

D2.2 DL safety architectural patterns and platform
Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contratual Deadline 31.03.2024

Dissemination Level PU

Nature R

Author Jaume Abella (BSC), Irune Agirre (IKR), Irune Yarza (IKR)

Contributors Axel Brando (BSC), Martí Caro (BSC)

Reviewer Carlo Donzella (EXI), Francesca Guerrini (EXI)

Keywords Functional safety of AI, safety pattern, diagnostics, monitoring

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

Ref. Ares(2024)2295263 - 27/03/2024

http://www.safexplain.eu/

1

D2.2 DL safety architectural patterns and platform
Version 1.0

 Change Log

Version Description Change

V0.1 First draft

V0.2 Reviewed version

V1.0 Final version

2

D2.2 DL safety architectural patterns and platform
Version 1.0

Table of Contents
1 Introduction .. 5

1.1 Background ... 5

1.1.1 AI-based systems ... 5

1.1.2 NVIDIA Jetson AGX Orin ... 6

1.1.3 Standards and technical reports .. 6

1.2 Structure of the Document ... 7

2 Sources of Risk and Incremental Strategy .. 8

2.1 AI Risk factors .. 8

2.1.1 Functional Safety Standards .. 9

2.1.2 Technical reports on multicore integration (CAST-32A / AMC-20-193) 9

2.1.3 AI and FUSA Technical Reports (ISO/IEC TR 5469) .. 10

2.1.4 Safety of The Intended Functionality (SOTIF) (ISO/DIS 21448) 10

2.1.5 Summary of risk factors ... 10

2.2 Incremental strategy ... 11

3 Reference architecture pattern .. 14

3.1 Diverse redundancy .. 16

3.1.1 Decision Function .. 18

3.1.2 Diverse Redundancy techniques ... 19

3.2 Diagnostic and Monitoring mechanisms .. 28

3.2.1 L1DM mechanisms – AI subsystem ... 29

3.2.2 L2DM mechanisms – Traditional subsystem ... 34

3.2.3 L3 mechanisms – External ... 38

3.3 Supervision function ... 38

3.4 Traditional subsystem ... 39

4 Safety Patterns ... 40

4.1 Safety Pattern 1 (SP1) ... 40

4.1.1 System Architecture .. 40

4.1.2 Diagnostic and monitoring mechanisms ... 41

4.2 Safety Pattern 2 (SP2) ... 44

4.2.1 System Architecture .. 44

4.2.2 Diverse redundancy ... 45

4.2.3 Diagnostic and monitoring mechanisms ... 45

4.3 Safety Pattern 3 (SP3) ... 47

4.3.1 System Architecture .. 47

3

D2.2 DL safety architectural patterns and platform
Version 1.0

 5 Acronyms and Abbreviations ... 50

6 References .. 51

7 Annexes .. 52

7.1 Preliminary evaluation of L0 Diverse Redundancy solutions ... 52

7.1.1 Input image transformation .. 52

7.1.2 Diverse data types ... 54

4

D2.2 DL safety architectural patterns and platform
Version 1.0

 Executive Summary
This document provides strategies and specific solutions to realize safety patterns for safety-
relevant software systems that include Artificial Intelligence (AI) software components. In
particular, this document provides some context and background on the characteristics of AI-
based systems provided by relevant associations in the context of safety-critical systems, as well
as the applicable standards. Then, this document proposes a number of safety patterns with
increasing requirements and constraints for the AI software components, as well as specific
strategies and solutions to realize those.

Note that, while that is the scope and general objectives of this deliverable, this is ongoing work
in the project, which will be finalized in 12 months, and the complete and updated report of this
activities will be then delivered as part of D2.3. Hence, the contents of this document are not
complete with respect to the general objectives and, instead, reflect the status of progress of the
work in tasks T2.3 and T2.4 as per m18.

5

D2.2 DL safety architectural patterns and platform
Version 1.0

 1 Introduction
Systems with safety requirements follows a development process that leads to architectures that
allow satisfying those requirements. Those architectures have a large set of commonalities across
different systems with comparable safety requirements, and hence, a number of safety patterns
have been developed in each application domain as a way to generate specific architectures
reusing previous efforts to reduce costs and risks. One such example of safety pattern is the E-gas
Concept (EGAS Workgroup, 2013) used in the automotive domain, which is the basis for the
architecture of many automotive systems with limited integrity levels (e.g., ASIL-A or ASIL-B
according to ISO 26262 (International Standardization Organization, 2018)).

However, AI-based software has a number of characteristics that clash with those expected for
safety-relevant software, such as a stochastic behaviour with non-guaranteed correct outputs, and
a data-based software design rather than being a purely control algorithm. Hence, traditional
safety patterns cannot be applied as they are, and new ones need to be devised.

In this section, we provide some context and scope to the problem of developing AI-based
software architectures with safety requirements and provide some background on the relevant
safety regulations and the target platform where those software architectures have to be
deployed.

1.1 Background
This section provides background on the main concepts used in this report: nomenclature on AI-
based systems, the main features of NVIDIA Jetson AGX Orin platform where the safety patterns
will be applied, and a recall of the safety standards used as reference and already introduced in
D1.1 [3].

1.1.1 AI-based systems
In the same way as in Deliverable D2.1 [4], when referring to AI-based safety systems, this report
considers the definitions of the European Aviation Safety Agency (EASA) concept paper for
Machine Learning (ML) application (European Union Aviation Safety Agency (EASA), 2023), which
makes the decomposition shown in Figure 1.

Figure 1: Artificial Intelligence (AI)-based system decomposition based on EASA concept paper (European Union Aviation Safety

Agency (EASA), 2023)

6

D2.2 DL safety architectural patterns and platform
Version 1.0

 Based on this decomposition, the EASA concept paper makes the following definitions:

• AI-based system: systems encompassing traditional subsystem(s) and incorporating at
least one AI-based subsystem.

• AI-based subsystem: subsystem that involves one or more AI/ML constituents.
• AI/ML constituent: It is a combination of software and hardware items that include at least

one specialized hardware or software item containing at least one ML model.
• AI/ML item: specialized hardware or software item that builds the ML model(s). In

particular, we focus on Deep Learning (DL) models, a subfield of ML.
• Traditional subsystem: subsystem that does not include any ML model.
• Traditional SW/HW item: hardware or software items that do not include ML model(s).

This deliverable focuses on AI/ML constituents with the following features:

• Deep Learning (DL) algorithms based on supervised learning for visual perception
classification tasks.

• Applications based on offline learning processes in which the model remains fixed at
approval time, while excluding online learning processes.

1.1.2 NVIDIA Jetson AGX Orin
As detailed in D4.1, the target MPSoC platform in SAFEXPLAIN belongs to the NVIDIA Jetson AGX
Orin family. In SAFEXPLAIN, the AGX Orin Dev Kit has been selected. The Orin comprises 3 clusters
of 4 Arm Cortex-A78AE CPUs, a dual core Sensor Processing Engine (SPE) which can be configured
in lockstep, a NVIDIA Ampere GPU, ad-hoc AI-oriented accelerators, and video encoder/decoder.

Clusters based on Arm cores provide general purpose computing capabilities suitable for control
software and software components around AI-based software, but without needing AI-specific
support or massively parallel hardware components. Each of the three clusters includes four cores
that can be used as either 4 independent cores, or as 2 pairs of lockstep cores. Cores include local
(L1 and L2) caches. There is a L3 cache shared across all cores in the cluster, but it includes
partitioning support. We refer to the set of 3 core clusters as CCPLEX for short.

Computing devices like the GPU and the AI-oriented accelerators have a complementary nature to
the core clusters and are suitable for AI software and other embarrassingly parallel software. In
particular, the GPU has a number of Stream Multiprocessors (SMs) sharing a L2 cache, which,
apparently, cannot be partitioned.

Core clusters and the GPU share an L4 cache that, so far, cannot be partitioned, and hence, both
cores and the GPU share it. However, we note that, due to its limited size, does not seem to be
intended for providing increased cache space for the L3 caches of the core clusters or the L2 cache
of the GPU.

1.1.3 Standards and technical reports
SAFEXPLAIN deliverable D1.1 [3] provides an analysis of the relevant standards for the project,
classified as: functional safety standards, AI and Autonomous Systems Standards, and guidelines
for High-Performance Embedded Computing (HPEC) platforms. For each of them, a general
overview was provided, as well as the baseline safety principles on which the architectural patterns
of this report are based on. As the outcomes of this deliverable are meant to be applied in different
domains, the following domain independent standards are taken as basis:

7

D2.2 DL safety architectural patterns and platform
Version 1.0

 • IEC 61508:2010 - Functional safety of electrical/electronic/programmable electronic
safety-related systems [6]: D1.1 provides an overview of “Architectural safety patterns
from traditional FUSA” based on this standard, used as starting point in this report.

• ISO/IEC TR 5469:2024 - Artificial intelligence — Functional safety and AI systems [7]: D1.1
explains the definition of the different DL usage levels according to ISO/IEC TR 5469 which
is used as the basis for the incremental strategy of this report (Section 2) and the
“Architectural safety patterns for AI” on which the reference architecture of Section 3 relies
on. As the first edition of ISO/IEC TR 5469 has been published in January of 2024, Section 3
complements the information of D1.1 with updated references to ISO/IEC TR 5469.

In addition to these domain independent standards, technical reports from different domains are
also taken as reference:

• CAST-32A and AMC-20-193 from the avionics domain for multicore processors [8]: As
introduced in D1.1, these two technical reports from the avionics domain provide guidance
on the adoption of multicore processors for critical systems. Many of the principles
described there are also applicable to HPEC platforms that integrate multicore processors
together with additional accelerators and diverse computing resources.

• E-Gas architecture concept from the automotive domain (EGAS Workgroup, 2013): The E-
Gas architecture concept, defined by the German Association of the Automotive Industry
(VDA), has the aim to standardize the safety architecture for engine control systems. The
defined architecture is in compliance with ISO 26262 and it can be applied as a well-trusted
design principle. The E-Gas defines a 3-level monitoring concept that has been used as
reference in this report (Section 3.2), adapting it to AI systems particularities and to ISO/IEC
TR 5469.

1.2 Structure of the Document
The remaining of this document is structured as follows:

• Section 2 reviews the relevant sources of risk for AI-based solutions in safety-critical
systems, including AI-related factors and traditional ones. Then, section 2 reviews the
different usage and automation levels for DL solutions, and how they are tackled
incrementally in the project, and also in this document.

• Section 3 provides the general structure of the safety patterns, as well as the techniques
considered for diverse redundancy, diagnostics, monitoring, and supervision in the
different safety patters.

• Section 4 instantiates the general pattern for specific usage and automation levels, reviews
the relevant techniques to be used for diverse redundancy, diagnostics, monitoring, and
supervision for each of the patterns, and provides guidance on how to map those solutions
to the target platform of the project (NVIDIA Orin).

• Sections 5 and 6 provide the lists of acronyms and references respectively.
• Section 7 provides annexes with further details for some of the diverse redundancy,

diagnostics, monitoring, and supervision mechanisms already developed in the project.

8

D2.2 DL safety architectural patterns and platform
Version 1.0

 2 Sources of Risk and Incremental Strategy
In order to define the safety architecture patterns, first main problems arising from the use of AI
in safety critical systems and their root causes are analysed and then an incremental strategy to
deal with them is defined.

