

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contratual Deadline 30.03.2023

Dissemination Level PU

Nature R

Author
Francisco J. Cazorla (BSC), Irune Agirre (IKR), Fahad Sarfraz (NAV), Thanh
Bui (RISE)

Contributors
Jaume Abella (BSC), Enrico Mezzetti (BSC), Ane Mijangos (IKR), Javier
Fernandez (IKR)

Reviewer Gabriele Giordana (AIKO)

Keywords Requirements, Success Criteria, Platform

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

Ref. Ares(2024)880881 - 06/02/2024

http://www.safexplain.eu/

 1

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

Change Log

Version Description Change

V0.1 First draft

V0.2 Comments from reviewer

V1.0 Final Version

 2

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

Table of Contents

1. Requirements and Success Criteria ... 4

1.1. Requirements .. 4

1.1.1. Safety Assessment (WP2) ... 4

1.1.2. Deep Learning (WP3).. 5

1.1.3. Tool Set Support and Platform (WP4) .. 5

1.1.4. Case Studies (WP5) ... 6

1.2. Success Criteria ... 6

1.3. Summary ... 6

2. Platform Selection and Setup .. 7

2.1. Hardware Platform ... 7

2.2. Software Stack .. 7

3. FUSA principles .. 1

3.1. Standards .. 1

3.1.1. Functional Safety Standards ... 1

3.1.2. AI and Autonomous Systems Standards .. 3

3.1.3. Standards/guidelines for HPEC platforms .. 8

3.1.4. Summary of standards of interest for the project ... 9

3.2. Baseline safety principles .. 10

3.2.1. Safety lifecycle .. 11

3.2.2. Safe Inference Platform.. 16

Acronyms and Abbreviations ... 23

References ... 25

 3

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

Executive Summary
During the first 6 months of the project, in this Work Package (WP) the team has focused on the
identification and validation of the requirements related to the main areas of research in the
project (FUSA, DL, and platforms), and on the definition of the success criteria to be achieved in
each milestone (T1.1). Also, effort has been devoted to the selection and setup of the baseline
hardware platforms on which case studies will be run as well as the identification of the baseline
SAFEXPLAIN software stack (T1.2). During these first 6 months, we have also defined an early set
of safety requirements and patterns to steer WP2, WP3, WP4 starting in m4 (T1.3).

This document therefore captures: the case study and FUSA standards requirements, the success
criteria set for each milestone of the project, the result of the selection of the platform and
software stack, and FUSA principles to consider in SAFEXPLAIN.

 4

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

1. Requirements and Success Criteria
At the top level, D1.1 captures the following types of requirements.

 Safety Assessment (SA): this requirements set relates to the considerations that shall be
taken into account in SAFEXPLAIN when addressing the challenges associated to functional
safety. Requirements cover the scope of safety assurance case templates, lifecycle
considerations, safety analyses, architecture designs and certification-related activities.

 Deep Learning (DL): the requirements are focusing on (i) compliance with safety
requirements, including specificability and evaluation metrics; and (ii) explainability related
requirements for DL components including: representation types, architecture, and
feasibility of implementation.

 Tool Set Support and Platform: under this umbrella we consider all technological
requirements to support SAFEXPLAIN goals in terms of supported functionalities, time
predictability, and mixed-criticality execution. Requirements cover several aspects related
to performance, libraries and toolchain support, platform observability, controllability,
monitoring of relevant metrics, as well as functional and non-functional software
verification in general.

 Case studies: these are end-user type of requirements to ensure that the case studies can
be integrated with the software stack developed in the other main lines of the project (SA,
DL, and tool set support) on the target platform so as to assess the benefits of the project.
The case study requirements also ensure that the explanations and metrics developed in
other WPs are aligned with and applicable to the use cases throughout their respective
development.

 Platform selection: Underpinning all these are the requirements on the platform that
should achieve the requirements set by the different lines of the project. This is specifically
covered in Section 2.

In each of these main lines the requirements were broken down into subcategories as follows.

1.1. Requirements

1.1.1. Safety Assessment (WP2)

Requirements related with the safety assessment (WP2) determine the scope of the activities that
the project will perform towards the safety certifiability of Machine Learning (ML)-based solutions.
To this end, the following aspects are considered:

 Standards. Safety activities of the project shall be based on existing emerging standards.
As the spectrum of available and emerging standards in the topic is very wide, this
requirement relates to the selection of a set of reference standards, which is covered in
Section 3.1 of this report.

 Safety assurance cases. A safety case defines the arguments and evidence required to
demonstrate a given goal (i.e., that a DL subsystem is sufficiently safe for its purpose) in a
structured way. These requirements cover the scope of the safety cases that will be
produced as an outcome of SAFEXPLAIN.

 Safety architectural patterns: These requirements cover the aspects that shall be
considered when designing safe system architectures including ML components. These
architecture patterns will be based on mechanisms such as redundancy, diversity,

 5

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

diagnostic mechanisms and supervision elements later introduced in Section 3.2.
Requirements specify the needs in terms of residual risk calculation, adversarial attacks
and platforms on which the architectures templates shall be tailored.

 Safety assessment and expert reviews: Requirements for the final assessment of WP2
outcomes through external expert reviews are addressed in this last group.

1.1.2. Deep Learning (WP3)

The requirements for WP3 belong to the following main categories:

 Alignment with Safety assessment: The alignment with WP2 is critical and should be

performed in interactive mode to maintain the agreements in terms of common

definitions, compliance means, and architecture.

 Addressing DL uncertainties: The explainability should address both data and DL model.

 Addressing V&V requirements: The extracted explanations should focus on different

audiences such as DL developer and safety experts. The information should be represented

in agreed forms to support safety argumentations.

 Feasibility: The explainable AI methods should leverage the latest developments of Service

Oriented Architecture (SoA) methods, with focus on feasibility to implement on agreed

platform (WP4) and with DL components to be used in UCs.

1.1.3. Tool Set Support and Platform (WP4)

The objectives on the tool set support and platform (WP4) have been broken down into two main
areas: (i) the hardware platform itself together with the available libraries and tool-chain support,
and (ii) the support for SAFEXPLAIN objectives in terms of DL explainability, verification, and safe
mixed criticality execution.

The first area relates to the selection of a hardware platform and software environment on which
to develop SAFEXPLAIN solutions. These elements are not meant to be developed in the scope of
the project and hence whose design, development, and implementation cannot be affected. The
work done in WP1 has thus focused on identifying and selecting the hardware platform and
software environment that better fits the needs of the project under a reasonable budget. We
report on the selection criteria and results in Section 2.

The second area, instead, relates to the set of techniques and supporting tools that are meant to
be designed and developed within the scope of the project and we will develop to capture the
project objectives and, ultimately, to support the subset of safety requirements addressed in the
project. We distinguish the following main scopes:

 Timing characterization. This covers the requirements related to the software timing
analysis part of the project, mainly related to the analysis techniques and tools to be
deployed for the timing analysis of the complex DL functionalities supported by the
SAFEXPLAIN framework.

 Observability and controllability. These requirements relate to exploiting the main means
for collecting low-level information on the execution of DL applications on the target
platform (via hardware events) and on the control over Quality of Service (QoS) and
hardware configuration to support FUSA and mixed-criticality objectives.

 DL Libraries integration on Validation toolset. This set of requirements is addressing the
development of a partially automated framework for the execution and verification of the

 6

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

DL functionalities in the use cases by providing flexible monitoring functionalities to gather
relevant metrics, including those specifically identified in SAFEXPLAIN. All in all, this ensures
DL libraries used and possible adapted in the project properly execute on top of the
SAFEXPLAIN validation toolset.

1.1.4. Case Studies (WP5)

The requirements around the case studies covered two main lines:

 Requirements on the case studies. These cover the stubbing and changes required in the
case studies to run on the selected hardware and software platform. This also involves the
creation and specification of training datasets to train the required DL components,
specifications and the performance requirements of the DL models and finally the test
cases to cover and validate the stipulated safety scenarios. Requirements from other WP’s
were collected to coordinate the respective work, such as identifying the case studies
safety scenarios, the algorithms architectures and some early simplified models to test the
software stack prototype.

 Requirements from the case studies. These requirements capture needs emanating from
the case studies towards the rest of the software stack. They include the hardware and
software requirements on the platform and the relevant DL components (explanations and
metrics) from WP3 which are required to meet the safety requirements. Some entries
explicate technical needs, such as the availability on the platform of resources such as
accelerators and the compatibility with different DL frameworks. Others ensure that
incremental prototypes from other WP’s work, and related requirements which may arise,
are provided at major milestones so that to monitor and enforce a common direction
throughout the project.

1.2. Success Criteria
There are 4 main control points or Milestones in the project: MS1 (Requirements, success criteria
and platforms selection), MS2 (Concept development, technology prototyping, and case studies
preliminary porting), MS3 (Technology consolidation and case studies integration), MS4 (Final
Assessment).

For each requirement we define a success criterion in at least one of the four Milestones. The goal
is to “land” each requirement into a specific point in time in the project in which we assess the
total fulfilment of the requirement.

For some requirements we analyse its partial fulfilment in different milestones, the last of which
assess the competition of the requirement.

1.3. Summary
Attachment 1 (REQs&SC.pdf) provides a view of all the requirements identified as well as the
milestones in which its fulfilment is partially or totally assessed.

 7

D1.1 Requirements, Success Criteria and Platforms
Version 1.0

2. Platform Selection and Setup

2.1. Hardware Platform
During the kick-off meeting of the project, and the weeks following it, we reviewed the case study
requirements in terms of sustained performance and library support. During the KoM, all project
partners agreed on the convenience of converging to one common target board across use cases.
This would have allowed narrowing the scope of the implementation and demonstration activities
without restricting the scope and validity of the project results.

In order to facilitate the selection process, the case study providers were asked to express their
initial requirements on the Hardware (HW)/ Software (SW) stack. The result of this activity are
summarized in Table 1. From the analysis of those requirements, the Jetson AGX Orin series
(together with the respective SW stack) has been considered by all partners and eventually
identified as a good candidate for the final selection.

Among the three main variants of the Orin, the Jetson AGX Orin Development Kit have been
considered as a promising candidate from a performance perspective since, based on the
information available on NVIDIA website, it provides comparable performance to the powerful
AGX Orin 64GB module (https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/) with the advantage of an almost ready-to-use setup, with a consolidated
Software Development Kit (SDK) and supporting all main accelerator libraries. It is also possible to
purchase the 64GB module but in that case we also need to procure cable, power unit, and a carrier
board. A summary table from NVIDIA website is reported below.

Table 1. AGX Orin summary comparative chart (form NVIDIA website).

After looking into procurement times for the Jetson AGX Orin Development Kit, we observed a
reasonable approx. 8 weeks lead time. The price of the board was also reasonable, landing at
~2K/2.5K Euros + VAT.

2.2. Software Stack
Once the board was agreed among partners, the next step was to converge on a software stack
that allows all partners to run their case study while allowing the technical WPs to carry out their
intended work. Table 3 captures the requirements identified by each case study on the different
element of the software stack.

The main goal of the SW stack selection was to identify the exact version of support libraries and
tool-chain to be fixed as part of SAFEXPLAIN software development environment. By doing this we
wanted to avoid late issues from incompatibilities among software packages. As final step,
partners agreed in a version of all the software packages that satisfy the requirements of all the
case studies. Those versions are shown in Table 4.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

Table 2. Case study providers have expressed their initial requirements on the HW/SW stack as summarized below.

Partner Domain Short description
Required HW
features

HW Prospects

SW
Components
and Libraries

Programming
Languages

SW
Environment

Data Perf req.

AIK Space

Autonomous navigation.
Image acquisition for
estimating the
spacecraft position

Nvidia GPU

Jetson AGX Orin Series?

