4.15

A baseline version of E2E message protection shall be provided

R4.15 R4.15 E2E message protection shall be finalized R4.15

R4.16 EXI X The platform software shall

provide standardized facilities to manage persistent storage and configuration 

for applications during operation R4.16 R4.16 R4.16

A baseline version of integrity protection for 

persistent data

shall be provided

R4.16 R4.16 Integrity protection for persistent data shall be finalized R4.16

R4.17 EXI X The platform shall provide data visualization utilities to support the development phase during testing R4.17 R4.17 R4.17

A baseline version of an extensible data visualization 

framework

shall be provided

R4.17 R4.17 The data visualization framework shall be consolidated based on use case needs (if applicable) R4.17

R4.18

EXI X The platform software shall provide standardized facilities to support the execution of integration tests during testing

R4.18 R4.18

R4.18

A proof-of-concept implementation of a the 

integration testing framework

shall proposed R4.18 R4.18 The platform monitor shall be extended with metrics and techniques, identified by WP2 and WP3 R4.18

R4.18 The test-automation framework shall be finalized

R4.18

A baseline version of utilities for testing and 

test-automation shall provided, based on the outcomes of WP2 and WP3 R4.18 The testing concept shall implemented and integrated in the test-automation framework

R4.18 The testing concept shall be finalized

R4.19 EXI X The platform software shall provide facilities to record and replay the case studies during testing R4.19 R4.19 R4.19 The platform shall be able to save and re-play use cases R4.19 R4.19

BSC X X X X X All partners shall select a target platform to run the case studies N/A R45.1 R45.1 All partners shall have selected the target platform R45.1 R45.1 R45.1

R45.1 BSC will lead and the rest of the partners shall contribute to the document describing the different boards considered

R45.2 BSC X X X X X All partners shall select a software platform to run the case studies N/A R45.2 R45.2 All partners shall have idenitfied the software support required on top of the target platform R45.2 R45.2 R45.2

R45.3 BSC
X X X X X

All partners shall procure the target hardware if needed N/A R45.3 R45.3

All partners expecting to need a HW board shall have procured and setup the board according to WP1 specifications

R45.3 R45.3, R4.5, R4.6, R345.1

WP4 shall define platform sw API, requirements for reproducibility and 

monitoring on case studies R45.3 R45.3

R45.4 IKR X X X X X The selected platform should support PyTorch and optionally TensorFlow + Keras
during use case develop., testing 

and operation
R45.4 R45.4 The run-time of the selected HW platform should support PyTorch, TensorFlow and optionally Keras libraries R45.4 R45.4 R45.4

R45.5 IKR X X X X X The selected platform should support NVIDIA Jetpack, TensorRT, python Libraries
during use case development, 

testing and operation
R45.5 R45.5 The run-time of the selected HW platform should support NVIDIA Jetpack, TensorRT, python Libraries R45.5 R45.5 R45.5

R45.6 IKR X X X X X The selected platform should
support OpenCV software (needed by frame preprocessing and stereo vision 

functions)

during use case develop., testing 

and operation
R45.6 R45.6 The run-time of the selected HW platform should support OpenCV libraries R45.6 R45.6 R45.6

R45.7 IKR X X X X X The selected platform should support application development in C++ and Python
during use case develop., testing 

and operation
R45.7 R45.7 The run-time of the selected HW platform should support C++ and Python applications R45.7 R45.7 R45.7

R45.8 IKR X X X X X The selected platform should support video input (might be replaced by recorded videos)
during use case develop., testing 

and operation
R45.8 R45.8 The run-time of the selected HW platform should support video inputs R45.8 R45.8 R45.8

R45.9 IKR X X X The selected platform should
support Full Yolo V4 and YoloV7 that will be used as DL models for object 

detection. The goal is using YoloV7.

during use case develop., testing 

and operation
R45.9 R45.9 The run-time of the selected HW platform should support the execution of Yolo (at least v4 but targeting v7) R45.9 R45.9 R45.9

R45.10 NAV X X X X X The selected platform should support faster I/O access via NVMe during testing and operation R45.10 R45.10 The run-time of the selected HW platform should NVMe I/O access R45.10 R45.10 R45.10

R45.11 AIKO X X X The selected platform should provide support to Floating Point execution during testing and operation R45.11 R45.11 The run-time of the selected HW platform should support FP operations R45.11 R45.11 R45.11

R45.12 AIKO X X X The selected platform should provide DL Inference APIs for the available accelerators during testing and operation R45.12 R45.12 The run-time of the selected HW platform should provide DL inference API for the available accelerators R45.12 R45.12 R45.12

R45.13 BSC
X X X X X X

The selected platform should

provide adequate interference channels mitigation support (Partitioning, QoS, 

...) during testing and operation R45.13 R45.13 The run-time of the selected HW platform should provide mechanisms to contorl respurce partitining, allocation, and QoS features R45.13 R45.13 R45.13

R5.1

BSC X X X Case studies shall provide a toy NN example excercising  the main elements of the SAFEXPLAIN 

SW stack during testing and operation R5.1

R5.1 Use cases together with interested WP's shall define the requirements for the toy model to exercise safexplain sw stack