2.1 AI Risk factors
As for traditional safety related systems, the main risk factors related to AI-based systems can be
originated either in its development or at operation. Figure2 depicts this classification criteria
together with information sources used in this section to identify the different risk factors. During
the development, there are several stages at which systematic faults can originate, like incomplete
specifications, biased training data or wrong design decisions affecting the ML model. In order to
reduce the probability of systematic faults in the AI-based subsystem, safety considerations shall
be taken in the AI lifecycle. In SAFEXPLAIN this has been addressed by the AI-FSM described in
deliverables D2.1 [4] and hence, this report does not focus on the risk factors originated in the AI
lifecycle but on the AI Operation instead. However, the high complexity of AI systems makes it very
difficult to mitigate all systematic faults through design and verification and validation processes,
and it is assumed that residual systematic faults will manifest at operation and should be covered
by the runtime mechanisms in the safety architecture too, as done for random faults.

Figure 2: AI Risk factor classification and sources of information

At operation time, residual systematic faults and random faults can impact different elements of
the AI-subsystem, this determines the architectural measures required for runtime error detection
and monitoring. Based on ISO/IEC TR 5469 we classify these AI technology elements in the 5 groups
shown in Figure 2:

• Application Independent: The lowest levels of the AI technology elements can be
considered as application independent:

o Computational Hardware: refers to the hardware platform and its processing units
(e.g., CPU, GPU, Accelerators).

9

D2.2 DL safety architectural patterns and platform
Version 1.0

 o OS / middleware: This component is not included in ISO/IEC TR 5469, but many
faults could also originate on this layer.

o Libraries: ML components often require specific libraries for their inference (e.g.,
cuDNN). These libraries can also be implemented in different programming
languages such as CUDA, C, C++, python…

• Application dependent: Higher levels of the AI technology elements are usually platform
dependent:

o ML framework: many different frameworks can be used depending on the
application that is being implemented (e.g., TensorFlow, Pytorch, Keras).

o ML model: the ML model will depend on the specific application and the design
decisions taken for it (architecture, hyperparameters, number of layers, etc).

The analysed sources for identifying relevant risk factors on AI operation cover different AI
technology elements as explained in next subsections.

2.1.1 Functional Safety Standards
Functional safety standards such as IEC 61508, ISO 26262 or EN 5012x only address the application
independent technology elements from Figure 2 (computational hardware and software) as they
do not address AI-specific topics. According to ISO / IEC TR 5469 these technology elements can
be addressed through existing functional safety concepts following IEC 61508-2 for hardware and
IEC 61508-3 for software. However, for elements containing AI technology (ML model and related
tools) a set of new properties, listed in Section 2.1.3, are defined.

Traditional functional safety standards classify failures based on their origin as systematic or
random:

• Systematic failure: “failure, related in a deterministic way to a certain cause, which can
only be eliminated by a modification of the design or of the manufacturing process,
operational procedures, documentation or other relevant factors” from IEC 61508-4.

• Random hardware failure: “failure, occurring at a random time, which results from one or
more of the possible degradation mechanisms in the hardware” from IEC 61508-4.

Concerning systematic faults affecting AI SW development (lifecycle) it is an open research topic
that has been explored by several research papers. Humbatova et al. introduce a large taxonomy
of faults in DL systems’ development using several frameworks. Moreover, Schnitzer et al. propose
a framework for the systematic management of risks associated with AI. This framework builds
upon an AI hazard list from a SoA analysis.

2.1.2 Technical reports on multicore integration (CAST-32A / AMC-20-
193)

CAST-32A / AMC-20-193 focus on multicore processors and therefore mostly on the hardware
computing element and allocation of resources to deal with interferences. The following main risk
factors are considered:

• Contention for resources and interference between software applications or tasks even if
there is no explicit data sharing among concurrent tasks, low level resources are shared
(cache or interconnects) coupling exists on the platform level, which can cause interference
between them.

• Interference caused by the arbitration of shared resources.
• Verification of the use of shared resources: demonstrate that the hosted software

applications function correctly and have sufficient time to execute in the presence of the

10

D2.2 DL safety architectural patterns and platform
Version 1.0

 interference that occurs when all the hosted software is executing on a multicore. The
WCET of a software component or task may increase significantly when other software
components or tasks are executing in parallel on the other cores.

• Exceedance of resource capabilities by software applications.

• Hardware dynamic features that can alter system behaviour (energy saving features, clock
enable / gating, frequency adaptations, deactivating one or more cores, or dynamic control
of peripheral access).

• Configuration settings: active cores, execution frequencies, priorities and allocation of
shared resources (memory, cache, interconnect).

2.1.3 AI and FUSA Technical Reports (ISO/IEC TR 5469)
As previously stated, ISO/IEC TR 5469 refers to traditional functional safety standards for
application independent AI technology elements, and defines the following 6 properties for AI
application dependent ones:

• Degree of automation and control
• Degree of decision transparency and explainability
• Environmental complexity and vagueness of specifications

- Operational Design Domain (ODD) complexity
- ODD specification
- Environmental changes: Data drift (training data does not match runtime domain),

Concept drift (statistical properties of data change over time)
• Adversarial inputs
• AI Hardware issues
• Technological maturity

2.1.4 Safety of The Intended Functionality (SOTIF) (ISO/DIS 21448)
With the increase of advanced functionalities and automation, ISO/DIS 21448 acknowledges that
many hazards are not covered by functional safety standards and defines the concept of functional
insufficiencies, which can happen even when the system is free from systematic and random faults
addressed in functional safety standards. Functional insufficiencies, which could be considered as
a type of systematic faults, are defined as one of the following:

• Insufficiency of specification: This mainly affects to the AI lifecycle as it is defined as
“specification, possibly incomplete, contributing to either a hazardous behaviour or an
inability to prevent or detect and mitigate a reasonably foreseeable indirect misuse”

• Performance insufficiency: “limitation of the technical capability contributing to a
hazardous behaviour or inability to prevent or detect and mitigate reasonably foreseeable
indirect misuse”

2.1.5 Summary of risk factors
Table 1 summarises the risk factors described within Section 2.1 mapping them to the affected AI-
technology elements the source of information.

Table 1: Summary of risk factors

Risk factor AI technology element Source

Traditional FUSA risk
factors (systematic /
random)

All AI technology elements (i.e., computational
hardware, OS / middleware, libraries, ML
framework and ML model).

IEC 61508 and derived
FUSA standards (ISO
26262, EN 5012x, …)

https://www.iso.org/obp/ui/ru/#iso:std:iso:21448:ed-1:v1:en:term:3.17
https://www.iso.org/obp/ui/ru/#iso:std:iso:21448:ed-1:v1:en:term:3.17

11

D2.2 DL safety architectural patterns and platform
Version 1.0

 Risk factor AI technology element Source

HPEC platform
integration risk factors

Computational hardware and lower-level SW
(i.e., OS / middleware).

CAST-32A / AMC-20-193
ISO 26262 part 11

AI performance
insufficiency

ML model or framework. ISO/DIS 21448 (SOTIF)

AI & FUSA risk factors
(low/medium integrity
level)

All AI technology elements (i.e., computational
hardware, OS / middleware, libraries, ML
framework and ML model).

AI and FUSA Technical
Reports (ISO/IEC TR 5469)

2.2 Incremental strategy
As explained in D1.1, ISO / IEC TR 5469 describes different DL usage levels:

• DL usage Level A1: AI technology is used and it is possible to make automated decision of
the system function using AI technology.

• DL usage Level A2: AI technology is used but it is not possible to make automated decision
of the system function using AI technology (e.g., AI technology is present in the system for
diagnostics).

• DL usage Level C: AI technology is not part of a safety function but can have an impact on
it.

• DL usage Level D: AI technology is not part of a safety function and does not have an impact
on it due to sufficient segregation and behaviour control.

Similarly, the EASA concept paper classifies AI systems based on the level of automation /
assistance to the user:

• EASA Level 1: AI used for assistance to human (human augmentation or cognitive
assistance in decision and action selection).

• EASA Level 2: Human-machine teaming (cooperation or collaboration).
• EASA Level 3: Autonomous AI-based decisions and actions.

Based on these classifications, in SAFEXPLAIN we have defined the incremental strategy Figure 3
for AI adoption in safety critical systems, which incrementally addresses the risk factors of Section
2.1. This strategi defines first a reference safety architecture (described in Section 3), which is
instantiated to three safety patterns in order to address the different DL usage levels:

• Safety Pattern 1 (SP1) (described in Section 4.1) aims to address up to a DL usage level
D or EASA Level 1. The AI/ML constituent is not part of the safety function, therefore,
we set the focus on safety techniques and measures to detect and mitigate errors
associated with traditional FUSA and HPEC platform integration risk factors.

• Safety Pattern 2 (SP2) (described in Section 4.2) aims to address up to a DL usage level
C or EASA Level 2. The AI/ML constituent is not part of the safety function although it
collaborates on the decision and can therefore have an impact on it, so we assume that
the AI/ML constituent has a low/medium SIL. This SP considers the techniques and
measures of SP1 and sets the focus on solutions to detect and mitigate errors
associated with AI performance insufficiencies as well as AI and FUSA risk factors on the
ML framework and DL model.

• Safety Pattern 3 (SP3) (described in Section 4.3) aims to address up to a DL usage level
A1 or EASA Level 3, where the AI/ML constituent is part of the safety function. The
AI/ML constituent provides autonomous AI-based decisions and actions, so it has a high

12

D2.2 DL safety architectural patterns and platform
Version 1.0

 SIL. SP3 considers the techniques and measures from previous SPs and sets the focus
on achieving higher integrity level.

D2.2: DL safety architectural patterns and platform
Version 1.0

Figure 3: Incremental strategy for AI adoption in safety critical systems

D2.2: DL safety architectural patterns and platform
Version 1.0

 3 Reference architecture pattern
Previous deliverable D1.1 presented a high-level description of a generic architectural pattern for
safe AI execution. In this section, we provide a more detailed view of such concept, which is later
tailored to different DL usage levels in forthcoming sections. To this end, Figure 4 depicts a
reference safety architecture pattern and this section describes its main safety elements,
illustrated by means of enumerated rhombus symbols in Figure 4. These elements constitute the
main building blocks to later define the specific safety architectural patterns for each DL usage
level.

The goal of the reference safety architecture pattern is to show the main elements proposed in
this report and to show an example on how they can be integrated together to build a safety critical
system. This reference architecture shall be later tailored and adapted to each use case, and hence
many different variants can be defined taking it as baseline.

Figure 4: Reference safety architecture pattern for safe AI-based systems

In summary, the reference architecture pattern of Figure 4 integrates the following four safety
mechanisms on it:

1. Diverse redundancy within the AI/ML constituent (Subsection 3.1). Note that redundancy
and diversity are commonly also applied to traditional systems, however we consider such
part out of the scope of this document, and we just focus on its application to the DL
component.

2. Diagnostic and monitoring mechanisms (Subsection 3.2). A hierarchical diagnostic and
monitoring concept consisting of three levels is defined.

3. Supervision function (Subsection 3.3). Its main goal is to check the appropriateness of the
environment and to supervise the output of the ML constituent to identify unsafe
situations and stablish the limits for safe operation, providing a safe envelope.

All in all, the reference safety architecture pattern shown in Figure 4, consists of two main
subsystems:

• AI-based subsystem. Comprises all the AI-related elements in the architecture.