TensorFlow C++ Std Linux Env.

Camera
images +
sensor
time
series (if
possible)

To be
assessed

Xilinx FPGA PyTorch Python
In-house
automated
framework

Intel Myriad VPU
Platform
Inference
Engine

Google Edge TPU
[others]

NAV Auto Pedestrian detection

NVMe storage Jetson AGX Xavier 64GB

Jetson JetPack
5.0<

Python 3.7< Std Linux Env.
Training
dataset

20-30 FPS

ARM CPU Jetson AGX Xavier 32GB

NVIDIA GPU
Jetson AGX Xavier
Industrial

Webcam/Dashcam/
other

Jetson AGX Orin 32GB

 Jetson AGX Orin 64GB

IKR Railway

Automatic Train
Operation (ATO) Level 4
Fully autonomous.
Detect and localization
of obstacles on tracks +
distance estimation

Jetson AGX Orin

Yolo

C

Public
Dataset
(from
Auto)

To be
assessed

Stereo Vision
with OpenCV
API

Real field
images
(not sure)

TensorFlow AI
framework

Train
simulator

Proprietary C
Lib

Jetson SW Stack

0

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

Table 3. Requirements each of the SAFEXPLAIN case studies put on the different elements of the software stack.

automotive railway space conclusion

Operating System Ubuntu 18.4 and above, preferably 20.4
Ubuntu 18.4 and
above, preferably 20.4
kernel linux 5.10>

AI top-level
libraries

Preferably
PyTorch 1.12
and above

 PyTorch and
Tensorflow+keras,
we want both
options to
experiment.

use case on pytorch; can be
imported as ONNX and used
with tensorRT (issues for
integration with explainability?
especially during training)

pytorch (main
framework) 1.12>
tensor RT 8.4>
optional,

Performance-
improving libraries

 Jetpack
5.0.2,
TensorRT
v8.4.1

Jetpack, TensorRT
JetPack SDK latest version (v5),
use of GPU with tensorRT and
Nvidia accelerators

JetPack 5.X

Application
software

Apollo OpenCV 4.4> OpenCV, python libraries

Cuda 11.4>
OpenC 4.4>
python 3.8 or 3.9
supporting Apollo v4 or
v7

Table 4. Version of each software package agreed by every parnter in the project.

Software Version

Jetpack 5.1

Jetson Linux 35.2.1

Ubuntu Version 20.04

Kernel Version 5.10.65-tegra

Tensor RT 8.5.2

cuDNN 8.6.0

CUDA 11.4.19

OpenCV 4.5.4

Python 3.8.10

PyTorch 1.14

Vulcan 1.3.203

Vulcan SC 1.0

 1

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

3. FUSA principles
With the aim of identifying the main functional safety principles that will guide the technical
solutions of the project, this section first surveys existing and emerging safety standards, technical
reports and guidelines on the three principal disciplines of the project (i.e., functional safety, deep
learning and high-performance embedded platforms) for the three industrial domains of the case
studies (railway, automotive and space). Based on selected standards, this section then describes
early directions and baseline safety principles to start designing safe DL-based solutions. Note that
the project will keep checking for new or updates on standards in its next phases.

3.1. Standards
The deployment of safety-critical systems requires to comply with legal regulations in place on
each country or state. This often involves a certification process where an independent
certification institution must approve, through a conformity assessment, that the system is
suitable and safe enough for its intended use (i.e., that it is compliant with the active legal
directives). Currently, the most common certification approach is standard based, i.e., a
conformity assessment is achieved by proving adherence to the applicable safety standards.

In traditional functional safety approaches, freedom from unacceptable risk is pursued by dealing
with systematic and random faults on the system to prevent them from causing destructive effects
(e.g., loss of lives or environmental damage). With the advent of autonomous systems, new
challenges arise such as addressing, not only the malfunctioning of the system (functional safety),
but also the functional insufficiencies or deficiencies of the system that could lead to hazardous
situations (also known as Safety of the intended functionality (SOTIF)). Therefore, the normative
landscape is also evolving to cover these autonomous systems, often based on Artificial
Intelligence (AI) techniques that require high performance computing platforms. Next subsections
survey existing and emerging standards in these complementary disciplines and concludes with a
selection of most interesting standards to take as reference in the initial phases of the project.

3.1.1. Functional Safety Standards

Functional safety standards, such as, IEC-61508 [1], ISO-26262 [2], EN-5012x [3], define the
requirements for the development of safety related electrical and/or electronic systems with the
purpose of avoiding unacceptable risks in the system. As illustrated in Figure 1, many of these
standards apply to the specific domain for which they have been conceived (e.g., automotive,
railway, elevation, avionics, space). However, except for the avionics and space domains, several
industrial safety standards use as a reference the generic IEC 61508 [1] safety standard, sharing
many similarities.

Figure 1: Functional safety standards and their relationship

 2

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 IEC 61508 (Generic), ISO 26262 (Automotive), EN 5012x (Railway)

As it can be seen in Figure 1, IEC 61508 [1] is a reference generic functional safety standard and
many domain specific standards are based on it (e.g., industrial machinery (ISO 13849) [4] robotics
(ISO 10218) [5] tractors, machinery for agriculture (ISO 18497 [6]), process industry (EN 61511
[7]),…)). Functional safety standards for Automotive (ISO 26262 [2]) and Railway (EN 50126, EN
50128, EN 50129 [3]) fall into this category.

These standards are based on the prevention of systematic errors (through rigorous process
measures throughout the system lifecycle) and control and protection against random errors (e.g.,
by diagnostic mechanisms that move the system to a safe state). Safety functions are classified by
a criticality level (i.e., Safety Integrity Level (SIL), Automotive Safety Integrity Level (ASIL)) based
on their severity, frequency of exposure and controllability of the hazardous events. The higher
the criticality level, more stringent are the procedures, measures, and requirements of functional
safety standards.

When it comes to the use of AI, IEC 61508 edition 2 only mentions artificial intelligence as a fault
correction technique in the software architecture design and development (e.g., for fault
forecasting, fault correction or maintenance activities supported by artificial intelligence). Despite
this limitation of considering it only for fault correction, the standard does not recommend (NR)
its usage in systems with an integrity level higher than SIL 1 (Table 5). This requirement may be
adapted in future editions of IEC 61508.

Table 5: Extract from IEC 61508-3 (ed 2) – Software design and development – software architecture design

Technique SIL 1 SIL 2 SIL 3 SIL 4

Artificial Intelligence – Fault correction --- NR NR NR

 ECSS-Q-ST-30C/ECSS-Q-ST-40C/ECSS-Q-HB-80-03A - Space

ECSS is a cooperative effort of the European Space Agency (ESA), national space agencies and
European industry associations, aiming to develop and maintain common standards for space
activities. The listed standards of this section belong to the series of ECSS Standards meant to be
applied together for the management, engineering and product assurance in European space
projects and applications.

o ECSS-Q-ST-30C Rev.1 (Dependability): This standard [8] defines how to assure the
dependability for space systems and the requirements for it. The dependability
requirements for functions implemented in software, and the interaction between
hardware and software, are identified in this Standard. A classification of these
functions in accordance with their criticality is presented.

o ECSS-Q-ST-40C Rev.1 (Safety): This Standard [9] defines the safety program and the
safety technical requirements aiming to protect every person/element involved in
space activity from flight and ground personnel, the environment and the civilian
population, launch vehicles, ground support equipment, private and public property
etc… from hazards associated with European space systems. As in the case of previous
functional safety standards, risk reduction is pursued by the:

 identification of all safety related risks with respect to the design, development
and operations of space products

 assessment of the risks based on qualitative and quantitative analysis

 3

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 application of a hazard reduction precedence and of control measures of the
residual risks.

o ECSS-Q-HB-80-03A Rev.1 (Software dependability and safety): This standard [10]
provides a general description of the entire software dependability and safety
workflow, considering the different activities at system and software level, the lifecycle
phases and the customer-supplier relationships. Some software Reliability, Availability,
Maintainability and Safety (RAMS) techniques are presented. The given techniques are
the result of a selection of the existing techniques relevant to the requirements defined
in the ECSS Standards.

 DO-178C – Avionics- Software Considerations in Airborne Systems and Equipment
Certification

DO-178C standard covers the complete software lifecycle (planning, development and integral
processes) to guarantee correctness and robustness in software systems for civil airborne
applications. The Design Assurance Level (DAL determines the amount of rigor required by the
design assurance process. DAL categorization is determined by the impact that the specific
system's failure could have in terms of Aircraft Safety. The more critical the DAL, the more activities
and objectives are required.

3.1.2. AI and Autonomous Systems Standards

In recent years, as a result of the increasing popularity of autonomous systems, new standards are
emerging to cover the safety challenges involved by the increasing level of autonomy and
technologies on which they rely, such as artificial intelligence (AI). In this section we survey existing
and emerging standards in this field. While the main focus is on safety-related standards, we also
mention some related to information technology as they introduce interesting terminology and
concepts such as explainability.

 ISO/IEC TR 5469 - Artificial intelligence – Functional safety and AI systems

ISO / IEC 5469 standard aims to cover the application of AI-based solutions on safety-critical
systems by identifying the properties, safety risk factors, available methods and potential
constraints towards the appropriate adoption of AI approaches in safety functions. The standard
is not associated to any application domain. At the time of writing, this standard is still at a
development phase and the information on this section is based on early drafts.

This standard is of particular interest for AI-based systems development, as it covers different
aspects of AI safety functions. For instance, it defines a high-level lifecycle that combines the V-
model and ML lifecycle activities, it identifies the properties to be considered and evaluates the
potential compliance of AI-based solutions with existing functional safety standards.

On the platform side, the standard identifies the technology elements required for ML model
creation and execution and differentiates among those which can be covered by traditional
functional safety techniques from those that require further considerations. It also mentions that
GPU based systems may have special failure modes to be addressed and some architectural
considerations are proposed (like the use of supervisors, redundancy and diversity and detection
mechanisms).

 ISO/IEC 24029 - Artificial intelligence — Assessment of the robustness of neural networks

Robustness, resiliency, reliability, accuracy, safety, security, privacy are properties seek when
designing any system. Among these, robustness is a crucial property. In the context of AI systems,

https://www.bing.com/ck/a?!&&p=e09615aad3a538c6JmltdHM9MTY3NTY0MTYwMCZpZ3VpZD0zYzcyNzc3MC04MmNhLTZiZjctMDhkZC02NTU0ODZjYTZkOTEmaW5zaWQ9NTI3OQ&ptn=3&hsh=3&fclid=3c727770-82ca-6bf7-08dd-655486ca6d91&psq=rams+software&u=a1aHR0cHM6Ly93d3cuc29oYXIuY29tL3JlbGlhYmlsaXR5LXNvZnR3YXJlL3JhbXMtc29mdHdhcmUuaHRtbA&ntb=1

 4

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

this property brings new challenges as they can sometimes have unexpected behaviour and are
hard to explain due to their non-linear nature. Robustness is capital when it comes to validation.
In many organizations, software validation is an essential step in order to put the software into
production.

The techniques used in AI systems are also subject to validation. However, common techniques
used in AI systems require specific approaches in order to ensure adequate testing and validation.

This document [11] provides an overview about the existing methods/approaches to measure the
robustness of neural networks.