R5.1

R5.1 WP5 shall develop a toy NN example excercising  the main elements of the 

SAFEXPLAIN SW stack and in line with SP1 R5.1

R5.1 to 

R5.5 + 5.9 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw 

requirements for reproducibility and monitoring R5.1

R5.2 IKR X X X X The DL models deployment on the selected platform shall be imported into the target platform via PyTorch *.pt weights files or via ONNX.
during use case develop., testing 

and operation
R5.2 R5.2

See 5.9
R5.2

see R5.1
R5.2

R5.3 IKR X The DL models deployment on the selected platform shall achieve >75% accuracy on detection test set during testing and operation R5.3 R5.3

R5.3, 

R5.4, 

R5.5, 

R5.8

WP5 Use Cases (UCs) shall define performance goals/thresholds to be met for each case study

R5.3

see R5.1

R5.3

R5.3 FUSA-aware DL library 

implementations 

shall reach 75% performace of the non-FUSA aware libraries performance (e.g. 

frames per second for camera-based object detection) for the railway case 

study

R5.4 IKR X The DL models deployment on the selected platform shall achieve >75% accuracy on distance estimation test set during testing and operation R5.4 R5.4
see R5.3

R5.4
see R5.1

R5.4

R5.5 IKR X X The DL models deployment on the selected platform shall
achieve 10 FPS frame rate for a 608x608 network size fort at least 1080p image 

resolution
during testing and operation R5.5 R5.5

see R5.3
R5.5

see R5.1
R5.5

R5.6 NAV X X X Case studies shall

Develop training dataset (possibily from simulation environment) to train the 

perception models. during use case development R5.6 R5.6

R5.6, 

R5.7

WP5 Use Cases (UCs) shall collect training and testing datasets for each case study

R5.6 R5.6

R5.7 NAV X X X Case studies shall

Create test set/scenarios  (covering different challenging scenarios and edge 

cases) along with the ground truth for testing the developed models. during use case development R5.7 R5.7 see R5.8 R5.7 R5.7

R5.8 NAV X X X Case studies shall

Develop state-of-the art perception models which meets the performance and 

inference requirements of the use case during testing and operation R5.8 R5.8 See R5.3 R5.8 R5.8

AIKO X X X Case studies shall be executable and testable on the platform during use case development R5.9 WP5 Use Cases (UCs) shall stub each case study to work on the SAFEXPLAIN platform

R5.9

WP5 Use Cases (UCs) shall complete 50% of the porting of the final case studies

see R5.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw 

requirements for reproducibility and monitoring

R52.2 AIKO X X X X Case studies shall be evaluated by safety analysis tools during testing and operation R52.2 R52.2 R52.2

WP2 shall provide requirements on case studies implementations, if any

R52.2

R52.2, 

235.3 The use-cases shall

be analysed by safexplain sw stack on the aspects of functional safety 

and explainability R52.2

See R2.8 

and R2.9

R52.2, 

R52.1 IKR X X X X Case studies shall specify and implement safety functions based on DL software during use case development R52.1 R52.1 All UCs shall define safety goals and safety scenario together with wp2 for each use case R52.1 R52.1 R52.1

BSC X X X X X Case studies should use the same or compatible software stack during testing and operation R54.1 R54.1 All partners shall have idenitfied the software support required on top of the target platform R54.1 R54.1 R54.1

R54.1 All partners should have selected the same or compatible software stack on top of the target platform 

BSC
X X X X X

Case studies should use the same HW platform during testing and operation R54.2 R54.1
All partners shall have selected the target platform

R54.2 R54.2 R54.2

R54.14
All partners should have selected the same target HW platform
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Description

R3.5

R345.1 R345.1 R345.1 R345.1 R345.1

R3.5 R3.5 R3.5 R3.5

R35.1 R35.1 R35.1

R4.8 R4.8 R4.8 R4.8 R4.8

R4.9

R4.10 R4.10 R4.10 R4.10 R4.10

R4.9 R4.9 R4.9 R4.9

R54.2

R5.9

R4.14 R4.14 R4.14 R4.14 R4.14

R45.1

R5.9 R5.9 R5.9 R5.9

R2.1,

R2.2, R2.3

Initial set of requirements, recommendations, architectural design patterns 

and procedures for (i) DL-software specification, design and implementation, 

and (ii) DL-software V&V

shall

be collected from selected standards

R54.1

R35.1 R35.1

R3.2 R3.2

R2.10
during development

R2.10

shall be described

shall  be defined and provided together with a simple example and agreed 

with WP3

R2.1,

R2.2,

R2.3,

R2.4
R2.1,

R2.2,

R2.3,

R2.4,

R2.5,

R2.6,

R2.7

Consolidated safety assurance case templates 

for DL-usage level D, C and A

R2.10 R2.10 R2.10

R3.2

Safety guidelines and arguments for DL 

software adoption in the critical 

domain

R2.1,

 R2.2,

 R2.3 

Initial safety assurance case templates  for DL-usage 

level  D & C
shall  be defined and provided together with a simple example

R3.2 R3.2


	D1.1RequirementsSuccessCriteriaPlatforms_final
	REQs&SC