15

D2.2 DL safety architectural patterns and platform
Version 1.0

 o AI/ML constituent. Consists of the ML model as well as the corresponding data pre-
processing and post-processing components.

o Decision Function. The AI/ML constituent implements a diverse redundancy
scheme (see Section 3.1) to enhance the performance of the DL model and increase
the ration of AI subsystem errors that can be detected and controlled. Within this
diverse redundancy scheme, the Decision Function (see Section 3.1.1), takes the
output from all the redundant nodes and provides a single prediction. Then,
according to the DL usage level, the Decision Function might provide a suggestion
(e.g., warning message, status information) and / or decision (e.g., command on the
actuators) to the user and / or safety control.

o Supervision components. Consists of the L1 diagnostic and monitoring (L1DM)
mechanisms as well as the supervision function.
The former, comprises the lower-level diagnostics and monitoring in the platform,
which complements the DL model diverse redundancy for detecting runtime errors
or model insufficiencies and anomalies on the AI/ML constituent (see Section 3.2.1).
To this end, the L1DM mechanisms gathers information from the AI/ML constituent
(i.e., inputs, pre-processing, DL model, post-processing, decision function) and
provides information on the detected errors to the decision function and L2
diagnostics and monitoring (L2DM) mechanism.
The latter, bounds the AI/ML constituent operations to work within a predefined
safety envelope (see Section 3.3). To this end, it collects information from the
inputs/outputs of the AI/ML constituent and provides a set of constraints or limits
to the decision function.

• Traditional subsystem. Comprises the components usually present in a traditional (non-AI
based) system (see Section 3.4).

o Non-AI subsystem. Depending on the DL usage level, the non-AI subsystem can
have different usage, it can either be the main safety element, or a fallback element
that is activated whenever the supervisor identifies an unsafe operation of the AI-
based subsystem.

o L2 diagnostic and monitoring mechanisms. Comprises platform-level diagnostic
and monitoring following traditional functional safety techniques (see Section
3.2.2). To this end, it gathers information from all the components within the
traditional subsystem (i.e., inputs, non-AI subsystem, safety control) as well as the
L1DM mechanism (i.e., L1 – Error detection) and provides information on the
detected errors (L2 – Error detection) to the safety control and L3 diagnostics and
monitoring (L3DM) mechanism. Considering the error information from lower-level
diagnostic and monitoring mechanisms (i.e., L0 and L1), the L2DM is responsible of
triggering the required reaction for error handling (e.g., take the system to a safe
state).

o Safety control. Collects the output information from the AI/ML constituent and the
non-AI subsystem as well as safety related information from the diagnostic and
monitoring components (i.e., L1DM, L2DM) and the supervision function (i.e., safe
limits) to implement the system control and actuation logic (i.e., command system
output(s) or take the system to a safe state). For instance, if the non-AI subsystem
implements a fallback function for the ML constituent, in the event that a functional
safety problem is detected in the AI-subsystem, the safety control might decide to
discard the suggestion/decision from the decision function and operate according
to the fallback function. The safety control might also limit the output(s) to meet

16

D2.2 DL safety architectural patterns and platform
Version 1.0

 with the safe limits defined in the supervision function or even take the system to
a safe state.

• L3 Diagnostic and monitoring mechanisms (L3DM). Following traditional functional safety
practices some diagnostic may be implemented on an external device such as an external
watchdog or microcontroller. Considering the error information from the L2DM
mechanisms (i.e., L2 – Error detection), the L3DM mechanism is responsible of triggering
the required reaction for error handling (e.g., take the system to a safe state).

Elements with no colouring in the reference safety architecture pattern (Figure 4) are out of the
scope of this deliverable since they are not directly related to safety techniques and measures for
the AI execution and may vary depending on the system application area.

3.1 Diverse redundancy
The goal of redundancy and diversity on the DL model is to enhance the performance and to
increase the portion of AI subsystem errors that can be detected and controlled. In addition,
redundancy can also improve system availability, by maintaining system operation even when one
instance of the redundant architecture is failing. Redundancy shall be complemented with diversity
in order to deal with systematic faults and model insufficiencies. When used for improved
diagnostics, diverse redundancy can be considered as a particular technique of the AI subsystem
diagnostic mechanisms of Subsection 0.

We base on the following three types of diverse redundancy that can be combined to build the
Diverse Redundancy Schemes (DRS) proposed in Table 2 with varying degrees of diagnostic
coverage:

• Inference Platform diversity (identified as “I” in Table 2) – different platform resources for
running the inference. Inference Platform diversity can be applied to different platform
elements. These are some example approaches:

o Inputs (e.g., diverse cameras, sensors, input image flips…)
o Processing resources (accelerators, CPUs…)
o OS, execution framework (e.g., TF lite, pytorch, darknet…)
o Temporal (e.g., different time instants)
o Data precision (e.g., float vs double, short vs int vs long int)
o Data rounding (e.g., for floating point data)
o Sources for potential random parameters

• DL model Development diversity (identified as “D” in Table 2): different techniques or
elements for developing the DL model. DL model development diversity can be applied to
different development phases and elements. These are some example approaches:

o Model Architecture
o Hyperparameters
o Prediction criteria (e.g., confidence threshold, bounding box overlapping threshold,

single vs multi class prediction…)
o Training datasets
o Training process (including convergence thresholds, weighting predictions…)
o Training platform

• Concept diversity (identified as “C” in Table 2): different problem formulation with same
final goal. The problem formulation may vary depending on the application are. These are
some example approaches:

o Object detection vs object part detection

17

D2.2 DL safety architectural patterns and platform
Version 1.0

 o Object detection vs obstacle free path detection

More specific application examples of each DRS are later proposed for each of the safety patterns
(refer to Sections4.1, 4.2, and4.3).

Table 2: Diverse Redundancy Schemes

ID Type of Diverse redundancy:
Concept – Development – Inference

Diagnostic
Coverage Description

DRS_1

Low

Single DL model development, replicated in the
inference platform without diversity (each
replica uses same SW stack and processing
elements (e.g., GPU)). Allows addressing
traditional FUSA risk factors.

DRS_2

Low to
medium

Single DL model development, replicated in the
inference platform with diversity (each replica
uses different resources (different inputs, AI
framework, OS, processing elements (e.g., GPU
and CPU), etc.)). Allows addressing traditional
FUSA risk factors.

DRS_3

Low to
medium

Development of two different DL models based
on same concept (e.g., object detection) with
diversity in the training process, training data,
model architecture etc. Inference without
diversity (each replica uses same SW stack and
processing elements (e.g., GPU)). Allows
addressing AI & traditional FUSA risk factors as
well as AI performance insufficiencies.

DRS_4

Medium to
high

Combination of DRS_2 and DRS_3 with DL
model Development diversity and Inference
Platform diversity. Allows addressing AI &
traditional FUSA risk factors as well as AI
performance insufficiencies.

DRS_5

Medium to
high

Development of two different DL models based
on different concepts (e.g., one for object
detection and the other for obstacle free path
detection). This requires DL model
Development diversity. Inference without
diversity (each replica uses same SW stack and
processing elements (e.g., GPU)). Allows
addressing AI & traditional FUSA risk factors as
well as AI performance insufficiencies.

DRS_6

High

Combination of DRS_4 and DRS_5 with concept
diversity, DL model Development diversity and
Inference Platform diversity. Allows addressing
AI & traditional FUSA risk factors as well as AI
performance insufficiencies.

18

D2.2 DL safety architectural patterns and platform
Version 1.0

 Note that, differently to usual control algorithms where diverse redundancy is applied preserving
bit-level precision (e.g., dual-core lockstep), some diversity schemes lead naturally only to
semantic-level precision, meaning that we expect the same result in semantic terms0F

1 (e.g., same
object detection in the same location), but results are very likely to be different at bit level (e.g.,
different confidence values, not fully identical bounding boxes, etc.). Therefore, mechanisms to
produce the final (combined) prediction or report an error are needed, such as voting, averaging,
and non maximum suppression (NMS).

3.1.1 Decision Function
Before introducing those decision functions, it is important to determine the criteria to use to
decide what data needs to be combined to provide a single prediction. In some cases, DL models
may be predicting a single feature, hence making obvious what should be combined. However,
this is not always the case. For instance, in the case of camera-based object detection (CBOD),
objects may come along a confidence level, a class and a bounding box. The usual case to
determine whether two objects detected by diverse DL models correspond to the same object in
this case is doing so only when both of them belong to the same object class (e.g., a car), and the
bounding boxes overlap enough. The most common metric used to determine whether two
bounding boxes overlap enough is the “intersection over union” (IoU) metric (Padilla, Netto, & da-
Silva, 2020):

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∩ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∪ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵

Where AreaA and AreaB correspond to the area of the two objects to be combined.

Note that, upon building on higher degrees of redundancy (e.g., three or more redundant
instances), IoU can either be applied globally to the objects across the different redundant
instances, or obtained using any other criteria to decide such as, for instance, using an object as
reference, and computing the IoU of each other object against the reference one.

For those objects regarded as being the same object, different functions can be realized to
combine the output of different predictions, each one with its own pros and cons, hence, being
some of them particularly suitable for specific problems. While one could devise an arbitrary
number of such functions, hereafter we describe some relevant examples that allow illustrating
the different tradeoffs to take into account. Moreover, since predictions may include multiple
data, those decision functions may come along with specific characteristics when applied to
different data (e.g., when applied to confidence values or bounding boxes). Some key functions to
consider are as follows:

• Averaging: this function can be applied to any number of outputs and different types of
data. For instance, it can be used for dual (DMR) and triple modular redundancy (TMR),
and can be applied to the confidence values and bounding boxes in the case of CBOD. Such
a function avoids the risk of sticking to the worst prediction, but on the other hand
guarantees that the worst prediction will influence the final prediction, since it will have a
fair share of impact on the outcome.

• Voting: this function can be applied, typically when there are at least three redundant
instances and, preferably, when the number of instances is odd. In this case, the majority

1 Two results are regarded as identical in semantic terms when, despite not being identical at bit level, both of them
can be considered correct, and the impact of using one or another at system level is negligible or, simply,
undistinguishable.

19

D2.2 DL safety architectural patterns and platform
Version 1.0

 decides (e.g., whether an object exists or not). Once the decision is taken, typically, one will
select the parameters of the instance with a higher bias towards the decision taken. For
instance, in the case of TMR, if two instances indicate that there is an object and one that
there is not such an object, the decision function will determine that the object exists, and
will resort to the prediction of the DL model with highest confidence on its prediction. This
function cannot be applied in the case of DMR, but brings the advantage of using the data
of the most confident model when the majority regards the prediction as right. This,
however, is also a risk since the worst prediction can be eventually chosen.
If voting is applied over an even number of instances (e.g., DMR), a function is needed to
break the draw. One may decide to consider that the prediction is right as long as one of
the instances regard it as right, which is very similar to the case of NMS that we introduce
right after. Alternatively, one may decide that, upon a draw, the prediction is dropped,
which risks at missing many correct detections, but on the other hand, avoids many false
positives.

• NMS: this function performs conceptually a union of the predictions just merging those
predictions that correspond to the same object. Hence, it is a suitable scheme when the
redundant instances to be combined tend to miss objects in the case of CBOD, or when it
is more important finding true objects than filtering out false detections since as long as
one instance detects an object, NMS will preserve it. For obvious reasons, this trend
towards overdetection of objects exacerbates as we increase the number of redundant
instances to be combined.

3.1.2 Diverse Redundancy techniques
This section presents different approaches to achieve diverse redundancy at the concept, DL
model and inference platform levels. These techniques can be combined to achieve a higher
diagnostic coverage.