 ISO/DIS 21448 - Road vehicles — Safety of the intended functionality

In ISO 26262 the functional safety is defined as the absence of unreasonable risk due to hazards
caused by a malfunctioning behaviour of the electrical/electronical system. But in some
electrical/electronical systems relying on the environment to build awareness on the situation,
even if those systems are free from malfunctions, there can be hazardous behaviour caused by the
intended functionality. This is where the focus of ISO 21448 is, which is known as the safety of the
intended functionality (SOTIF). SOTIF is then the absence of unreasonable risk due to a hazard
caused by functional insufficiencies such as:

o the inability of the function to correctly perceive the environment.
o the lack of robustness of the function, system, or algorithm with respect to sensor

input variations, heuristics used for fusion, or diverse environmental conditions.
o the unexpected behaviour due to decision making algorithm and/or divergent human

expectations.
Functional safety (addressed by the ISO 26262 series) and SOTIF are distinct and complementary
aspects of safety. This standard provides a general argument framework and guidance on the
applicable design, verification and validation measures, as well as activities during the operation
phase to ensure the safety of the intended functionality.
ISO 21448 includes an interesting Annex about the implications of Machine Learning, which
mentions the need of methods to mitigate ML component performance insufficiencies and to
mitigate systematic faults introduced by the training process and their corresponding data
collection processes.

 ISO PAS 8800 - Road Vehicles - Safety and Artificial Intelligence

This document sets the definition of safety-related properties and risk factors that impact the
insufficient performance and malfunctioning behaviour of AI for road vehicles.

It sets a framework that addresses all development phases and life cycle of IA components. This
framework takes into consideration the derivation of suitable safety requirements on the function
and factors related to data quality and completeness. It provides architectural measures for the
control and mitigation of failures and defines tools used to support AI as well as verification and
validation techniques. The evidence required to support an assurance argument for the overall
safety of the system is additionally described.

The objectives of this standard are the following (see Figure 2):

o Define suitable safety principles, methods and evidence satisfying objectives with ISO
26262 [2] and ISO 21448 [12]

o Harmonize concepts described in ISO/TR 4804 [13] and ISO 21448 [12] Annexes’
o Rely on generic guidance from ISO/IEC TR 5469 [14]

 5

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

At the time of writing, this standard is still at a development phase and information is based on
early drafts.

Figure 2: ISO 8800 relation to other standards [15]

 ISO/TR 4804 – Road Vehicles- Safety and cybersecurity for automated driving systems-
Design, verification and validation

This technical report provides a summary of widely known safety by design, verification and
validation (V&V) methods and recommendations of automated driving systems. The purpose of
this summary is to provide an overview about the general steps for developing, verifying and
validating automated driving systems, focusing on safety and cybersecurity, and also to propose
guidelines and a framework to be followed during the lifecycle of the project. This document also
aims to present guidance to deal with the risks introduced by automated driving systems.

This standard includes an Annex B called: “Using deep neural networks to implement safety-
related elements for automated driving systems”. This annex aims to provide an overview of the
challenges for achieving and assuring the safety of DNNs in automated driving systems. This
chapter proposes potential solutions and architecture principles that can be used as guidance for
the development of supervised deep learning.

In the future, this standard will be replaced by ISO/TR 5083 [16] (next subsection).

 ISO/TR 5083 - Road vehicles — Safety for automated driving systems — Design, verification
and validation

At the time of writing this technical report is under development and there is no public
information, but as it will replace ISO/TR 4804 [13], similar topics will be addressed: guidance for
developing and validating an automated safety system for road vehicles, taking into account both
safety and cybersecurity.

 IEEE 2846 – Road Vehicles - Assumptions in Safety-Related Models for Automated Driving
Systems

This standard [17] applies to road vehicles. The purpose is to provide an open, transparent, and
technology-neutral standard that offers useful guidance for evaluating the performance of
automated driving systems.

 6

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

It defines a minimum set of assumptions for a set of scenarios regarding reasonably foreseeable
behaviours of other road users. This minimum set of scenarios shall be considered in the
development and testing phase of safety-related models for automated driving systems (ADS).

This standard defines a list of common attributes, models and methods that help verify whether a
safety-related model takes the minimum set of assumptions into consideration.

An informative annex provides several examples to show how the proposed minimum set of
assumptions could be employed in ADS development.

This standard, specifically, covers:

o Approaches to identify the applicable defined scenario(s)
o Approaches for determining the applicability of assumptions for the given scenario(s) and

for updating these assumptions across the temporal evolution of a scenario.
o Approaches to qualify and validate assumptions considering different kinds of

performance targets of interest.

 VDE-AR-E2842-61 – Generic- Development and trustworthiness of autonomous / cognitive
systems

The VDE-AR-E 2842-61, ‘Development and trustworthiness of autonomous/cognitive systems’ is
German application rule that defines a general framework for developing trustworthy solutions
and autonomous/cognitive systems.

Trustworthiness is considered a generic concept mandatory to guarantee functional safety,
security, privacy, usability, reliability, and intended functionality (among others). This rule presents
a reference life cycle with the logical flow to the involved activities, taking the safety life cycle of
ISO 26262 as a reference, analogous to current functional safety standards.

This standard tries to cope with the ’uncertainty’ related to artificial intelligence. It defines the
Uncertainty Confidence Indicator (UCI) for dealing with these uncertainty-related failures and
different UCI levels according to the safety required by the application. This application rule
proposes demonstrating the achievement of the specific UCI-level requirements in an assurance
case. Nevertheless, VDE-AR-E 2842-61 does not specify how to deal with these uncertainty-related
failures or how to define this assurance case.

 ANSI/UL4600 – Fully autonomous vehicles - Safety Standard for Autonomous Vehicles

ANSI/UL 4600 is a safety standard focusing on the safety for the evaluation of autonomous
products. It is the first standard addressing fully autonomous vehicles such as self-driving cars
along with applications in mining, agriculture, maintenance, and other vehicles including
lightweight unmanned aerial vehicles.

This standard aims to cover the ability of autonomous products to perform safely and as intended
with no human interaction. It also addresses the reliability of the hardware and software needed
for machine learning, sensing of the operating environment and other safety aspects of
autonomous operation.

The standard’s scope includes risk analysis and safety-relevant aspects of design process, testing,
tool qualification, autonomy validation, data integrity and human-machine interaction for non-
drivers. ANSI/UL 4600 defines Safety Performance Indicators (SPI) as operational metrics for the
verification and validation of autonomous systems.

 CoDANN I and II – Avionics- Concepts of Design Assurance for Neural Networks

 7

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

CoDANN I and II ([18]and [19]) reports are the result of the joint effort between the European
Union Aviation Safety Agency (EASA) and Daedalean AG between July 2020 and May 2021.

The main goal of this project was to analyse the usage in safety-critical applications of systems
employing machine learning/neural networks. Focusing in particular on the challenges with
respect to trustworthiness, such as the ability to provide performance guarantees, as well as the
applicability of existing functional safety guidance such as DO-178C.

An important outcome of this report is the W-shaped development process. It adapts the classical
V- shaped cycle to machine learning applications. It also provides an outline of the essential steps
for learning assurance and their connection with traditional development assurance processes.

A follow-up to this first report was made public in 2021. The goals of this second report were:

o Investigate topics left out in first report
o Mature the concept of learning assurance
o Investigate remaining trustworthy AI building blocks

 EASA Concept Paper: First guidance for Level 1 & 2 machine learning applications

This document aims at guiding applicants when introducing AI/ML technologies into safety-related
systems or in applications related to any domain covered by the EASA Regulation.

This document [20] provides a first set of usable objectives and it only covers an initial set of AI/ML
techniques. Therefore, nowadays it does not constitute a definitive or detailed guidance, but it will
continue evolving according to a defined roadmap.

It has dedicated sections to explainability and trustworthiness.

 ISO/IEC 22989 - Information technology - Artificial intelligence — Artificial intelligence
concepts and terminology

This document [21] establishes standardized terminology and describes concepts in the field of AI.
The standardized concepts and terminology are needed to help AI technology to be better
understood and used by a broader set of stakeholders.

It also allows the comparison and classification of different solutions in terms of resilience,
reliability, accuracy, safety, trustworthiness, security and privacy. This classification and
comparison help stakeholders to better select the appropriate solutions for their applications.

 IEC TS 6254 - Information technology — Artificial intelligence — Objectives and approaches
for explainability of ML models and AI systems

When AI is used for taking decisions in a system it is important that people understand how those
decisions are made. But providing useful and clear explanations of the behaviour of an AI system
is a difficult task. IEC TS 6254 focuses on explainability, which is the capacity of explaining the
processes undertaken by the machine learning model and its output in a way that it is
understandable for a human being.

It presents objectives, approaches, and methods to reach explainability of Machine Learning (ML)
models and AI systems, outputs and results. It also provides guidelines on the applicability and
properties of the approaches and methods for improving explainability throughout the AI system’s
life cycle, as defined in ISO/IEC 22989 [21] At the time of writing, this standard [22] is still at a
development phase and information is based on early drafts.

 8

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 ISO/IEC DIS 5338 - Information technology — Artificial intelligence — AI system life cycle
processes

At the time of writing, this standard [23] is still at a development phase and there are no details or
information from the main concepts and principles that will be presented on it.

 Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)

Even if it is not a standard, this document [24] introduces a methodology for the assurance of
Machine Learning for use in autonomous systems. It comprises a set of safety cases and process
that allow integrating safety assurance in ML development components as well as the generation
of explicit evidence justifying that the components have the acceptable safety level when
integrated into autonomous system applications.

It covers the following ML lifecycle stages: ML safety assurance scoping, safety requirements
elicitation, data management, model learning, model verification and model deployment.

In AMLAS, safety considerations are only meaningful once scoped within the wider system and
operational context.

3.1.3. Standards/guidelines for HPEC platforms

On the platform side, functional safety standards such as those presented in Section 3.1.1,
advocate for simple, predictable and proven-in-use solutions. Functional safety standards require
the verification of the predictability of behaviour, including properties such as performance,
resources, response time and worst-case execution time (IEC 61508-3 7.9.2.14). They recommend
determining the use of resources by each process and the distribution of demands under average
and worst-case conditions (IEC-61508-7 C.5.20/C.5.22). This may become particularly challenging
in modern and emerging high-performance embedded platforms as those needed to run AI based
solutions, due to their complex parallel architectures, shared resources, lack of in-service
experience and detailed public information...In mixed-criticality systems, standards recommend
solutions based on deterministic scheduling methods supported by an upper estimation of
execution time and program sequence and timing supervision units such as watchdogs. ISO 26262-
11 section dedicated to multicores, warns about the fact that multicores are subject to timing
faults and it highlights the importance of independence of execution by dedicated analyses and
countermeasures such as, the specification of timing constraints and detection of timing
requirement violations, doing an upper estimation of resources, evaluating the influence of
hardware and software interactions and evaluating timing and execution failure modes.

In order to bridge this gap between functional safety standards and the increasing complexity of
platforms required to achieve the performance needs of AI applications, in this section we
summarize existing and emerging guidelines focused on multi-core processors.

 CAST-32A – Avionics - Certification Authorities Software Team (CAST) position paper

Based on the need of the aerospace domain to adopt multicore processors, the Certification
Authorities Software Team (CAST) published a position paper identifying the main objectives that
shall be met by a safety critical airborne system executed on a multicore platform in terms of
safety, performance, and integrity. Since its release on 2016, further efforts have been devoted to
officialising the outcomes of this position paper on an official guidance by the FAA and EASA, which
is collected in AMC-20-193 presented in next subsection.

 9

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 AMC-20-193 – Avionics - General Acceptable Means of Compliance (AMC) for Airworthiness
of Products, Parts and Appliances. Use of multi-core processors

The goal of this AMC produced by EASA, is to identify items that might have an impact in the safety,
integrity and performance of airborne system software executed on a multicore processor. It
provides guidelines for DO-178 [25] aerospace projects developed in multi-core platforms.

It recommends the practices to be considered when working with multicore processors, including
considerations for dynamic allocation and multicore interference mitigation. AMC applies to
systems and equipment that contain two or more cores activated and contain software application
or hardware item with safety implications. Even if the AMC is specific for the aerospace domain,
most of the approaches and methods described on it could be applied to other domains handling
the development and certification of safety-critical systems on multicore platforms.

AMC-20-193 supplements the guidance in CAST-32A position paper.

3.1.4. Summary of standards of interest for the project

This section summarizes the properties that make previously introduced standards and guidelines
interesting for SAFEXPLAIN. Table 6 categorize them based on their relation to functional safety,
the guidance they provide for AI based developments, and the extend at which the topics of
explainability and high-performance platforms are covered. This is represented by the following
symbols: ‘-’ (none or very little), ‘+’ (low), ‘++’ (medium) and ‘+++’ (high). In addition, Table 6 also
describes if each document is already published, if there is an available draft or if it is still under
development (ongoing) and it specifies the domain of application.

Based on this, the initial phases of SAFEXPLAIN will mainly focus on the following standards and
documents (marked in blue colour in Table 6) and will closely monitor the standardization
evolution on the presented topics:

o For functional safety, IEC 61508 is taken as reference standard. As a generic industrial
standard for functional safety, it allows identifying and stablishing cross-domain safety
principles. However, consistency with domain specific functional safety standards for
automotive (ISO 26262), railway (EN 5012x) and space (ECSS standard set) will
continuously be checked.

o Similarly, for AI and autonomous systems, ISO/IEC 5469 [26] is envisioned to cover
functional safety and artificial intelligence in a domain-independent way, and it will
probably share many commonalities with the ongoing automotive ISO/PAS 8800 [27]. In
addition, ISO/PAS 21448 [12] stablishes the procedures and requirements to guarantee
Safety of the Intended Functionality (SOTIF), and even if it is targeted to the automotive
domain, the project will identify the common principles applicable to autonomous
systems in other domains. In addition, ISO/PAS 21448 complements ISO/IEC 5469 and
ISO/PAS 8800 with a specific Annex for ML. Based on the main safety principles derived
from these standards, later stages of the project may consider others to further extend
specific topics (e.g., ISO/TR 4804 [13] that will be replaced by ISO/TR 5083 for verification
and validation methods, and VDE-AR-E2842-61 [28] and UL 4600 [29] for uncertainty
management).
Other standards, such as ISO/IEC DIS 5338 [23] and ISO/IEC 22989 [14] for IT, will also be
considered to a lesser extend for terminology and AI system life cycle processes, as
recommended by ISO/IEC 5469.

https://www.rapitasystems.com/do178
https://www.rapitasystems.com/do178

 10

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

o To deal with the increasing hardware platform complexity, mainly AM(C) 20-193 is [30]
considered, as it is the evolution of CAST-32A [31].

It should be noted that the spectrum of available and emerging standards is very wide, with many
other additional standards for other domains where autonomous systems can be applied, such as,
agriculture, machinery, or robotics. At this stage of the project, these standards are not considered
as they do not fit within the application domain of the case studies.

Table 6: Summary and classification of standards

Standards /
guideline

Status
Function
al safety

AI / ML /
DL

Explainabilit
y

HPEC
platforms

Domain

FUNCTIONAL SAFETY

IEC 61508 PUBLISHED +++ - - - Generic

ISO 26262 PUBLISHED +++ - - - Automotive

EN 5012x PUBLISHED +++ - - - Railway

ECSS-Q-ST-40C PUBLISHED +++ - - - Space

ECSS-Q-HB-80-
03A

PUBLISHED
+++

- - - Space

ECSS-Q-ST-30C PUBLISHED +++ - - - Space

DO-178C PUBLISHED +++ - - - Avionics

AI AND AUTONOMOUS SYSTEMS

ISO/IEC TR 5469 ONGOING +++ +++ + - Generic

ISO/PAS 21448 PUBLISHED ++ ++ - - Automotive

ISO/IEC TR 24029 PUBLISHED - ++ + - Generic

ISO/PAS 8800 ONGOING +++ +++ - - Automotive

ISO/TR 4804 PUBLISHED ++ ++ - - Automotive

ISO/TR 5083 ONGOING ++ ++ - - Automotive

VDE-AR-E2842-61 PUBLISHED + + - - Generic

ANSI/UL 4600 PUBLISHED + + - - Automotive

CoDANN I and II PUBLISHED ++ +++ + - Avionics

EASA Concept
Paper

PUBLISHED - +++ ++ - Avionics

ISO/IEC 22989 PUBLISHED - +++ - - IT

ISO/IEC TS 6254 ONGOING - +++ +++ - IT

ISO/IEC DIS 5338 DRAFT - +++ - - IT

IEEE 2846 PUBLISHED + - - - Automotive

AMLAS PUBLISHED - +++ - - Generic

HPEC / MULTICORE PLATFORMS

CAST-32A PUBLISHED - - - +++ Avionics

AM(C) 20-193 PUBLISHED - - - +++ Avionics

3.2. Baseline safety principles
The project will adopt an incremental strategy based on safety patterns where DL is introduced in
the system with different roles and relevance. The safety implications and requirements of the DL
component will determine the safety principles that shall be applied to it. In this sense, ISO / IEC
TR 5469 classifies the application of the AI technology on the safety system based on 6 usage levels:

 11

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 Level A1 applies to safety-relevant systems where AI technology is used and it is possible to
make automated decision of the system function using AI technology.

 Level A2 applies to safety-relevant systems where AI technology is used but it is not possible
to make automated decision of the system function using AI technology (e.g., AI technology is
present in the system for diagnostics).

 Level B1 applies to safety-relevant systems where AI technology is only used in the
development phase (e.g., an offline support tool) and automated decision making of the
function developed using AI is possible. This usage level is out of scope of SAFEXPLAIN.

 Level B2 applies to safety-relevant systems where AI technology is only used in the
development phase (e.g., an offline support tool) but no automated decision making of the
function is possible. This usage level is out of scope of SAFEXPLAIN.

 Level C applies to safety-relevant systems where AI technology is not part of a safety function
but can have an impact on it.

 Level D applies to safety-relevant systems where AI technology is not part of a safety function
and does not have an impact on it due to sufficient segregation and behaviour control.

Depending on the DL-usage level and the complexity of the ML technology, ISO / IEC 5469 provides
different recommendations and requirements. Next subsections summarize the baseline safety
principles in terms of safety lifecycle and architectural design.

3.2.1. Safety lifecycle

Functional safety standards, such as, IEC 61508, ISO 26262 or EN 5012x, define well known
procedures and technical requirements for the management of functional safety across the
complete product lifecycle. While many of these considerations can be kept when developing ML-
based systems, some aspects shall be extended to cover specific aspects of ML, like data
management, training process or new hazards involved by the nature of AI algorithms. As
summarized in previous Subsection 3.1, emerging standards and initiatives are working on this
direction. This subsection aims to relate these novel approaches with the traditional functional
safety lifecycle.

Next Figure 3 depicts the high-level relation of the FUSA lifecycle with the AI lifecycle approach
proposed by AMLAS. As it can be seen, the FUSA lifecycle follows a V-model approach, which can
be decomposed into hardware and software V-models. When incorporating ML components in the
system architecture design, the traditional software V-model shall be accommodated to ML
particularities. Following AMLAS, we introduce the concepts of “data management”, “model
learning” and “model verification” into the SW module realization phases (design, implementation
and testing). However, the inclusion of ML components has further implications in all phases of
the lifecycle, starting from the hazard and risk analysis, requirements specification, up to model
deployment and validation. Therefore, additional phases for “ML safety assurance scoping”, “ML
requirements” and “ML deployment” are contemplated.

 12

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

Figure 3: Relation between FUSA lifecycle (IEC 61508) and AI lifecycle (AMLAS)

The process proposed in AMLAS is aligned with the requirements and recommendations provided
by the ISO/IEC TR 5469 standard, which in many cases refers to IEC 61508 techniques even for ML
systems development. In Table 7, we summarize main ISO/IEC TR 5469 requirements and
recommendations together with AMLAS guidance of each of the AI lifecycle step.

Table 7: ISO / IEC TR 5469 and AMLAS requirements and recommendations for each AI lifecycle step

 ISO / IEC TR 5469 AMLAS

ML Safety
Assurance
Scoping

The current draft indicates that:
- Requirements or properties can be
based on existing standards although
other may need to be newly defined.
- Hazard and risk analysis phase can be
based on IEC 61508 or other functional
safety standards, with some
modifications to address the black-box
nature of ML.

Definition of the system safety
requirements, description of the system,
ML component (including its interfaces)
and operating environment of system.

Hazard identification and risk analysis.

Safety requirement allocation from
system to ML component.

 13

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 ISO / IEC TR 5469 AMLAS

ML
Requirements
Assurance

In its current draft, it does not define
specific requirements for ML
requirement specification. Instead, it
makes the following analysis:
- Common FUSA practices can be
applied (e.g., IEC 61508-3 techniques
for software requirements
specification).
- In some cases it is difficult to define
safety requirements for AI algorithm
and refers to IEC TS 62988-1 and IEC
61496 as an example of the definition
of a person detection function.

Specification of the ML safety
requirements from the allocated system
safety requirements.

Refinement the ML safety requirements
into performance and robustness
requirements.

Definition of the assumptions about the
system or operating environment.

ML safety requirements verification.

Data
Management
Assurance

Training data:
- has to provide complete

representativeness of the input
domain.

- has to reflect the distribution of the
application context.

Identification of the sources of data
drift (seasonal change, changes in the
process that can induce this data drift,
unforeseen input by operators,
different lighting conditions in training
data than operational data …) and
establish correction of the model (re-
training, the estimation and inclusion of
correction factors, supervision
correction...).

Test data:
- Shall be representative of all safety-

relevant scenarios identified during
HARA.

- Shall cover variations of situations
involving safety risks.

- Shall be diverse enough and
sufficient to verify the proper
training (right training outcome) for
those safety-relevant scenarios
from HARA and the mentioned
variations.

- Shall ensure the stable outcome of
testing for those safety-relevant
scenarios from HARA and the
mentioned variations.

Clearly specify sets of data attributes
that lead to each of the safety risks
identified in HARA.

Data requirements shall specify the
characteristics that the collected data
have to meet, including relevance,
completeness, accuracy and balance:
- Relevance requirements: shall specify

the extent to which the data match
the intended operating domain into
which the model is to be deployed.

- Completeness requirements: shall
specify the extent to which the
development data must be complete
with respect to a set of measurable
dimensions of the operating domain.

- Accuracy requirements for the data
shall be specified.

- Balance requirements shall specify the
required distribution of samples in the
data sets.

A data requirement justification report
shall be provided that the specified ML
data requirements are sufficient to ensure
it is possible to develop a machine
learning model that satisfies the ML safety
requirements of previous phase.

Training and verification data should be
collected by different people/teams.

Decisions made when collecting,
processing and augmenting the data
should be recorded to explain how the
data sets meet the data requirements. A
data generation log shall be kept, which
details the decisions made in each sub‐
process to obtain data with the desired
features.

 14

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 ISO / IEC TR 5469 AMLAS

Ensure the independence between test
and training data and therefore,
independence between the teams
collecting the data and the teams
performing the tests.

Ensure that data are free of malicious
modifications or alterations (ensure the
credibility of data source and data
collection processes).

Generate data sets in accordance with
data requirements for the development
and verification stages (training,
verification, validation).

Analyse the datasets to verify whether
they can meet the data requirements and
it should be explicitly documented. This
data set should consider accuracy,
relevance, completeness and balance of
the data sets.

When existing data sets are re-used,
additional validation tasks may be
required to ensure that the labels are
sufficient for the context into which the
model is to be deployed.