3.1.2.1 Lockstep execution
The simplest redundancy scheme is achieved by replicating a single DL model on redundant
inference platforms (see DSR_1 in Table 2). MPSoC platforms such as the NVIDIA Jetson AGX Orin
family usually include multiprocessing units that can be configured in lockstep mode, where two
or more processors run the same set of operations at the same time in parallel. In order to
increases the temporal diversity needed for common cause failure mitigation, a usual approach is
to set a delay as a fixed number of clock cycles (see Figure 5).

20

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 5: example lockstep execution

If the hardware platform does not support lockstep mode, it can also be implemented at software
level, by creating a system where multiple instances of a process run the same set of operations
simultaneously and in parallel. The lockstep execution might be used to increase system availability
as well as for error detection and correction.

3.1.2.2 Diverse Input Image Transformations
So far, diverse redundancy has been implemented with bit-level correctness in mind. For instance,
lockstep processors use 2 or 3 identical cores running the same software with just some time
staggering so that their internal state differs at any point in time and, upon a fault affecting all of
them simultaneously, the errors generated (if any) are expected to differ and, at least, be detected.
In this case, any discrepancy in the results is regarded as an error even if such a difference is
semantically innocuous for a specific application, since it is hard to tell whether it is or not
innocuous. However, in the context of AI software, such as DNNs, many applications do not require
bit-level correctness and, instead, perform stochastic processes where bit-level different
outcomes can be regarded as providing identical semantic answers. For instance, two object
detectors identifying the same object class as the most likely one, with confidence values above a
detection threshold, and with highly overlapping bounding boxes, can be regarded as providing
identical outputs even if confidence values and bounding boxes differ.

The input image transformation solution exploits this observation, i.e. redundant AI software may
afford bit-level differences across semantically identical outcomes, to realize diverse redundancy
in more efficient ways. In particular, we consider solutions where diverse redundancy can be used
not only to deal with random hardware faults, but also to mitigate inaccuracies brought by AI
models themselves (e.g., false positives and false negatives). Moreover, we do so containing
system design and operation costs by preserving the original AI model. Otherwise, the cost of
designing, training and verifying two models could be prohibitive, as well as the cost of fetching
twice the amount of AI model parameters, which may be in the order of several GBs in the case of
some DNNs for camera-based object detection (Caro, Tabani, & Abella, At-scale assessment of
weight clustering for energy-efficient object detection accelerators, 2022).

Our solution builds upon applying semantically-neutral transformations to the input data of the AI
model (e.g., images for camera-based object detection) that alter inference computations so that
random hardware faults are mitigated due to physical redundancy, but also small AI model
inaccuracies can be mitigated due to input data diversity. This is illustrated in Figure 6. For the sake
of easing the explanation, we focus on a TMR scheme applied on the popular You Only Look Once

21

D2.2 DL safety architectural patterns and platform
Version 1.0

 v4 (YOLOv4) (Bochkovskiy, Wang, & Liao, 2020) object detection software for images, which is
relevant for the case studies in SAFEXPLAIN.

Figure 6. Overview of our proposed image transformation diverse redundancy scheme when applied with TMR for YOLOv4.

Efficient Diverse Redundancy

As shown in some recent work, DNNs such as the one in YOLOv4 may require fetching some GBs
of weights to process each image (Caro, Tabani, & Abella, At-scale assessment of weight clustering
for energy-efficient object detection accelerators, 2022), whereas images occupy up to few MBs.
Hence, memory bandwidth is often saturated to fetch the DNN weights. Based on this fact, our
redundancy scheme aims at preserving the same DNN model for all redundant inference processes
with the aim of enabling appropriate execution approaches that allow sharing weights fetched
across the redundant processes.

Therefore, if weights are fixed, the simplest way to introduce diversity with software-only means
consists of altering the input data. Our goal is applying modifications to the input data so that it
differs across the redundant processes, but they are semantically equivalent so that inference
should lead to the same object detections. In particular, we have considered some of the image
transformations provided by the CLoDSA open library (Heras, Accessed Oct-2023), which would
map to F(x), G(x) and H(x) in the figure:

• Applying histogram equalization (EQ).
• Image sharpening (SH).
• Dropout (DR) by setting some pixels to zero.
• Applying Gamma correction (GC).
• Blurring the image applying a Gaussian filter (GB).
• Applying Gaussian noise (GN).
• Blurring the image applying the median filter (MB).
• Adding salt and pepper pixels (SP).
• Raising pixel values by a set amount (RV).
• Shifting the image some pixels to the right (RS).
• Shifting the image some pixels to the left (LS).
• Shifting the image some pixels to the top (TS).
• Shifting the image some pixels to the bottom (BS).
• Rotating the image clockwise at a certain angle (CR).
• Rotating the image anticlockwise at a certain angle (AR).
• Flipping the image horizontally (HF)
• Flipping the image vertically (VF).

To realize the TMR scheme, we select three different choices between the image transformations
above and the original image and perform inference for the three of them using the identical

22

D2.2 DL safety architectural patterns and platform
Version 1.0

 YOLOv4 DNN model. With this, we obtain three potentially different object detection outputs that
need being combined properly.

Combining Predictions

Rather than attempting to identify wrong predictions – if any – across the diverse and redundant
predictions, we merge those predictions with the aim of making correct predictions supersede
erroneous ones (see Figure 6). We build on the fact that predictions, even if correct, may not be
identical at bit level. Hence, we opt for combining predictions whose detection class matches (e.g.,
a pedestrian is detected), and whose bounding box overlaps enough (e.g., bounding box area
overlaps more than 50%). However, it remains open how to set the final bounding box and
confidence for the detection. Regarding the bounding box, note that model A can provide a
bounding box overlapping above the threshold with the one from model B and the one from model
C, but the ones from models B and C may overlap below the threshold. In this case, we still regard
detections as the same detection and attempt to combine them.

Confidence and bounding boxes can be combined using any of the decision functions described
before, namely voting, averaging or NMS. As shown in Annex 7.1.1, each function offers a different
tradeoff. In general, we recommend the use of voting since it is the one providing higher true
positives and lower false positives than a pure identical redundancy, but NMS is the one providing
highest mAP (a key accuracy metric) values.

3.1.2.3 Diverse Data Types
As explained in the case of the image transformations, due to efficiency, it is important avoiding
fetching DNN weights multiple times despite the DNN needs redundancy. In the previous case, we
avoid it by introducing diversity in the image. However, there are other alternatives such as, for
instance, introducing diversity in the weights after fetching them, so that they still need to be
fetched once, as shown in (Caro, Fornt, & Abella, Efficient Diverse Redundant DNNs for
Autonomous Driving, 2023). Next, we introduce that work and how it applies to our context.

Our goal is applying modifications to the DNN weights so that they differ across the redundant
processes, but they are semantically equivalent so that inference should lead to the same object
detections. In particular, we have considered building on different data types whose
representations can be produced on the fly, which would map to F(x), G(x) and H(x) in the figure
below. Note that, differently to Figure 7, the input of F(x), G(x) and H(x) is the set of weights rather
than the image to be processed:

Figure 7. Overview of our proposed data type based diverse redundancy scheme when applied with TMR for YOLOv4.

Data Types

Example arithmetics (data types) satisfying the requirements indicated have been analyzed: for
instance, one could consider IEEE754 floating-point 32-bit (fp32) for one of the instances if this is
the data type used to store the DNN weights, and dropping the 3 lowermost bits of the mantissa

23

D2.2 DL safety architectural patterns and platform
Version 1.0

 to generate diversity in the input, mimicking some form of fp29 for redundant instance (see Figure
8), which we refer to as fp16 and fp13 respectively.

Figure 8. Example of diverse data types generated out of the same weight fetched.

Note that other potential realizations could be possible dropping a different number of bits of the
mantissa, using fewer bits also for the exponent, or even using a different numerical
representation (e.g., integer 16-bit and integer N-bit where N < 16).

Dominance across Data Types

As part of our analysis of different data types, we have observed that the instance using lower
precision arithmetic is expected to provide lower confidence values. This relates to the fact that
objects identified with high confidence have values close to 1, but strictly below 1 across layers in
the DNN. When operating those values across layers, the distance to 1 naturally increases. Hence,
since the highest value strictly below 1 – HVSB1 for short – is farther away from 1 for lower
precision arithmetic, the resulting confidence also decreases further. Hence, if we consider fp16
(1 bit for the sign, 5 for the exponent, and 10 for the mantissa), and fp13 (as fp16 but dropping the
3 least significant bits of the mantissa), fp13 confidence values tend to be lower than fp16 ones.
For instance, for fp16, the HVSB1 is 0.9995, whereas for fp13 it is 0.996. If, for instance, such value
is multiplied 20 times (i.e., HVSB120), the resulting value for fp16 would be 0.990 and for fp13
0.925, hence much lower than for fp16.

Such relationship across different data types offers new opportunities to realize decision functions
as we detail next.

Combining Predictions

While the same decision functions explained before can be applied in the case of diverse data
types, the particular relationship among different data types detailed above allows building
decision functions that trade such relation to correct errors, even in the case of DMR. In particular,
if the confidence of the lowest precision arithmetic instance is higher than the one with higher
confidence, then likely one of the instances is wrong. This could be used to decline to raise a
prediction, but not to choose the right prediction reliably because we could not tell which one of
the instances is wrong (i.e. whether the error lead to low confidence for the highest prediction
instance, or to higher confidence for the lowest prediction instance). In these cases, DMR can build
on temporal redundancy if such temporal redundancy exists. For instance, in the case of CBOD, we
can build on the confidence levels for the previous frames to determine which of the instances is
experiencing a larger change, and hence, opt for trusting the most stable one among those. An
example is evaluated in Annex 7.1.2.

3.1.2.4 Diverse Framework [IKL]
This approach offers an inference platform diversity technique implemented by combining the use
of diverse AI execution frameworks. As shown in Figure 9, it follows the DRS_2 diverse redundancy
scheme according to Table 2. The DL model is replicated on several inference platforms with divers
AI frameworks (e.g., Darknet and Pytorch). The output of running the inference of two redundant
DL models on both inference platforms shall then be processes by the decision function to detect
difference among them and react accordingly.

24

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 9: Inference platform diversity scheme using diverse redundant frameworks (i.e., Pytorch and Darknet).

Figure 10 shows the results obtained for running YOLOv7-tiny DNN model on the Orin platform
using two diverse AI frameworks, Pytorch and Darknet. The figure shows the bounding boxes for
the elements detected by both frameworks (e.g., car||Pytorch, car||Darknet, stop sign||Darknet,
traffic light||Pytorch). Green bounding boxes are used to mark matching elements (i.e., objects
that have been detected on both frameworks). Whereas red bounding boxes are used for object
that do not have a match on both frameworks (i.e., objects that have been detected only on one
of the frameworks, or the IoU of the object detected on both frameworks is bellow a predefined
threshold (in this case the threshold was set to 0,5)).

Figure 10: Results obtained for running two diverse AI frameworks (i.e., Pytorch and Darknet).

However, given their high complexity as well as their open-source nature, AI frameworks are not
designed in compliance with functional safety standards. In fact, if we use Polyspace to detect the
violations of coding guidelines (e.g., MISRA C) on AI frameworks (e.g., Darknet), we see that they
are not compliant with coding standards. Figure 11 and Figure 12 show a caption of the results
obtained from running Polyspace to Darknet. A total amount of 31378 MISRA C:2012 violations
have been found, being the following ones the top five most frequent:

• D4.6: typedefs that indicate size and signedness should be used in place of the basic
numerical types.

• 12.1: The precedence of operators within expressions should be made explicit.
• 10.3: The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.

25

D2.2 DL safety architectural patterns and platform
Version 1.0

 • D1.1: Any implementation-defined behaviour on which the output of the program depends
shall be documented and understood.

• 10.4: Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category.

Figure 11: Subset of MISRA C:2012 violations by file found by Polyspace in Darknet

26

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 12: Subset of MISRA C:2012 violations by rule found by Polyspace in Darknet

Therefore, the diverse framework redundancy scheme shown in Figure 9 can be implemented
using a compliant AI framework for one of the redundant nodes (e.g., Pytorch and MISRA C
compliant Darknet).

The compliant framework is implemented in C following coding rules so it must be executed in the
CPU, which is much slower that the execution in the GPU. In fact, running the inference of a
pretrained YOLOv7-tiny model using Pytorch on the NVIDIA Orin GPUs takes an average of
55.421ms. Whereas running the inference of the same model using Darknet on the NVIDIA Orin
CPUs takes an average of 278.759ms. So, the unchanged AI framework (running in the GPU) shall
be combined with the coding guideline compliant AI framework (running in the CPU). However,
redundant nodes are not executed with the same frequency, so the comparison in the decision
function occurs once every 5 executions of the non-compliant replica (this ratio is application
dependent and shall be fixed for each specific use-case).

This approach aims to detect random as well as systematic faults within the inference platform. In
fact, when combined with the MISRA C compliant framework, systematic SW programming or
design faults in the framework are identified and mitigated.

3.1.2.5 Diverse Concept – Object detection vs object part detection [IKL]
As shown in Figure 13 , diverse redundancy at the concept level, relies on the redundant execution
of DL models implemented following different approaches (e.g., object detection, part detection,
free path detection…).

27

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 13: Example approaches for concept diversity.

One of the approaches for the implementation of diverse redundancy at concept level combines
two diverse DL models based on different concepts, one for object detection (e.g., person, train,
bicycle…) and the other for object part detection (e.g., head-trunk-arms-hand-legs (person)). The
decision function receives the detections (objects and object parts) from the DL models and
decides whether there are inconsistencies. In fact, if a person is detected but there is no detection
of the person parts, there might be a false positive. Whereas if a person is not detected, but parts
of a person are detected, there might be a false negative.

This technique implements diverse redundancy at concept and DL model development resulting
on the diverse redundancy scheme shown in Figure 14 (DRS_5 according to Table 2).

Figure 14: Concept and DL model diversity scheme using diverse concepts (i.e., Object Detection and Object Part Detection).

Figure 15 shows the results obtained for running two YOLOv7 models implemented following
different concepts, one for object detection and the other for object part detection. The big
bounding box shows the detected person, whereas smaller bounding boxes show the detected
parts, for example, foot, leg, and arm.

28

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 15: Results obtained for running two diverse concept models (i.e., Object Detection and Object Part Detection).

3.2 Diagnostic and Monitoring mechanisms
The reference safety architecture pattern is based on the hierarchical diagnostics and monitoring
approach of Figure 16 . This strategy seeks to decouple AI specific techniques from traditional
functional safety approaches and to ease, in this way, the later tailoring to incremental safety
patterns.

Figure 16: Hierarchical diagnostics and monitoring approach

The proposed approach is based on four diagnostic levels (L0 to L3) to incrementally cover the
errors on the following subsystems:

1. AI-based subsystem level diagnostics (L0 – L1): The redundancy and diversity (L0)
described in previous subsection is complemented by additional diagnostic and
monitoring mechanisms (L1) with the purpose of detecting runtime errors or model

29

D2.2 DL safety architectural patterns and platform
Version 1.0

 insufficiencies and anomalies on the AI subsystem and the elements required for its
execution (e.g., accelerators, AI frameworks, etc.). Note that L1 diagnostics and monitoring
mechanisms may, in turn, include AI components (e.g., to assess suitability of the data
used for inference, or monitoring abnormal results from specific DNN layers).

2. Platform level diagnostics (L2): This includes L0 – L1 diagnostics and additional L2
diagnostics to detect runtime errors on additional platform HW and SW components
following traditional functional safety practices and diagnostics techniques (e.g., memory
self-tests, freedom from interference at platform level…).

3. External diagnostics (L3): Following traditional functional safety practices some diagnostic
may be implemented on an external device such as an external watchdog or
microcontroller.

Each of these diagnostic and monitoring levels is further described in next subsections, except L0
that has been already described in Subsection 3.1.

3.2.1 L1DM mechanisms – AI subsystem
As stated above, L1 diagnostic and monitoring mechanisms aim to diagnose the AI subsystem and
the platform resources required for its execution. All in all, the L1 mechanisms have the following
purpose:

• Diagnose the AI model to detect runtime errors or model insufficiencies and anomalies.
• Diagnose the elements that participate in AI inference: complex HW and SW stack, black /

grey box diagnostics.
• Monitor the use of resources at the AI subsystem level to guarantee freedom from

interference at platform level (L2)

These mechanisms can be applied on different elements of the AI-subsystem. Bellow we present
different L1 diagnostic mechanisms that may be applied to the different AI-subsystem elements.

• Inputs: diagnostic mechanisms for input correctness, data quality, data redundancy,
temporal consistency…

o Anomaly detectors
o Input image comparison (e.g., consecutive input frames, input from redundant

cameras).
• Model: diagnostic and monitoring mechanisms for execution errors, timing, program

sequence, neuron activation patterns…
o Generation of execution signatures.

• Outputs: diagnostic mechanisms for outputs, plausibility checks, input-output correlation,
temporal consistency …

o Output trajectory prediction
• Resource usage: monitoring mechanisms for resource usage (e.g., CPU/GPU usage,

memory usage)

The following subsections provide further details on the implementation of the techniques for L1
diagnostic and monitoring.

3.2.1.1 Input image comparison
Within this section we propose different diagnostic techniques that can be applied in order to
detect faults in the input of the AI-subsystem:

30

D2.2 DL safety architectural patterns and platform
Version 1.0

 • Input temporal consistency: this approach computes the difference between two
consecutive input frames. It allows detecting inconsistencies in consecutive input frames
due to multiple errors (e.g., back frame, lost frame…). Figure 17 shows an example of the
result obtained for the input temporal consistency check with lost frames. The figure shows
on top of each of the consecutive input frames, the difference with respect to the previous
one. As it can be seen in the figure, when some input frames are lost (top right image), the
computed difference increases considerably. Therefore, the proposed solution is a feasible
approach to detect input temporal inconsistencies.

Figure 17: Results obtained for input temporal inconsistency check with lost frames.

Redundant input consistency: this approach consists of applying transformations to
redundant input images and comparing them. Several solutions might be applied following
this technique, for example, transforming redundant input images into histogram and
computing the correlation between both, or transforming them into vectors and computing
the cosine distance between both vectors to compare them. This approach aims to detect
random and systematic faults on the input devices as well as on the image pre-processing.

The following figures show the results obtained for the redundant input (i.e., left and right
camera) consistency check using the histogram correlation and the cosine distance. The
greater the difference between redundant input images, the lower the histogram
correlation and the greater the cosine distance. For example, for the fourth test case, the
histogram correlation decreases bellow 0.6 and almost reaches 0.4. In contrast, for the rest
of the tests, the histogram correlation is always above 0.78 and the cosine distance bellow
0.15.

Histogram correlation:0.7800929836385664

Cosine distance: 0.03096352

31

D2.2 DL safety architectural patterns and platform
Version 1.0

Histogram correlation:0.7800929836385664

Cosine distance: 0.03096352

Histogram correlation:0.9228015960299797

Cosine distance: 0.14926167

Histogram correlation:0.5432720393166135

Cosine distance: 0.39401721
Figure 18: Results obtained for redundant input consistency check using histogram correlation and cosine distance.

3.2.1.2 Generation of execution signatures
Convolutional Neural Networks (CNNs) are algorithms allowing to perform complex functions,
such as object detection, efficiently and accurately. This has led to their adoption in safety-related
systems such as autonomous systems. One of the most time-consuming elements on these
algorithms are the matrix-matrix multiplications (MMMs), which require high computational
performance platforms to be deployed under. Therefore, this technique aims to protect the CNNs
by adding a set of diagnostics techniques in the MMM [14].

The computation of the MMM lies on arithmetic operations based on additions and multiplications
as it can be seen in Figure 19. We employ the safe catalogue of diagnostics proposed in [14] to
generate the Execution Signatures (ESs) of the MMM computation and guarantee the bit-wise
correctness of the data. Additionally, this approach ensures the proper program sequence with a
reduced number of bits and diagnoses all internal platform components participating in the
computation.

32

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 19. Example of a convolutional operation

These diagnostics techniques, composed of XOR, two’s and one’s complement addition, Fletcher,
and CRC, are commonly used in the state of the art to ensure network message data integrity.
Since MMM usually is computed through nested loops, we have included them individually in each
of the loops or combining the diagnostics in the different loops to generate execution signatures
of the variables involved in the MMM (C = A x B). As an example of how these diagnostics can be
employed to protect data, we depict the CRC in Figure 20.

Figure 20. Example of how to perform CRC

However, the implementation of the CRC in MMM alone does not provide error detection
capabilities; it must be integrated with safe architectural patterns such as redundancy (with or
without diversity) or periodic diagnosis with design-time fixed data patterns. In Figure 21, there is
included two commonly used safety patterns together with the pattern scheduling associated to
each of them1F

2.

2 Note that MMM refers to the matrix multiplication without diagnostics and “Safe MMM” to the MMM including the
safety diagnostics techniques.

33

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 21.Candidates Safety Architectural Patterns [Jdez2022]

3.2.1.3 Output trajectory prediction
This approach aims to check the output temporal consistency. To this end, it implements a Kalmar
filter to predict the trajectory of elements detected by the DL model. It allows detecting
inconsistencies in the output of the DL model, such as and object that the model fails to detect in
a particular input frame. Figure 22 shows an example of the result obtained for the output
temporal consistency check where the algorithm fails to detect the object on a particular input
frame. The green dot in the images shows the prediction of the Kalmar filter. As it can be seen in
the image shown in the bottom-left of the figure, the proposed solution succeeds to predict the
position of the person when the DL model fails to detect it.

Figure 22: Results obtained for output temporal consistency check on object detection fail.

3.2.1.4 Input-Output correlation
This approach aims to detect the temporal consistency between the input image and the DL model
output. To this end, this solution extends the input temporal consistency technique (described in
Section 3.2.1.1) and correlates the output of this diagnostic (i.e., too high difference between
subsequent input frames) with the DL model output (i.e., detected elements) to detect
inconsistencies between the input frames and DL model output. In fact, if the input temporal
consistency diagnostic technique detects a big difference between subsequent input frames, a big

34

D2.2 DL safety architectural patterns and platform
Version 1.0

 difference is expected on the elements detected by the DL model. Whereas, if no big difference is
detected between subsequent input frames, similar elements should be detected by the DL model.

3.2.1.5 Information monitoring
Apart from diagnosing the correct behaviour of the AI/ML constituent, L1DM is also responsible
for collecting low level behaviour information of the AI/ML constituent and transmitting it to L2DM
for platform level diagnostics (e.g., freedom from interference as later explained in Subsection
3.2.2.2). This monitoring relies on the platform observability provided by WP4 and described in
D4.1 deliverable. To this end, L1DM will use the PMUlib developed in SAFEXPLAIN WP4, which
provides access to a number of events in the platform to capture diverse aspects of execution,
such as resource usage and timing.