Model Learning
Assurance

Achieve an appropriate level of
transparency: should not be as low as
poses risks in terms of fairness,
security, and accountability, neither as
high than lead to confusion due to
information overload.

A trade-off between explainability and
performance of the system, reaching an
overall performance in terms of the
quality of the decision achieving the
highest level of explainability.

The information about the AI system's
decision-making should be clear,
coherent, accurate, complete and
understandable by experts and end
users.

A methodical and formally documented
evaluation of model interpretability
shall be done, subject to evaluation of
the consequences on functional safety
risks.

Incorporate forms of concept drift
detection that differentiate between
drift and noise present in the system,
allowing to adapt the model over time.

Analyse the vulnerability factors
associated with AI technology (special
emphasis in random HW failures).

Guarantee portability between training
and inference platforms (i.e.,

Record the decision of the most
appropriate ML model for the problem
and for satisfying safety requirements,
and the expert knowledge or previous
experience that led to its election.

The process followed in generating the ML
model has to be documented, justifying
the key decisions (including the choice of
the development tools) and those choices
that impact on the performance and
robustness of the model.

The results from evaluating the ML model
with the internal test data have to be
documented, providing evidence of
satisfying the ML safety requirements.

 15

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 ISO / IEC TR 5469 AMLAS

translational errors due to memory
incompatibilities of data management).

Fault detection during training (e.g.,
ground truth verification, cross
checking ...).

Model
Verification
Assurance

Detect and mitigate training errors
during the training phase.

Safety risk mitigation techniques shall
clearly address each safety risk
identified during HARA and its role in
maintaining functional safety.

Approaches focused on guaranteeing
interpretability or explainability of the
model are desirable (how an AI system
is constructed, analysis of the model to
gain a partial "explanation" of the
output behaviour…).

For each ML safety requirement at least
one verification activity shall be
undertaken.

The verification activities:
- should be sufficiently independent of

the development activities and
include the measures taken to verify
the ML model.

- shall be comprehensive.
- shall clearly demonstrate coverage

with respect to variability and
combinations relevant to the ML
safety requirements.

The results of the ML safety requirements
verification have to be recorded.

The verification strategy should include
the range of tests undertaken and the
rationale for performing each test with
bounds and test parameters where
appropriate. In addition, the approaches
taken to manage verification data in such
a way as to ensure that data leakage did
not occur should be documented.

Model
Deployment
Assurance

Once an AI system is approved and in
operation, its own incident statistics
can be used to provide ongoing
evidence of safety performance.

Most IEC 61508-3 techniques can be
applied for safe model deployment,
including:
- Fault detection during inference.
- Diverse monitor and diverse
redundancy.
- Cyclic behaviour, with guaranteed
maximum cycle time.

In addition to the previous techniques
proposed by IEC 61508-3, IEC 5469
defines a set of control and mitigation
measures related to architectural
considerations (supervision function,
redundancy, ensemble concept and
diversity...).

Measures shall be put in place to monitor
and check validity throughout the
operation of the system of the key system
and environmental assumptions.

Mechanisms shall be put in place to
mitigate the risk posed if any of the
assumptions are violated.
The system shall monitor the outputs of
the ML model during operation, as well as
the internal states of the model, together
with erroneous inputs to identify when
erroneous behaviour occurs.
erroneous input, outputs, and model
states, shall be documented in the
erroneous behaviour log.
When integrating the model into the
system the suitability of the target
hardware platform shall be considered
The system in which the ML model is
deployed shall be designed such that the

 16

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

 ISO / IEC TR 5469 AMLAS

system maintains an acceptable level of
safety even in the face of the predicted
erroneous outputs that the model may
provide.

3.2.2. Safe Inference Platform

For the inference of the ML-based system, traditional functional safety approaches shall be
followed for the mitigation and control of possible errors. However, the intrinsic complexity of the
HW and SW that build these systems challenge the efficiency and coverage that can be attained
with existing techniques. In addition, with ML systems, the concept of unintended behaviour (or
model insufficiencies) shall be handled too. ISO/IEC TR 5469 classifies the elements of the ML
model as:

 Application independent technology elements: executable code, low level libraries, set of
calculations… In general, safety techniques of traditional functional safety standards could
be applied.

 Application dependent technology elements: application graph, deep learning model…
These elements depend heavily on data and are likely not covered by existing techniques
in FUSA standards.

This subsection explains basic concepts and common architectural design patterns on FUSA
standards and provides an initial overview on how they relate to ML-based solutions together with
the recommendations of ISO/IEC TR 5469 on the platform.

3.2.2.1. Architectural safety patterns from traditional FUSA (IEC 61508)

Functional safety standards such as IEC 61508 and those based on it (e.g., ISO 26262 and IEC 5012x)
define the average probability of dangerous failure of a safety function according to its SIL. In
addition, the highest SIL that can be claimed for a safety function is limited by the following
concepts (see Table 8):

 Hardware fault tolerance (HFT): is the ability to perform the safety function in the presence
of N faults. An HFT of N means that N+1 faults could cause the loss of the safety function.

 Safe Failure Fraction (SFF): ratio of average safe (𝜆𝑆) + dangerous detected (𝜆𝐷𝐷) failure
rates and total average failure rate (i.e., safe (𝜆𝑆) + dangerous (𝜆𝐷), where 𝜆𝐷 is the sum
of dangerous detected (𝜆𝐷𝐷) and dangerous undetected (𝜆𝐷𝑈)):

𝑆𝐹𝐹 =
∑ 𝜆𝑆 + ∑ 𝜆𝐷𝐷

∑ 𝜆𝑆 + ∑ 𝜆𝐷𝐷 + ∑ 𝜆𝐷𝑈
 (eq. 1)

𝜆S 𝜆DD 𝜆DU

𝝀𝑺
𝝀𝑫𝑫

𝝀𝑫𝑼

 17

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

Table 8: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements

Pattern HFT
Safe Failure Fraction (SFF)

<60% 60% -90% 90% - 99% ≥ 99%

1oo1(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

2oo2(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4

According to eq. 1, the SFF can be improved by increasing the portion of safe and dangerous
detected failure rates and by correspondingly reducing the dangerous undetected (𝜆𝐷𝑈) ones.
This can be achieved through diagnostic mechanisms that provide the required Diagnostic
Coverage (DC):

𝐷𝐶 =
∑ 𝜆𝐷𝐷

∑ 𝜆𝐷𝐷 + ∑ 𝜆𝐷𝑈
 (eq. 2)

Next, we summarize different generic architecture patterns to achieve the required SIL, HFT and
SFF requirements.

 Single channel architecture without diagnostics (1oo1, HFT = 0)

A safety function is usually performed by more than one subsystem (e.g., sensor, logic, actuator).
In single-channel architectures, this is a serial combination of elements as shown in the example
of Figure 4. In this case, the maximum SIL of the safety function is determined by the element with
the lowest SIL (i.e., SIL 1 in the example of Figure 4) and the probability of dangerous failure of the
safety function is the addition of the probabilities of dangerous failure of all elements.

Figure 4: Single channel without diagnostic (1oo1)

In this architecture, any dangerous failure of a subsystem element, causes a failure of the safety
function. According to Table 8, with this architecture, the safe failure fraction shall be at least 60%
for SIL 1 safety functions and higher for greater SILs. To this end, the safe portion of the failure
rate shall be high enough or otherwise diagnostic mechanisms shall be applied as explained in next
architecture.

 Single channel architecture with diagnostics (1oo1D, HFT = 0)

In order to increase the safe failure fraction of each element, periodic diagnostic mechanisms,
executed every Diagnostic Test Interval (DTI), shall detect the error and perform an action (refer
to Figure 5 for an example) to reach and maintain the safe state in a period of time that prevents

 18

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

the hazardous event. In this case, undetected dangerous failures of a subsystem element cause
the loss of the safety function.

Figure 5: Single channel with diagnostics (1oo1D)

 Dual-channel architecture (2oo2(D), HFT = 0)

The 2oo2 is a two-channel architecture that consists of two parallel channels, each performing the
safety function. A voter checks the consistency among both channels and in case of discrepancy,
it performs an action to reach and maintain the safe state. Therefore, in this architecture, both
channels shall be error free in order to keep the execution (i.e., HFT = 0) but higher Diagnostic
Coverage than in previous approaches is easier to achieve thanks to the comparison voting.
Common cause failures among the two channels shall also be contemplated, as they could result
in dangerous undetected system failures. A way to reduce this, is by employing diversity, i.e., by
using different solutions and technologies to build the redundant channels.

As in the single channel architecture, the dual channel architecture can be implemented with
additional diagnostics (2oo2D), reducing the amount of dangerous undetected faults.

Figure 6: Dual channel with diagnostics (2oo2D)

 Dual-channel architecture (1oo2(D), HFT = 1)

This dual-channel architecture is similar to previous, but instead of comparing the outputs, each
channel has the ability of performing the safety function independently (e.g., each opening a safety
relay and both connected in series as shown in the example of Figure 7). In this case, a single fault
does not lead to the loss of the safety function, as the second channel is still able to run it (HFT =
1). Simultaneous dangerous failures on both channels could lead to loss the safety function,
therefore common cause failures shall be considered.

 19

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

Figure 7: Dual channel with diagnostics (1oo2D)

 Triple Module Redundancy (TMR) with majority voter (2oo3, HFT = 1)

Previous concepts can be extended to an increasing number of channels, such as triple-channel
architectures. A common approach is to use a majority voter to select the correct output among
the three channels. This means that a single fault can be detected and tolerated (HFT = 1) but two
faults in combination can lead to the loss of the safety function. As in previous cases, this
architecture is commonly complemented with diagnostics mechanisms in each channel and with
cross-monitoring among channels.

Figure 8: Triple Module Redundancy (TMR) with majority voter (2oo3)

 Triple Module Redundancy (TMR) (1oo3, HFT = 2)

Instead of applying the majority voter, each channel could also independently perform the safety
function, analogously to the example explained in the 1oo2 dual channel architecture. In this case,
the 3 channels need to fail in order to lose the safety function, and therefore 2 faults are tolerated
(HFT = 2). As in previous cases, this architecture is commonly complemented with diagnostics
mechanisms in each channel and with cross-monitoring among channels.

Figure 9: Triple Module Redundancy (TMR) (1oo3)

3.2.2.2. Architectural safety patterns for AI

Same architectural properties described in previous subsection can be applied for safety systems
with AI components with some particularities. Following the ISO / IEC TR 5469 approach,

 20

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

architectural safety patterns for AI could include 3 levels of complementary mechanisms depicted
in Figure 10 and explained below: redundancy and diversity, monitors / detection mechanisms,
and supervisors.

Figure 10: Complementary architectural patterns for safe AI [32]

The selection of techniques and the design of the specific architecture will depend on the safety
requirements of Table 8 such as SIL, HFT and SFF. In addition, the DL-usage level introduced in
Section 3.2, will determine the SIL, HFT and SFF requirements allocated to the ML component.

1) Redundancy and Diversity
As shown in previous Table 8, in order to meet the IEC 61508 requirements for SIL 3, some form
of redundancy is required, unless it is proven that the SFF is higher than 99%, which can be very
challenging in complex systems with AI. Following previously described architectural patterns,
several DL-models can be used to build a redundant architecture. In addition, for higher robustness
and effectiveness, redundancy can be combined with diversity. This diversity can be introduced at
different points as proposed by the authors of [33].

Figure 11: Diversity approaches [33]

1. Inputs: different sensors set in distinct locations/positions can be used as input
sources in order to capture the same object in varying angles, with different
perspective, divergent physical principles of measurement, and sensor-specific
characteristics.

2. Training data: models can be trained by different input data sets, different labelling
rules, which will result in different models.