Similarly, L1DM provides the health information to L2DM, in such a way that if any of the
mechanisms in the AI-subsystem (i.e., L0DR or L1DM) detect an error, the health management in
L2DM can trigger the required safety reaction.

3.2.2 L2DM mechanisms – Traditional subsystem
L2 diagnostic and monitoring mechanisms aim to detect runtime errors on additional platform
hardware and software components following traditional functional safety practices and
diagnostics techniques required by standards (see Section 3.2.2.1). However, these standards do
not reflect the increasing complexity of emerging systems, therefore, L2DM mechanisms shall
integrate advanced diagnostic approaches for high-performance platforms as well as the for the
software applications that run on them (covered in Section 3.2.2.2).

3.2.2.1 Traditional functional safety diagnostics
Traditional functional safety standards such as IEC 61508, ISO 26262 and EN 5012x define the faults
or failures that shall be considered to reach different degrees of Diagnostic Coverage (i.e., Low
(60%), Medium (90%) or High (99%)) for the different system components and proposes the
applicable diagnostic techniques for each: electromechanical devices, discrete hardware, bus,
CPU, memories, clock, communications, sensors, final elements, etc.. The defined diagnostic
strategy will comprise among others, startup diagnostics, periodic diagnostics, as well as forced
checks of the safety function. On the software side, functional safety standards propose
techniques and measures to prevent systematic failures on the different stages of the
development life-cycle (e.g., requirements specification, design and development, testing and
integration…). For each technique or measure, the standard gives a recommendation (highly
recommended (HR), recommended (R), not recommended (NR)) according to the target safety
integrity level. Additionally, when the software implements safety functions of different safety
integrity levels, it shall be demonstrated either that independence of execution is achieved both
in the spatial and temporal domains, or that any violation of independence is controlled. These
techniques have been widely applied over the years and are considered state-of-the-art so this
report, and the SAFEXPLAIN project, do not focus on their application.

However, these standards do not reflect the increasing complexity of emerging systems, neither
at hardware architectural design, nor for the software applications that run on them. Except for
ISO 26262 that included a new part 11 with the topic of multicore processors in its second edition,
the mechanisms described in functional safety standards focus on single-core architectures, with
buses (no complex interconnects), simple memory hierarchies and no accelerators as those
required to achieve the required performance in ML inference. For instance, the mechanisms
defined in standards to achieve temporal independence do not generally contemplate the

35

D2.2 DL safety architectural patterns and platform
Version 1.0

 concurrent access to shared resources as they were not originally defined for high-performance
embedded architectures with parallel access to such resources. Therefore, L2 diagnostics shall
integrate traditional functional safety diagnostic mechanisms (out of the scope of this document)
together with advanced diagnostic approaches for high-performance platforms explained in next
subsections.

3.2.2.2 Techniques for multicore / high-performance platforms
Most HPEC platforms integrate multicore processors together with accelerators for ML inference,
as it is the case of the NVIDIA Jetson Orin platform introduced in Section 1.1.2. ISO 26262-11
section dedicated to multicores, warns about the fact that multicores are subject to timing faults and
it highlights the importance of independence of execution by dedicated analyses and countermeasures
such as, the specification of timing constraints and detection of timing requirement violations, doing
an upper estimation of resources, evaluating the influence of hardware and software interactions and
evaluating timing and execution failure modes. Similarly, the Certification Authorities Software Team
(CAST), an international group of certification and regulatory authority representatives from the
Federal Aviation Administration (FAA), provide guidance for ensuring safe implementation of
multicore processing in the avionics domain [8] [15]. Next table summarizes the objectives of
CAST-32A and AMC 20-193:

Table 3: Summary of CAST-32A and AMC 20-193 Objectives [15]

 ID Description

So
ft

w
ar

e
Pl

an
ni

ng
 PL_1 Include MCP specific planning details in the SW plan doc. Specific processor,

number of active cores, software architecture, dynamic software features,
whether it hosts an IMA-like system (with applications from different systems) or
not, Robust Partitioning supported or not, methods and tools for development and
verification.

Pl
an

ni
ng

 a
nd

 S
et

tin
g

Re
so

ur
ce

s

RU_1 Determine configuration settings that enable to satisfy the functional,
performance and timing requirements.

RU_2 Critical configuration settings shall be static and protected against unintended
modifications.

PL_2 Include a high-level description of shared resource usage and active dynamic
hardware features in the hardware and software planning documents. Intended
shared resource allocation and verification to prevent resource capabilities from
being exceeded.

In
fe

re
nc

e
Ch

an
ne

ls
 a

nd

Re
so

ur
ce

 U
sa

ge
 RU_3 Identify interference channels and verify the chosen means of mitigation.

Interferences caused by shared memory, shared cache, interconnect, shared I/O
or any other shared resource.

RU_4 Identify available resources in the intended final configuration, allocate them to
the applications and verify that the demands do not exceed the available
resources (under worst-case scenarios).

36

D2.2 DL safety architectural patterns and platform
Version 1.0

So

ft
w

ar
e

Ve
rif

ic
at

io
n

SWV_1 Verify that all software components function correctly and have sufficient time
when all the software is executing in the intended final configuration. Depends
on the platform classification:
1. Platforms with Robust Partitioning: SW verification and WCET analysis can be
done separately for each SW app.
2. All Other Platforms: If interference is mitigated for any software component or
set of requirements, the verification of such components can be done separately.
Otherwise, verification and WCET analysis shall be done with all software
components executing together.

The objectives in Table 3 can be summarized into the following four high level principles:
1. Determining the final configuration. The designer shall determine which is the intended

_final configuration that will enable to satisfy system requirements (PL_1, RU 1) and this
configuration shall be protected against modification at runtime (RU 2).

2. Managing interference channels. It is required to identify interference channels in the
intended final configuration and to define the means to either avoid interference by design
or upper-bound it so that timing deadlines are not exceeded (RU 3). Upper-bounding
interference involves analysing the use of shared resources and designing the means to
control contention (PL 2).

3. Verifying the use of shared resources. Resource usage and data and control flows among
cores shall be verified by guaranteeing that the software does not exceed the use of
available resources even in worst-case scenarios (RU 4, SWV 1 and SWV 2).

4. Error Management. The system shall include features for multicore specific error detection
and handling.

In order to achieve these four principles, within WP4, we define techniques and measures to
ensure freedom from interference at platform level, with the support of the following L2 diagnostic
and monitoring (L2DM) mechanisms:

• L2DM Configuration check: The configuration shall be defined and verified during system
development process. Then, at runtime, L2DM checks that this configuration is kept (e.g.,
by a CRC check). Besides performance and functional correctness, also Freedom from
interference can be highly dependent on this configuration, thus steering the focus of WP4
hardware analysis on platform support for interference mitigation, as reported in D4.1 [16]:

o Regarding spatial independence, most platforms usually provide memory
management support allowing to set memory regions with specific permissions, as
well as hardware support, such as Memory Management Units (MMUs) allowing to
enforce those permissions. Therefore, appropriate operating system support will
allow realizing spatial partitioning.

o Regarding temporal independence, the platform could also provide explicit support
to realize it. In particular, we aim at bounding the maximum interference that a
software component might cause on the execution of another, building on the
existing platform support, which provides both, means to achieve some degree of
partitioning (e.g., cache partitioning), as well as means to measure interference
whenever partitioning is not enough. When robust partitioning cannot be achieved
by the configuration, interference channels and shared resources shall be managed
as required by CAST-32A / AMC 20-193. This is covered in next point.

• L2DM Interference mitigation and control: This L2DM mechanism addresses both
“managing interference channels” and “verifying use of shared resources” principles from
CAST-32A / AMC 20-193. L2DM is the responsible to check that all critical platform SW

37

D2.2 DL safety architectural patterns and platform
Version 1.0

 components meet with their deadline and if this is the case, it refreshes an external
watchdog (L3). In this way, if any critical software component violates a timing deadline or
if the platform is not able to run L2 diagnostics, the L3 external device will be able to detect
it. To this end, it is required that L2 knows the deadline of each critical software
component, which shall be determined at design time by WCET analysis. The timing
analysis strategy adopted in SAFEXPLAIN, which is explained in D4.1 [16], has specific
implications on L2DM. Two main scenarios have been considered:

o WCET of each component takes into account worst possible interference for a given
platform configuration. If at design time it is verified that under worst-case
interference the WCET of the critical software component is below its deadline,
then at runtime the L2DM is only checking that this condition is always preserved
at runtime. Next Figure 23 represents this, assuming there is a critical software
component ‘A’, at design time the WCETA is determined for a given design time
configuration (CONFD). Then at runtime, L2DM checks that the actual platform
configuration (CONFR) is consistent with the design time configuration and that
execution time of SW component A (ETA) is always below its deadline. This approach
applies to all critical components in the platform. If all of them meet the deadline
and all other traditional functional safety diagnostics of L2DM are passed, then
L2DM refreshes an external watchdog that can be part of L3DM.

Figure 23: WCET of each component considers worst possible interference for a given platform configuration.

Following this approach, the resulting WCET estimates are usually over pessimistic,
as the worst possible interference in such complex platform architectures can be
very high. This can be reduced either by optimizing the configuration so that
interferences are minimized or by the second approach explained below.

o WCET of each component depends on applications running concurrently for a given
platform configuration, and is therefore only valid for a specific setup or scenario.
This WCET estimation assumes an upper bound of the interference that the critical
component can support when it is being executed. This is depicted in Figure 24. In
this case, at design time, apart from the design time configuration (CONFD) and the
WCET of component A with limited interference (WCETA_Bounded), the interference
limit of contenders used to estimate that WCET shall be determined too
(InterferenceLimitA). At runtime, L2DM follows the same approach as in the
previous case and it additionally checks that contenders (e.g., SW component ‘B’
and ‘C’ on the right side of Figure 24 do not exceed the defined InterferenceLimitA.
To check this at runtime, different strategies defined in WP4 can be used,
depending on the approach used to obtain the WCET estimate at design time. For
instance, the number of active contenders can be monitored, or the specific usage
(e.g., RUB and RUC in Figure 24) of given shared resources (e.g., caches, memory,
interconnects…). To this end, WP4 analysed the monitoring capabilities in the Orin

38

D2.2 DL safety architectural patterns and platform
Version 1.0

 platform and elaborated an holistic approach for timing and residual (after
configuration) interference characterization, as described in D4.1 [16].

Figure 24: WCET of each component depends on applications running concurrently for a given platform configuration (valid only

for a specific setup or scenario).

• L2DM Health Management: L2DM includes an error management module to react to
different platform level errors. To this end, L2DM collects the results from L0 and L1
diagnostic and monitoring mechanisms. Whenever L0, L1 or L2 diagnostics and monitoring
detects an error in the platform, either by startup diagnostic tests or periodic checks, L2DM
is the responsible of triggering the required reaction. This will depend on the specific error
and the application itself. For instance, in a TMR architecture if L0 determines that one of
the redundant instances is providing incorrect inputs, the system could keep working for a
limited time in a degraded mode with the other 2 active redundant instances. Similarly, if
the interference mitigation and control of L2DM determines that a contender is using a
shared resource more than planned in the design, the action could be to force it to stop so
that it does not cause uncontrolled interferences to the critical component. In many other
cases, the reaction could be to move the system to the safe state. In addition, the health
monitoring in L2DM shall provide an interface with L3DM (e.g., refreshing a watchdog), in
such a way that if there is a problem in the platform that affects the correct execution of
L2DM, the external L3DM will be able to detect it.

3.2.3 L3 mechanisms – External
L3 diagnostics and monitoring mechanisms comprise traditional external safety mechanisms
required by functional safety standards IEC 61508 / ISO 26262 / EN 5012x (e.g., external watchdog,
time and power monitoring, external monitoring unit…). Moreover, the L3 diagnostics and
monitoring implements error management for the lower-level diagnostic and monitoring
mechanisms (i.e., L0, L1 and L2 mechanisms).

The definition and implementation of traditional functional safety mechanisms is out of the scope
of the project and will therefore not be covered within this deliverable.

3.3 Supervision function
The supervision function applies elements of control theory to minimally bound AI operations. All
in all, it shall control that the AI system works within a predefined safety envelope. To this end,
the supervisor function shall determine a safe subset of the action space or safe envelope (prior
to the execution or at runtime) and compute a set of constraints or limits. The supervision function
comprises techniques such as:

39

D2.2 DL safety architectural patterns and platform
Version 1.0

 • A non-AI safety function that outputs an acceptable range of outputs for a given input and
limits the intelligent control output (this approach might not be appropriate for systems
with dynamics).

• Defining minimal bounds though control theory methods (e.g., barrier functions
approaches).

• Checking functions such as metrological self-check or self-validation.

In addition, the supervision function implements explainability techniques to provide
understanding on the DL model operation as well as on the decisions, recommendations, or
predictions it provides.

Detailed techniques for the implementation of the supervision function are provided within
deliverable D3.1 [17].

3.4 Traditional subsystem
By traditional subsystem we refer to a subsystem that does not include any ML model according
to the system decomposition of Figure 1. In the scope of the reference architecture, this traditional
subsystem can be either:

• Functions complementary to the ML constituent, required to perform the function
required by it.

• Fallback subsystem: Following known proper functional safety precautions, a safe back-up
function to the ML component might be implemented within the non-AI subsystem. This
back-up decision system will take over the system in the event that a functional safety
problem is detected, ensuring no harm is done by the AI system. The implementation of
such a fallback function is use-case dependent and is therefore out of the scope of the
project.

40

D2.2 DL safety architectural patterns and platform
Version 1.0

 4 Safety Patterns
Following the incremental strategy described in Section2.2, this section presents the mapping of
the reference safety architecture pattern (see Figure 4) to the different DL usages levels. In
particular, three Safety Patterns are defined:

• Safety Pattern 1 (SP1) (for DL usage level D / EASA Level 1).
• Safety Pattern 2 (SP2) (for DL usage level C / EASA Level 2).
• Safety Pattern 3 (SP3) (for DL usage level A1 / EASA Level 3).

The following subsections present, for each Safety Patterns, the proposed system architecture and
safety techniques, as well as its application on the project target platform (i.e., NVIDIA Orin). The
description of the Safety Patterns follows an incremental approach; therefore, each Safety Pattern
comprises also the safety techniques of the previous one.

4.1 Safety Pattern 1 (SP1)
On this safety pattern, the AI subsystem aids the driver or person responsible of the safety of the
system. However, the AI subsystem is not part of the safety function.

On the following subsections we present the system architecture for SP1 as well as the
corresponding diagnostic and monitoring mechanisms.

4.1.1 System Architecture
Figure 25 shows the adoption of the reference architecture pattern presented in Section 3 to the
Safety Pattern 1. This pattern assumes the integration of safety related software (i.e., non-AI
subsystem, safety control, safety diagnostics) and non-safety related software (i.e., AI/ML
constituent, supervision function) within the same SoC on a High-Performance Computing
platform. The main components of the reference safety architecture are applied as follows in SP1:

• Diverse Redundancy: In this safety pattern, the safety function is implemented by the non-
AI subsystem and the safety control, therefore, the AI/ML constituent has no safety
implications. Given that, diverse redundancy is not required in the AI/ML constituent.

• Diagnostic and monitoring mechanisms: Even if the AI/ML constituent is not safety related,
in SP1 the main challenge rests on the integration of both the safety software together with
the software involved in the inference of the DL model and to guarantee freedom from
interference among them. Therefore, L1DM is the responsible for monitoring resource
usage and timing of the AI/ML constituent, and L2DM / L3DM to apply the required
diagnostic mechanisms on the safety subsystem and guarantee freedom from interference.
The application of the diagnostic and monitoring strategy in SP1 is further elaborated in
Subsection 4.1.2.

• Supervision function: the supervisor has no safety implications and its purpose is to
improve the explainability of the AI-based subsystem. Different explainability techniques
are proposed within deliverable D3.1, Section 2.4 [17].

• Traditional subsystem: in SP1 the safety function is performed by traditional SW
components. No fallback subsystem is considered.

41

D2.2 DL safety architectural patterns and platform
Version 1.0

Figure 25: Conceptual System Architecture - Safety Pattern 1

4.1.2 Diagnostic and monitoring mechanisms
Next subsections explain the application of the hierarchical diagnostics and monitoring approach
of Section 3.2 to SP1 on the SAFEXPLAIN platform.

4.1.2.1 L1DM – SAFEXPLAIN PLATFORM
As the AI subsystem is not safety related, there are no specific diagnostics for it. However, the L1
monitoring mechanisms are necessary to guarantee the required freedom from interference at
platform level. The specific events that can be monitored in the SAFEXPLAIN platform are
explained in D4.1 document. In this particular case, the monitoring of the use of shared resources
among the safety and non-safety software components (i.e., memory, caches, interconnect) is of
special interest. In SP1, L1DM will collect such events for the non-safety AI subsystem and provide
the information to the L2DM.

4.1.2.2 L2DM – SAFEXPLAIN PLATFORM
The L2DM mechanism implements traditional functional safety techniques and measures
according to the recommendations on functional safety standards. These diagnostics comprise
start-up as well as periodic checks that can be applied to the different subsystems that participate
in the execution of the safety function (e.g., sensors, CPU, memories, clock, electromechanical
devices, etc.). To this end, NVIDIA provides support documentation as well as libraries for the
implementation of safety diagnostics.

In addition, L2DM is responsible for checking system configuration and providing the mechanisms
for interference mitigation and control. As introduced in Section 1.1.2, the NVIDIA Orin platform
provides a number of diverse processing resources (CCPLEX core clusters, SPE, GPUs…) with
multiple configuration options. The allocation of such resources to software components and their
configuration play a crucial role in the mitigation of interference required by SP1. Figure 26 and
Table 4 present different resources and configuration options that could be adopted for SP1.

D2.2: DL safety architectural patterns and platform
Version 1.0

Figure 26: SP1 to NVIDIA Orin resource allocation and configuration options

Table 4: SP1 to NVIDIA Orin resource allocation and configuration options

SP1 Element Safety / non-
safety

SP1 - A NVIDIA Orin resources and
configuration

SP1 - B NVIDIA Orin resources and
configuration

SP1 - C NVIDIA Orin resources and
configuration

AI/ML
constituent

Non-safety AI
based SW

CCPLEX CPU Cluster (Cortex A78)
GPU for AI inference
Memory controller fabric and traffic from
CPU cluster to GPU
MMUs for spatial independence
SAFEXPLAIN SW Stack

CCPLEX CPU Cluster (Cortex A78) – different
CPU cluster for safety SW
GPU for AI inference
Memory controller fabric and traffic from CPU
cluster to GPU
MMUs for spatial independence
L4 cache partitioning or disabled
SAFEXPLAIN SW Stack separated from safety
SW by hypervisor

CCPLEX CPU Cluster (Cortex A78) – different
CPU cluster for safety SW
GPU for AI inference
Memory controller fabric and traffic from
CPU cluster to GPU
MMUs for spatial independence
L4 cache partitioning or disabled
SAFEXPLAIN SW Stack

Supervision
components

Non-safety
traditional or
AI based SW

Decision
function

Non-safety
traditional SW

Non-AI
subsystem
and safety
control
(safety
function)

Safety
traditional SW

SPE in lockstep configuration
No sharing of caches with CCPLEX
MMUs for spatial independence
Safe RTOS on top of SPEs

CCPLEX CPU Cluster (Cortex A78) in lockstep –
different CPU cluster for safety SW
MMUs for spatial independence
L4 cache partitioning or disabled
Safe RTOS on top of hypervisor

CCPLEX CPU Cluster (Cortex A78) in lockstep
– different CPU cluster for safety SW
MMUs for spatial independence
L4 cache partitioning or disabled
SAFEXPLAIN SW Stack

43

D2.2: DL safety architectural patterns and platform
Version 1.0

 L2DM Safety
traditional SW

Pros Highest independence: different processing
elements, less shared resources, different OS
and SW stack.

Better performance while preserving
independence: different CPU clusters with
partitioning approaches, different OS and SW
stack.

Ease of integration, same SW stack for all
platform elements.

Cons Limited performance on SPEs. Need of a hypervisor. Less independence, required safety
guarantees on the SAFEXPLAIN SW Stack.

The three SP1 configuration options rely on mechanisms provided by the platform, which include cache partitioning features in the CCPLEX, and
performance monitoring counters in the CCPLEX allowing to monitor resource usage in the CCPLEX. So far, the monitoring capabilities of the shared
L4 cache and the GPU are still under investigation in WP4, and freedom from interference in those resources may need to resort to software support
such as, for instance, task scheduling constraints to avoid interference by construction as much as possible. Details on the different features can be
found in D4.1 and will be further developed in forthcoming WP4 deliverables.

• Independent computing components: The NVIDIA Orin provides abundant computing resources, the safety critical tasks can be allocated
either to the SPE or to a specific CCPLEX cluster, increasing independence and diversity among safety and non-safety tasks.

• Spatial independence. As explained before, the NVIDIA Orin platform provides explicit support to enable spatial independence in the form
of MMUs. Therefore, spatial independence can be achieved by design with usual operating system support.

• Temporal independence. Safety related tasks needing temporal independence can be executed in the SPE or CCPLEX. The degree of
independence achieved across tasks running in the same CCPLEX core cluster is relatively high if L3 cache partitioning is used, and even higher
across tasks running in different core clusters as proposed in SP1 - B and SP1 - C. The remaining interference can be measured with existing
event monitors so that safety measures can be built at software level if measured interference reaches system or application-specific
thresholds. The specific strategy, monitors to use, and how to use them is part of D4.1 [16], and subsequent deliverables in WP4.

• Support for lockstep redundancy. As explained before, core clusters in the CCPLEX and the SPE provide lockstep support. Hence, safety
related tasks requiring such redundancy can be deployed on the SPE or the CCPLEX by properly configuring the core cluster where they are
run.

Following the approach described in Subsection 3.2.2.2, determining the configuration at system design time is crucial to perform the timing analysis
and interference mitigation and control. Based on the configuration, the timing and interference bounds will be computed and at runtime, L2DM
will check that the configuration corresponds to that defined at design time (e.g., through a CRC check).

44

D2.2: DL safety architectural patterns and platform
Version 1.0

4.2 Safety Pattern 2 (SP2)
For SP2 the AI-subsystem becomes a safety-critical component. Therefore, in addition to the
mechanisms presented in SP1 to guarantee the independence among safety and non-safety
software components, new mechanisms are required to ensure the correct behaviour of the AI-
subsystem. In the defined incremental strategy, it is assumed that in SP2 the AI-based safety
function has a low to medium integrity level (i.e., SIL 1 or SIL 2 according to IEC 61508).