3. Training: different technologies, processes and people can be employed to train the
several redundant models. For example, changing the initialization point of the
weights, either with the same or different data for training, will potentially result in
diverse models.

 21

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

4. DL model technology: with diversity of AI technology itself, selected algorithm,
number of layers, or its configuration.

5. Inference platform: the redundant DL models can be deployed into different
hardware platforms and/or with different low-level software libraries.

These diversity approaches shall be combined to sufficiently cover potential faults on the hardware
and software (mainly (4) and (5)) as well as model insufficiencies caused by an incorrect or
insufficient training process (1), (2), (3), (4).

2) Monitors / detection mechanisms

In the same way as for traditional FUSA approaches of Subsection 3.2.2.1, redundancy and
diversity techniques can be complemented with diagnostics. The usage of a monitor and diagnostic
mechanisms can detect when an AI technology is producing potentially unsafe actions, either due
to functional insufficiencies or due to a fault. Therefore, traditional functional safety mechanisms
for fault detection shall be complemented with new mechanisms that detect functional
insufficiencies.

The monitor or the detection mechanisms oversee the behaviour of the ML component(s) with
reference to safety. According to ISO/IEC TR 5469, such mechanisms could include:

 Plausibilization methods that check the model output for consistency (for example
checking impossible positions, objects detected, sizes).

 Input observation methods that guarantee that the input is statistically close to the training
dataset.

 Attention mechanisms such as heat maps.

 Detection mechanisms for abnormal neural behaviour.

 Safety envelope concept: a typical example of this method is the doer/checker approach
where a safe and unsafe region is specified. The primary channel implements AI
functionality while the other channel supervises the primary channel. These two channels
are constantly cross checking. Once the output of the doer enters the unsafe region, the
checker function implements a pre-defined reaction (e.g., safe state).

Figure 12: Doer-Checker diagram

With this approach, the checker subsystem could rely on traditional non-AI software and
implement the safety functions while the doer is in charge of the untrusted functionality.
Therefore, we could have a Doer at low safety integrity level while the Checker must be at
higher SIL. According to ISO/IEC 5469, this solution can be considered either usage level C
or usage level D.

 22

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

In all this cases, the monitor must be driven by an independent power supply and can be developed
using either non-AI techniques or using AI techniques.

3) Use of a (non-AI) supervisor function

A supervisor consists of a simpler safe controller based on classical deterministic algorithms and
with limited capacities. This controller operates independently from the ML-based system and
shall be able to reach a safe state. The supervisor verifies the output of the ML-subsystem
corresponding to a given input.

Thanks to the presence of a supervisor, in case of disagreement in the outputs generated by the
DL based software or any kind of failure/malfunction of DL-based components detected by the
supervisor or when the outputs are judged not reliable, the safe state can be reached.

 23

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

Acronyms and Abbreviations

AMC Acceptable Means of Compliance

AI Artificial Intelligence

AMLAS Assurance of Machine Learning in Autonomous Systems

ADS Automated Driving Systems

ASIL Automotive Safety Integrity Level

CAST Certification Authorities Software Team

DL Deep Learning

DNN Deep Neuronal Network

DAL Design Assurance Level

DC Diagnostic Coverage

DTI Diagnostic Test Interval

E/E/PE Electrical/Electronic/Programmable Electronic

ECU Electronic Control Unit

ESA European Space Agency

EASA European Union Aviation Safety Agency

FAA Federal aviation Administration

FUSA Functional Safety

GPU Graphics Processing Unit

HW Hardware

HFT Hardware fault tolerance

HPEC High Performance and Embedded Computing.

HPC High Performance Computing

IT Information Technology

KPI Key Performance Indicator

ML Machine learning

MS Milestome

NR Not Recommend

PST Process Safety Time

QoS Quality of Service

SFF Safe Failure Fraction

SIL Safety Integrity Level

SOTIF Safety of the intended functionality

SPI Safety Performance Indicators

SoA Service Oriented Architecture

SW Software

 24

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

SDK Software Development Kit

TMR Triple Module Redundancy

UCI Uncertainty Confidence Indicator

VAT Value Added Tax

V&V Verification & Validation

WP Work Package

 25

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

References

[1] International Electrotechnical Commission, IEC 61508 Functional safety of
Electrical/Electronic/Programmable Electronic safety-related systems (Second edition),
Geneva, 2010.

[2] International Organization for Standardization, ISO 26262 - Road vehicles — Functional
safety, 2018.

[3] UNE/EN 50128:2012 / UNE-EN 50129:2020 - Railway applications - Communication,
signalling and processing systems, 2012 / 2020.

[4] International Organization for Standardization, ISO 13849 - Safety of machinery - Safety-
related parts of control systems, Geneva, 2015.

[5] International Organization for Standardization, ISO 10218 Robots and robotic devices —
Safety requirements for industrial robots, Geneva, 2011.

[6] International Organization for Standardization, ISO 18497: Agricultural machinery and
tractors — Safety of highly automated agricultural machines — Principles for design, Geneva,
2018.

[7] European Commitee for Electrotechnical Standardization , EN 61511: Functional safety -
Safety instrumented systems for the process industry sector, Brussels, 2017.

[8] European Cooperation for Space Standardization , ECSS-Q-ST-30C, 2017.

[9] European Cooperation for Space Standardization , ECSS-Q-ST-40C, 2017.

[10] European Cooperation for Space Standardization, ECSS-Q-ST-80C, 2017.

[11] International Organization for Standardization , ISO/IEC 24029 -Artificial Intelligence-
Assessment of the robustness of neural networks, Geneva, 2021.

[12] International Organization for Standardization, ISO 21448: Road vehicles — Safety of the
intended functionality, Geneva, 2022.

[13] International Organization for Standardization, ISO/TR 4804: Road vehicles — Safety and
cybersecurity for automated driving systems — Design, verification and validation, 2020.

[14] ISO/IEC 22989: Information technology — Artificial intelligence — Artificial intelligence
concepts and terminology, Geneva, 2022.

[15] Presentation of ISO/PAS 8800 to UNECE, 2021.

[16] International Organization for Standardization, ISO/TR 5083 - Road vehicles — Safety for
automated driving systems — Design, verification and validation, Geneva, Under
Development.

[17] Institute of Electrical and Electronics Engineers, IEEE 2846 – Road Vehicles - Assumptions in
Safety-Related Models for Automated Driving Systems, 2022.

 26

D 1.1 Requirements, Success Criteria and platforms
Version 0.1

[18] Concepts of Design Assurance for Neural Networks, CODANN I, 2020.

[19] Concepts of Design Assurance for Neural Networks , CODANN II, 2021.

[20] First guidance for Level 1 & 2 machine learning applications, 2023.

[21] International Organization for Standardization, ISO/IEC 22989 - Information technology -
Artificial intelligence — Artificial intelligence concepts and terminology, Geneva, 2018.

[22] International Electrotechnical Commission, IEC TS 6254 - Information technology — Artificial
intelligence — Objectives and approaches for explainability of ML models and AI systems,
Geneva, Under Development.

[23] ISO/IEC DIS 5338 - Information technology — Artificial intelligence — AI system life cycle
processes., Under Development.

[24] Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS), 2021.

[25] DO-178: Software Considerations in Airborne Systems and Equipment Certification, 2011.

[26] ISO/IEC 5469 - Artificial intelligence – Functional safety and AI systems, Geneva, Under
development.

[27] ISO/AWI PAS 8800 Road Vehicles — Safety and artificial intelligence, Under Development.

[28] Verband der Elektrotechnik, Elektronik und Informationstechnik, VDE-AR-E 2842-61:
Development and trustworthiness of autonomous/cognitive systems, Frankfurt am Main,
2021.

[29] Underwriters Laboratories, UL 4600: Fully autonomous vehicles - Safety Standard for
Autonomous Vehicles, Northbrook, 2022.

[30] General Acceptable Means of Compliance , General Acceptable Means of Compliance (AMC)
for Airworthiness of Products, Parts and Appliances. Use of multi-core processors, 2022.

[31] Certification Authorities Software Team (CAST) position paper, CAST-32A, 2022.

[32] R. Mariani, “Safety and Artificial Intelligence,” in 14th TÜV Rheinland Symposium - Functional
safety and cybersecurity in industrial applications, Cologne, Germany, 2022.

[33] Institute of Electrical and Electronics Engineers, IEEE- On Neural Networks Redundancy and
Diversity for Their Use in Safety-Critical Systems, 2019.

Subject Shall/shouldwhat when

R2.1 IKR

X

Safety assurance case templates shall

be provided to define the arguments and identify the evidence that

demonstrates that DL subsystem is safe for its purpose

during development

R2.1 R2.1 R2.1 R2.1

R2.2 IKR

X

Safety assurance case templates shall

include a definition of processes, methods and lifecycle considerations for DL-

software specification, design and implementation based on selected

standards

during development

R2.2 R2.2 R2.2 R2.2

R2.3 IKR
X

Safety assurance case templates shall

include a definition of processes, methods and lifecycle considerations for DL-

software V&V
during development

R2.3 R2.3 R2.3 R2.3

R2.4 IKR
X

New methods for safety analysis shall

be provided to consider the quantification of DL-software failure rate in the

assessment of the overall system residual risk

during development and

operation R2.4 R2.4 R2.4

New methods for safety analysis that consider DL-

software failure rate quantification

shall be proposed

R2.4 R2.4

R2.5 IKR

X
Different safety architectural design patterns for safe DL

deployment (HW and SW techniques) shall be defined and explored

during development

R2.5 R2.5 R2.5

Initial safety architectural design patterns for safe DL

deployment (HW and SW techniques) for DL-usage

level D & C & A

shall be defined and early evaluations done on the selected platform

R2.5

R2.5

R2.7

Consolidated safety architectural design

patterns for safe DL deployment (HW and SW

techniques) for DL-usage level D, C & A

shall be tailored and evaluated on the selected platform

R2.5

R2.6 IKR
X The architectural design patterns for safe DL deployment

(HW and SW techniques) shall consider mechanisms to reduce the impact of adversarial attacks

during development and

operation R2.6 R2.6 R2.6 R2.6

Consolidated safety architectural design

patterns

shall consider mechanisms to reduce the impact of adversarial attacks

R2.6

R2.7 IKR
X The architectural design patterns for safe DL deployment

(HW and SW techniques) shall be tailored to specific platforms
during development

R2.7 R2.7 R2.7 see R2.5 R2.7

R2.8 IKR
X

A safety-security concept for a selected case-study shall be developed and assessed by an external certification authority
during development

R2.8
R2.8

R2.8 R2.8
A safety concept for the railway case study shall be defined and assessed by external certification authority (e.g., TUV)

and internal experts (EXI) (not necessarily positively) R2.8
R2.8 The safety concept in SCm30.2.2 shall be positively assessed by certification experts after taking into consideration

their recommendations

R2.9 IKR

X
New guidelines and/or adaptations to existing and

ongoing standards should

be proposed based on feedback obtained from external certification

authorities and domain experts (e.g., ESA)

during development

R2.9

R2.9

R2.9 R2.9

Main project concepts and outcomes applied to

the case studies
shall be ready for review by domain experts (e.g., EXI)

R2.9

R2.9
Recommendations for future standard

improvement and extension to admit

guidelines and arguments in SCm36.2.2

shall be consolidated

IKR
X

All partners shall

use as reference the same selected and agreed standards from where a

common and useful substrate should be extracted R2.10

A common substrate of selected safety standards shall be identified

R2.10 All partners shall select the safety standards that will be used as reference

R23.1 BSC

X X A common set of definitions and means of compliance

(including evaluation metrics) required from WP3 to WP2

to achieve safety goals shall

be agreed between WP2 and WP3, support the following evaluation

dimensions of DL components (model/data) under test: explainability,

traceability, safety, robustness, confidence, during development and testing R23.1 R23.1

The first draft of evaluation framework and metrics shall be prepared and agreed (WP2-3). Address the following dimensions: explainability,

traceability, safety, robustness, confidence, failure rate, easy to implement safety

patterns.

Regarding explainability, allow determining whether explanations are sufficient for

actionable decisions in an application
R23.1

R23.1 WP2 and WP3 shall consolidate the metrics of SCm06.3.1 to evaluate DL components

R23.1

R23.1,

R23.2

Common set of definitions and compliance

means

shall be finalized and agreed with WP2 to achieve safety goals

R23.1

R3.1 BSC
X AI library and the underneath framework on which it

builds shall

provide visibility (i.e. we need to see the source code of the AI library) to

understand it and potentially change it during testing R3.1 R3.1 AI library and the underneath framework on which it builds shall R3.1 R3.1 R3.1

BSC

X X

FUSA-aware DL library implementations shall achieve sufficient performance and adherence to safety standards during testing R3.2

FUSA-aware DL library

implementations

shall reach 75% performace of the non-FUSA aware libraries performance (e.g.

frames per second for camera-based object detection) for the automotive

case study

BSC R3.2

FUSA-aware DL library

implementations

shall realize explainable AI architectures in SCm30.3.6 on the target platform used

by the case studies, and be integrated in the case studies

R3.3 RISE X The explanations of DL components shall

support different presentations (text, tabular, graph, visual) upon req. from

safety. Low-dimensional human understandable concepts (text

representation) shall be extracted where applicable and feasible during development R3.3 R3.3

The audience for human understandable representations (e.g., safety experts,

end users, DL developers) shall be identified R3.3 R3.3 First set of XAI algorithms shall support different representations (text, tabular, graph, visual) R3.3

R3.3, R3.4,

R3.9

DL software implementations shall realize explainable AI architectures in SCm30.3.6 on the target platform

used by the case studies

R3.3

R3.4 RISE X The explanations of DL components shall

support local explanation (explain specific case) and global explanation

(explain global behaviour of the DL components) during development R3.4 R3.4 R3.4 First set of XAI algorithms shall support both local and global explanations R3.4 see R3.3 R3.4

RISE X DL components shall

be designed and implemented in accordance with the safety requirements and

constraints determined in WP2 during development R3.5 DL components shall

be specificable (data/model) in accordance with SCm18.2.1 and

SCm18.2.2 specification for SP1 R3.5

Explainable AI architectures shall be realized in accordance with SCm30.3.1, SCm30.3.2, SCm30.3.3 and

SCm30.3.4 specification and design principles for all safety patterns

R3.5 DL component specifications shall be finalized and agreed with WP2 to achieve safety goals

R3.6 RISE X X Reference safe architectures of DL components shall be proposed that include the usage of supervisor (safety cage architecture) during development R3.6 R3.6 R3.6

An online safety DNN architecture based on

supervisors

shall be designed to support online monitorability by allowing self-

monitoring and self-diagnosis of DL in CAIS for SP1 (if needed),

including outlier detection and types of input data missing in the

training set R3.6 R3.6 An online safety supervision architecture based on DNN supervisors

shall be prototyped to support online monitorability by allowing self-

monitoring and self-diagnosis of DL in CAIS for all safety patterns,

including outlier detection and types of input data missing in the training

set R3.6

R3.7 RISE X Datasets used for DL training/test/validation shall

be evaluated with the proposed metrics in R23.4 and should cover: relevance,

completeness, balance and accuracy during development R3.7 R3.7 R3.7 R3.7

Datasets used in UCs shall be evaluated by the defined data explanation metrics

R3.7

R3.8 RISE X Approaches to improve dataset coverage shall

be proposed in accordance with the metrics (R3.7) that include using GAN-

based algorithms to generate relevant data points during development R3.8 R3.8 R3.8 R3.8

Approach to improve datasets shall be proposed (example: GAN) aiming for improving the data evaluation

results R3.8

R3.9 RISE X Explainable DL approaches shall

be proposed for all DL components that are used by 03 UCs to meet the safety

requirements during development R3.9 R3.9 R3.9

DL software implementations shall realize explainable AI architectures on the target platform for SP1

R3.9 see R3.3 R3.9

R3.10 RISE X Explainable DL components shall

be prototyped for popular classes (examples: MLP, CNN, RNN/LSTM,

Transformers) during testing and operation R3.10 R3.10 R3.10 Explainable DL components shall

be designed and prototyped for CNN and MLP types. Specifically for

YOLO version that is selected by UCs R3.10 R3.10

Explainable DL components shall be designed and prototyped for other DL types (RNN/LSTM,

transformers) R3.10

R3.11 RISE X The DL components shall provide explanations in alignment with information requirements from the

defined V&V process

during development

R3.11 R3.11

R3.11,

R3.12

A “XAI by design” architecture shall be designed to support explainability/traceability requirements

resulted from WP2 for SP1 (Safety Pattern 1). The architecture should

allow adoption by all UCs

R3.11

R3.11,

R3.12

“XAI by design” architecture(s) shall support explainability/traceability requirements resulted from WP2 for

all safety patterns

R3.11

R3.12 RISE X The DL components shall

provide traceability in alignment with information requirements from the

defined V&V process during development R3.12 R3.12 R3.12

see R3.11

R3.12

R3.13 RISE X The DL components shall

be measurable and characterizable by the evaluation metric categories as in

R23.4 during development R3.13 R3.13 R3.13 Explainable DL components shall

be measured and characterized by the evaluation metrics as defined

in SCm18.2.1 and SCm18.2.2 R3.13 R3.13

R3.14 BSC

X X
a proof-of-concept for how to specify DNNs as a collection

of explainable modules together with data/model

specification shall be provided by WP3 during testing R3.14 R3.14 R3.14

R3.14 A proof-of-concept for how to specify DNNs as a

collection of explainable modules together with

data/model specification

shall be developed

R3.14

EXI X X X X X The Case Studies shall use the standardized APIs provided by the platform software, if available during testing and operation

R345.1

R5.22

The use-case runnables shall be able to run on the testing platform R345.1

R5.22 The platform shall

provide containerized support to deploy the use-case applications

R345.1

R5.11

R45.3,

R4.5, R4.6,

R4.18 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw

API, requirements for reproducibility and monitoring

BSC

X X X X

Case studies shall

provide information about layers, type of layers, sw components and dataflow,

all hyper-parameters that identify a DL model and that can require explainable

requirements during testing R35.1

All Use Cases (UCs) shall provide information about case studies architecture, components and dataflow

R35.1 UC partners shall provide DL descriptions (layers, hyperparameters) that need explanation

R35.2 RISE X X X X X The defined evaluation criteria/metrics in R23.4 shall

be measureble for the proposed DL components (model/data) and approaches

that are needed to support 03 UCs during development and testing R35.2 R35.2 R35.2 R35.2

The evaluation metrics shall be measured for all UCs

R35.2

R35.3 AIKO X X X X Explainable DL components shall be usable to evaluate the case studies during testing and operation R35.3 R35.3 R35.3 WP3 shall provide requirements on case studies implementations, if any R35.3 R35.3

R4.1

BSC X X X Platform should provide adequate observability channels (e.g Performance Monitoring

Counters) on CPU, SoC and interconnect events during testing R4.1 R4.1
The selected HW platform(s) should

provide adequate observability channels (e.g Performance Monitoring Counters) on

CPU, SoC and interconnect events R4.1 R4.1 R4.1

R4.2 BSC

X
X

BSP/Hypervisor/RTOS should

allow (not prevent) configuration of control registers for QoS and collection of

hardware events during testing R4.2 R4.2
The selected HW platform(s) run-time should

allow (not prevent) configuration of control registers for QoS and collection of hardware

events R4.2 R4.2 R4.2

R4.3 BSC X X Platform should provide debug support via IDE for Windows and Linux during testing R4.3 R4.3 The selected HW platform(s) should provide debug support via IDE for Windows and Linux R4.3 R4.3 R4.3

R4.4 BSC X X Platform should allow collecting end-to-end timing of selected libraries and applications during testing R4.4 R4.4 The selected HW platform(s) should allow collecting end-to-end timing of selected libraries and applications R4.4 R4.4 R4.4

R4.5 BSC
X X X X

Platform and case study shall

shall allow reproducibility of the results by allowing the control of the

execution conditions (hardware state) during testing and operation R4.5 R4.5 R4.5 R345.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw

API, requirements for reproducibility and monitoring R4.5

R4.6 BSC
X X X X

Platform and case study shall

shall allow reproducibility of the results by allowing the control of the software

state, and input vectors/space during testing and operation R4.6 R4.6 R4.6 R345.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw

API, requirements for reproducibility and monitoring R4.6

R4.7 BSC The monitoring platform shall allow collecting a relevant set of metrics identified in WP3, with special focus

on those meant to support understandability and explainability.

during testing R4.7 R4.7 R4.7 R4.7 R4.7 A initial version of the platform monitor

supporting the collciton of SAFEXPLAIN custom

metrics

shall be provided R4.7 R4.7 The platform monitor shall support a relevant set of SAFEXPLAIN custom metrics, with special focus on

those related to understandability and explainability.

BSC X Library enabling platform-level support for timing

interference control/mitigation

shall be provided during testing

R4.8

An initial identification of sources of timing

interference in the platform

shall be provided

R4.8

A consolidated analysis of sources of timing

interference in the adopted platform

configuration

shall be provided

R4.8,

R4.11

Platform-level configuration to support

Safety Pattern requirements on

controllabilty, predictability, and

performance shall

be updated to accommodate emerging requirements and refinements, if

any.

R4.8,

R4.11

Platform-level support for controllabilty and

predictability

shall be identified

R4.8,

R4.11

Platform-level configuration to support Safety

Pattern requirements on controllabilty,

predictability, and performance

shall be provided

R4.8, R4.9,

R4.11

SW library for HEM configuration and

control/mitigation of sources of timing

interference in the platform

shall

be updated to accommodate emerging requirements and refinements, if

any.

R4.8, R4.9,

R4.11

A consolidated SW library for HEM configuration

and control/mitigation of sources of timing

interference in the platform

shall be provided

BSC X A library enabling collection of timing information on top

of the target HW and SW configuration

shall be provided

during testing R4.9

Evidence that HEMs can be read on the SAFEXPLAIN

board

shall be provided

see R4.8

R4.8, R4.9,

R4.11

An initial SW library for HEM configuration and

control/mitigation of sources of timing interference

in the platform

shall be provided

see R4.8

BSC X A statistical method and tool for timing analysis of DL

libraries and use cases

shall be provided

during testing R4.10

At least one statistical timing analysis

technique/method , compatible with SP1

requirements

shall be developed

R4.10

A consolidated version of at least one statistical

timing analysis technique/method , compatible

with Safety Patterns requirements

shall be provided

R4.10

Statistical timing analysis methods and

tools, compatible with the adopted

platform configuration,

shall

be updated to accommodate emerging requirements and refinements, if

any.

R4.10

A baseline version of at least one statistical timing

analysis tool, partially compatible with the adopted

platform configuration

shall be provided R4.10 At least one statistical timing analysis tool,

compatible with the adopted platform

configuration

shall be consolidated

R4.11

BSC X Hardware configurations to meet FUSA requirements and

Safety patterns

shall be identified

during testing R4.11 R4.11 R4.11

The initial architectural safety patterns shall be assessed with respect their requirement on HW and SW platform level configuration

R4.11 R4.11

The proposed DL safety patterns in shall be concretely mapped to HW ans SW platform level solutions

R4.11 R4.11

The mapping of safety patterns to HW

ans SW platform level solutions shall

be updated to accommodate emerging requirements and refinements, if

any.

R4.12

BSC X Partially automated support for collecting timing

information on the target HW and SW configuration

shall be developed

during testing R4.12 R4.12 R4.12

Manual or partially automated support for collecting

timing information from program execution

shall be provided

R4.12 R4.12

Support for partially automated collection of

timing information from program execution

shall be provided

R4.12 R4.12

Support for partially automated

collection of timing information from

program execution
shall

be updated to accommodate emerging requirements and refinements, if

any.

R4.13

BSC X Guidelines and practices for statistical predictability

approaches, hardware observability & configuration

shall be developed

N/A R4.13 R4.13 R4.13 R4.13 R4.13

A final set of guidelines and practices

for statistical predictability

approaches, hardware observability

shall be provided

EXI X The platform software shall

provide standardized facilities to monitor the control flow and manage the

execution of multiple applications with mixed criticality during operation R4.14

A baseline version the platform monitor with

standard monitoring capabilities (i.e., alive, deadline,

shall be provided R4.14 A monitoring concept shall be proposed

R4.14 The monitoring concept shall be finalized

R4.14 A testing concept shall be proposed

R4.14 The platform monitor shall implement the monitoring concept

R4.15 EXI X The platform software shall

provide standardized facilities to manage exchange (transmission and

reception) of information between applications during operation R4.15 R4.15 R4.15

A baseline version of E2E message protection shall be provided

R4.15 R4.15 E2E message protection shall be finalized R4.15

R4.16 EXI X The platform software shall

provide standardized facilities to manage persistent storage and configuration

for applications during operation R4.16 R4.16 R4.16

A baseline version of integrity protection for

persistent data

shall be provided

R4.16 R4.16 Integrity protection for persistent data shall be finalized R4.16

R4.17 EXI X The platform shall provide data visualization utilities to support the development phase during testing R4.17 R4.17 R4.17

A baseline version of an extensible data visualization

framework

shall be provided

R4.17 R4.17 The data visualization framework shall be consolidated based on use case needs (if applicable) R4.17

R4.18

EXI X The platform software shall provide standardized facilities to support the execution of integration tests during testing

R4.18 R4.18

R4.18

A proof-of-concept implementation of a the

integration testing framework

shall proposed R4.18 R4.18 The platform monitor shall be extended with metrics and techniques, identified by WP2 and WP3 R4.18

R4.18 The test-automation framework shall be finalized

R4.18

A baseline version of utilities for testing and

test-automation shall provided, based on the outcomes of WP2 and WP3 R4.18 The testing concept shall implemented and integrated in the test-automation framework

R4.18 The testing concept shall be finalized

R4.19 EXI X The platform software shall provide facilities to record and replay the case studies during testing R4.19 R4.19 R4.19 The platform shall be able to save and re-play use cases R4.19 R4.19

BSC X X X X X All partners shall select a target platform to run the case studies N/A R45.1 R45.1 All partners shall have selected the target platform R45.1 R45.1 R45.1

R45.1 BSC will lead and the rest of the partners shall contribute to the document describing the different boards considered

R45.2 BSC X X X X X All partners shall select a software platform to run the case studies N/A R45.2 R45.2 All partners shall have idenitfied the software support required on top of the target platform R45.2 R45.2 R45.2

R45.3 BSC
X X X X X

All partners shall procure the target hardware if needed N/A R45.3 R45.3

All partners expecting to need a HW board shall have procured and setup the board according to WP1 specifications

R45.3 R45.3, R4.5, R4.6, R345.1

WP4 shall define platform sw API, requirements for reproducibility and

monitoring on case studies R45.3 R45.3

R45.4 IKR X X X X X The selected platform should support PyTorch and optionally TensorFlow + Keras
during use case develop., testing

and operation
R45.4 R45.4 The run-time of the selected HW platform should support PyTorch, TensorFlow and optionally Keras libraries R45.4 R45.4 R45.4

R45.5 IKR X X X X X The selected platform should support NVIDIA Jetpack, TensorRT, python Libraries
during use case development,

testing and operation
R45.5 R45.5 The run-time of the selected HW platform should support NVIDIA Jetpack, TensorRT, python Libraries R45.5 R45.5 R45.5

R45.6 IKR X X X X X The selected platform should
support OpenCV software (needed by frame preprocessing and stereo vision

functions)

during use case develop., testing

and operation
R45.6 R45.6 The run-time of the selected HW platform should support OpenCV libraries R45.6 R45.6 R45.6

R45.7 IKR X X X X X The selected platform should support application development in C++ and Python
during use case develop., testing

and operation
R45.7 R45.7 The run-time of the selected HW platform should support C++ and Python applications R45.7 R45.7 R45.7

R45.8 IKR X X X X X The selected platform should support video input (might be replaced by recorded videos)
during use case develop., testing

and operation
R45.8 R45.8 The run-time of the selected HW platform should support video inputs R45.8 R45.8 R45.8

R45.9 IKR X X X The selected platform should
support Full Yolo V4 and YoloV7 that will be used as DL models for object

detection. The goal is using YoloV7.

during use case develop., testing

and operation
R45.9 R45.9 The run-time of the selected HW platform should support the execution of Yolo (at least v4 but targeting v7) R45.9 R45.9 R45.9

R45.10 NAV X X X X X The selected platform should support faster I/O access via NVMe during testing and operation R45.10 R45.10 The run-time of the selected HW platform should NVMe I/O access R45.10 R45.10 R45.10

R45.11 AIKO X X X The selected platform should provide support to Floating Point execution during testing and operation R45.11 R45.11 The run-time of the selected HW platform should support FP operations R45.11 R45.11 R45.11

R45.12 AIKO X X X The selected platform should provide DL Inference APIs for the available accelerators during testing and operation R45.12 R45.12 The run-time of the selected HW platform should provide DL inference API for the available accelerators R45.12 R45.12 R45.12

R45.13 BSC
X X X X X X

The selected platform should

provide adequate interference channels mitigation support (Partitioning, QoS,

...) during testing and operation R45.13 R45.13 The run-time of the selected HW platform should provide mechanisms to contorl respurce partitining, allocation, and QoS features R45.13 R45.13 R45.13

R5.1

BSC X X X Case studies shall provide a toy NN example excercising the main elements of the SAFEXPLAIN

SW stack during testing and operation R5.1

R5.1 Use cases together with interested WP's shall define the requirements for the toy model to exercise safexplain sw stack

R5.1

R5.1 WP5 shall develop a toy NN example excercising the main elements of the

SAFEXPLAIN SW stack and in line with SP1 R5.1

R5.1 to

R5.5 + 5.9 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw

requirements for reproducibility and monitoring R5.1

R5.2 IKR X X X X The DL models deployment on the selected platform shall be imported into the target platform via PyTorch *.pt weights files or via ONNX.
during use case develop., testing

and operation
R5.2 R5.2

See 5.9
R5.2

see R5.1
R5.2

R5.3 IKR X The DL models deployment on the selected platform shall achieve >75% accuracy on detection test set during testing and operation R5.3 R5.3

R5.3,

R5.4,

R5.5,

R5.8

WP5 Use Cases (UCs) shall define performance goals/thresholds to be met for each case study

R5.3

see R5.1

R5.3

R5.3 FUSA-aware DL library

implementations

shall reach 75% performace of the non-FUSA aware libraries performance (e.g.

frames per second for camera-based object detection) for the railway case

study

R5.4 IKR X The DL models deployment on the selected platform shall achieve >75% accuracy on distance estimation test set during testing and operation R5.4 R5.4
see R5.3

R5.4
see R5.1

R5.4

R5.5 IKR X X The DL models deployment on the selected platform shall
achieve 10 FPS frame rate for a 608x608 network size fort at least 1080p image

resolution
during testing and operation R5.5 R5.5

see R5.3
R5.5

see R5.1
R5.5

R5.6 NAV X X X Case studies shall

Develop training dataset (possibily from simulation environment) to train the

perception models. during use case development R5.6 R5.6

R5.6,

R5.7

WP5 Use Cases (UCs) shall collect training and testing datasets for each case study

R5.6 R5.6

R5.7 NAV X X X Case studies shall

Create test set/scenarios (covering different challenging scenarios and edge

cases) along with the ground truth for testing the developed models. during use case development R5.7 R5.7 see R5.8 R5.7 R5.7

R5.8 NAV X X X Case studies shall

Develop state-of-the art perception models which meets the performance and

inference requirements of the use case during testing and operation R5.8 R5.8 See R5.3 R5.8 R5.8

AIKO X X X Case studies shall be executable and testable on the platform during use case development R5.9 WP5 Use Cases (UCs) shall stub each case study to work on the SAFEXPLAIN platform

R5.9

WP5 Use Cases (UCs) shall complete 50% of the porting of the final case studies

see R5.1 The use-cases shall

be fully ported and integrated on testing platform and meet platform sw

requirements for reproducibility and monitoring

R52.2 AIKO X X X X Case studies shall be evaluated by safety analysis tools during testing and operation R52.2 R52.2 R52.2

WP2 shall provide requirements on case studies implementations, if any

R52.2

R52.2,

235.3 The use-cases shall

be analysed by safexplain sw stack on the aspects of functional safety

and explainability R52.2

See R2.8

and R2.9

R52.2,

R52.1 IKR X X X X Case studies shall specify and implement safety functions based on DL software during use case development R52.1 R52.1 All UCs shall define safety goals and safety scenario together with wp2 for each use case R52.1 R52.1 R52.1

BSC X X X X X Case studies should use the same or compatible software stack during testing and operation R54.1 R54.1 All partners shall have idenitfied the software support required on top of the target platform R54.1 R54.1 R54.1

R54.1 All partners should have selected the same or compatible software stack on top of the target platform

BSC
X X X X X

Case studies should use the same HW platform during testing and operation R54.2 R54.1
All partners shall have selected the target platform

R54.2 R54.2 R54.2

R54.14
All partners should have selected the same target HW platform

SC month 36

A
u

th
o

r W
P

1

W
P

2

W
P

3

W
P

4

m06 m18 m30 m36

SC SC month 06 SC month 18 SC month 30

ID

W
P

5
au

to

W
P

5
ra

il

W
P

5
sp

ac
e

Description

R3.5

R345.1 R345.1 R345.1 R345.1 R345.1

R3.5 R3.5 R3.5 R3.5

R35.1 R35.1 R35.1

R4.8 R4.8 R4.8 R4.8 R4.8

R4.9

R4.10 R4.10 R4.10 R4.10 R4.10

R4.9 R4.9 R4.9 R4.9

R54.2

R5.9

R4.14 R4.14 R4.14 R4.14 R4.14

R45.1

R5.9 R5.9 R5.9 R5.9

R2.1,

R2.2, R2.3

Initial set of requirements, recommendations, architectural design patterns

and procedures for (i) DL-software specification, design and implementation,

and (ii) DL-software V&V

shall

be collected from selected standards

R54.1

R35.1 R35.1

R3.2 R3.2

R2.10
during development

R2.10

shall be described

shall be defined and provided together with a simple example and agreed

with WP3

R2.1,

R2.2,

R2.3,

R2.4
R2.1,

R2.2,

R2.3,

R2.4,

R2.5,

R2.6,

R2.7

Consolidated safety assurance case templates

for DL-usage level D, C and A

R2.10 R2.10 R2.10

R3.2

Safety guidelines and arguments for DL

software adoption in the critical

domain

R2.1,

 R2.2,

 R2.3

Initial safety assurance case templates for DL-usage

level D & C
shall be defined and provided together with a simple example

R3.2 R3.2

	D1.1RequirementsSuccessCriteriaPlatforms_final
	REQs&SC