4.2.1 System Architecture
SP2 consists of the same elements as those in the reference safety architecture, resulting in the
same conceptual system architecture as that shown in Figure 4. However, the specific safety
mechanisms that apply and the way of addressing them can vary according to the implications of
the integrity level of the safety functions. As previously mentioned, for SP2 it is assumed that the
safety functions executed by the AI-subsystem are assumed to be either SIL 1 or SIL 2. Next Table
5 introduced in D1.1. deliverable [3], shows the architectural implications of this integrity level
according to IEC 61508-2:

Table 5: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements (SP2)

Pattern HFT
Safe Failure Fraction (SFF)

<60% 60% -90% 90% - 99% ≥ 99%

1oo1(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

2oo2(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4

Therefore, SP2 requires either medium to high diagnostic coverage (60-90% for SIL 1 and 90-99%
for SIL 2) or increasing the Hardware Fault Tolerance (HFT). However, achieving this HFT > 0 on the
same chip has several implications on the hardware silicon level (IEC 61508-2 Annex E) which shall
be guaranteed by the platform manufacturer. As the SAFEXPLAIN platform does not provide such
guarantees, off-chip redundancy would be required, which is the case of SP3. For SP2, the focus is
on HFT = 0 with low to medium diagnostic coverage.

Taking this into account, the main components of the reference safety architecture are applied as
follows in SP2:

• Diverse Redundancy: On chip redundancy approaches are considered to improve the
safe failure fraction and diagnostic coverage of the AI/ML constituent, further
explained in Subsection 4.2.2.

• Diagnostic and monitoring mechanisms: Same mechanism as in SP1 apply, with
additional diagnostics for the AI/ML constituent in the L1DM further elaborated in
Subsection4.2.3.

45

D2.2: DL safety architectural patterns and platform
Version 1.0

 • Supervision function: A supervisor function according to the description in the
reference architecture shall be integrated too. The supervisor function does not have
any particularities for SP2, so the main description in Section 3.3 can be checked.

• Traditional subsystem: depending on the application, a fallback subsystem
implemented with traditional SW could be in place.

4.2.2 Diverse redundancy
From Table 2, diverse redundancy schemes with low or medium DC can be applied in this safety
pattern, based on the specific requirements of the application (e.g., DSR_1, DSR_2, DSR_3, DSR_4).
These techniques have been already explained in Section 3.1.

For the implementation of diverse redundancy in the SAFEXPLAIN platform, AI tasks often need
the use of GPUs and/or AI accelerators. Depending on the diverse redundancy scheme, the
redundant instances can either run redundantly on the GPU, or using diverse processing resources
such as GPU and CPU, or GPU and other AI accelerators (DSR_2). The NVIDIA Orin platform allows
multiple kernels to run simultaneously. However, the GPU does not provide explicit support for
diverse redundancy, which needs to be built by external means using the techniques described
before. Those techniques provide explicit support to manage random hardware faults affecting
one of the redundant instances. However, faults potentially leading to common cause failures
need additional support. In particular, if computation can be identical across redundant instances
(e.g., some results are obtained applying the same operations on identical data), we may need
mechanisms to enforce the use of separated computing resources and to make those
computations not to occur simultaneously, as in the case of lockstep cores. We aim at realizing
such features, if eventually needed, resorting to techniques we already devised in the past and
realized in both, NVIDIA and Intel GPUs [18] [19]. In any case, we note that, as previous work noted,
the GPU in the NVIDIA Orin platform includes some unique components, such as the hardware
scheduler, which needs to be used by redundant tasks. Hence, with the information available of
the platform, we have to assume that some permanent faults could potentially lead to identical
errors for redundant kernels, and hence, they could not be directly detected with the solutions
described here. In general, such type of errors should be managed at system level by, for instance,
deploying diverse object detection mechanisms (e.g., based on multiple independent cameras, or
on other sensors such as radars and LIDARs).

4.2.3 Diagnostic and monitoring mechanisms
Next subsections explain the application of the hierarchical diagnostics and monitoring approach
of Section 3.2 to SP2 on the SAFEXPLAIN platform.

4.2.3.1 L1DM – SAFEXPLAIN PLATFORM
L1DM diagnostics mechanisms from Section 3.1.1 can be selected and evaluated to reach the
required diagnostic coverage for SP2.

In addition, if the system includes application with different integrity levels, independence of
execution shall be guaranteed following the same approach as in SP1.

Similarly, to reduce common cause failures among redundant instances in the AI/ML constituent,
their independence shall also be guaranteed. Therefore, L1DM will monitor the use of resources
and other relevant events for each instance of the redundant architecture and share the
information with L2DM for a platform level monitoring of all system components.

46

D2.2: DL safety architectural patterns and platform
Version 1.0

 4.2.3.2 L2DM – SAFEXPLAIN PLATFORM
Following the incremental approach, L2DM platform level diagnostics shall be applied in the same
way as for SP1. In this case, the NVIDIA Orin platform resources used for the AI/ML constituent
become safety relevant too, which would require additional diagnostics with respect to SP1 and
the most suitable platform configurations shall be adapted too. Figure 27 presents a configuration
option that could be adopted for SP2, which could be combined with other solutions shown in SP1
(see Figure) as described in Table 6.

Figure 27: SP2 to NVIDIA Orin resource allocation and configuration options

Table 6: SP2 to NVIDIA Orin resource allocation and configuration options

SP2 Element Safety / non-safety SP2 - A NVIDIA Orin resources and configuration
AI/ML constituent AI based safety SW Two instances, each in one separate CCPLEX CPU Cluster (Cortex A78)

in lockstep configuration
GPU for AI inference (depending on the DRS CPU or other computing
resources could also be used to improve diversity)
Memory controller fabric and traffic from CPU cluster to GPU
MMUs for spatial independence
SAFEXPLAIN SW Stack

Supervision
components

Traditional or AI
based safety SW

Each AI/ML constituent has each own L1DM and optionally each own
supervisor function (depends on user application).
Depending on the implementation of the supervision component, it
may need GPUs for improved performance (e.g., AI based supervision
function).
The supervision components can share same CCPLEX CPU Cluster
(Cortex A78) in lockstep configuration as the AI/ML constituent.
MMUs for spatial independence
SAFEXPLAIN SW Stack

Decision function Safety traditional SW These SW components can run on any of the CCPLEX CPU Cluster
(Cortex A78) in lockstep configuration used for the AI/ML constituent
with the same configuration assuming they have the same integrity
level.

Safety control Safety traditional SW
L2DM Safety traditional SW

Non-AI subsystem Non-safety
traditional SW

CCPLEX CPU Cluster (Cortex A78) or SPE (no need for lockstep
configuration).

47

D2.2: DL safety architectural patterns and platform
Version 1.0

 MMUs for spatial independence
L4 cache partitioning or disabled
SAFEXPLAIN SW Stack or different OS on top of SPEs or hypervisor

The following mechanisms are provided by the platform:

• Independent computing components: In this case, all safety software can be run in CCPLEX
CPUs in lockstep mode, using different clusters for the redundant replicas. Other
accelerators or different computing resources could also be used to improve diversity.

• Spatial independence. The same support for SP1 addresses the needs of SP2.
• Temporal independence. The same support for non-AI tasks for SP1 addresses the needs

of SP2. Regarding AI tasks, they are expected to use the GPU and/or the AI accelerators.
Those accelerators have been devised to maximize throughput. However, either they do
not support concurrency (e.g., AI accelerators) or support it without specific temporal
independence support (e.g., GPU). Hence, AI tasks needing concurrency will have a high
degree of temporal isolation if they use different accelerators. If they are deployed on the
same one (i.e., the GPU) and made run simultaneously, timing interference can be
arbitrarily high making its monitoring unfeasible. Therefore, those tasks need to be run
sequentially if they need the very same accelerator.

• Support for lockstep redundancy. The same support for non-AI tasks for SP1 addresses the
needs of SP2.

4.3 Safety Pattern 3 (SP3)
Safety pattern 3 follows the same approach as SP2 but it is assumed that the system has a higher
degree of autonomy and therefore the safety implications of the AI-based subsystem are higher.
Therefore, we consider a safety integrity level of SIL3 / SIL 4 according to IEC 61508 depending on
the application.

4.3.1 System Architecture
In order to achieve higher integrity levels (with respect to SP2), SP3 involves either providing a high
diagnostic coverage (≥99%) or increasing the HFT as shown in Table 7 according to IEC 61508-2.

Table 7: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements (SP3)

Pattern HFT
Safe Failure Fraction (SFF)

<60% 60% -90% 90% - 99% ≥ 99%

1oo1(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

2oo2(D) 0 Not
allowed

SIL 1 SIL 2 SIL 3

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4

However, achieving a ≥99% DC in complex platforms such as the NVIDIA Orin considered in
SAFEXPLAIN is very challenging and would highly depend on the guarantees provided by the
platform manufacturer. The complexity of the SW stack and lack of transparency on the platform

48

D2.2: DL safety architectural patterns and platform
Version 1.0

 further exacerbates this. Therefore, we assume that for SP3 an HFT > 0 is required. To this end,
off-chip redundancy shall be applied due to the restrictions of IEC 61508-2 Annex E as already
mentioned in SP2. Figure 28 shows an example of SP3 implementation based on a TMR
architecture, depending on the implementation HFT = 1 (2oo3) or HFT = 2 (1oo3) can be achieved
as explained in D1.1 [3].

Figure 28: Conceptual System Architecture - Safety Pattern 3

If we look at each individual replica of the TRM implementation, each node could be implemented
following SP2 safety pattern:

• Diverse Redundancy: In SP3 off-chip redundancy is applied. Therefore, the decision
function should combine the outputs from different computing nodes. Each computing
node can have its own decision function in such a way that if any node detects
discrepancies, the safe state could be reached (1oo3 – HFT =2). Alternatively, the voting
can be done in an external element (e.g., L3DM) and apply majority voting, meaning that
at least 2 of the 3 redundant nodes shall provide the same output (HFT = 1). In order to
apply this off-chip redundancy, diverse redundancy schemes with medium to high DC can
be applied in this safety pattern, based on the specific requirements of the application (e.g.,
DSR_4, DSR_5, DSR_6). Off-chip redundancy can be combined with on chip redundancy

49

D2.2: DL safety architectural patterns and platform
Version 1.0

 approaches to improve the safe failure fraction and diagnostic coverage of each redundant
node, following the same solutions as in SP2.

• Diagnostic and monitoring mechanisms: In each redundant instance the same solutions as
for SP2 apply in SP3.

o L3DM would now monitor the status of all the redundant replicas.
• Supervision function: Each redundant replica of SP3 can implement a supervisor function

according to the description in the reference architecture in Section 3.3.
• Traditional subsystem: depending on the application, a fallback subsystem implemented

with traditional SW could be in place.

50

D2.2: DL safety architectural patterns and platform
Version 1.0

5 Acronyms and Abbreviations
AI Artificial Intelligence

CAST Certification Authorities Software Team

CBOD Camera Based Object Detection

CPU Central Processing Unit

DC Diagnostic Coverage

DL Deep Learning

DMR Dual Modular Redundancy

DNN Deep Neural Network

DRS Diverse Redundancy Schemes

EASA European Aviation Safety Agency

FAA Federal Aviation Administration

FSM Functional Safety Management

FUSA Functional Safety

GPU Graphics Processing Unit

HFT Hardware Fault Tolerance

HPEC High-Performance Embedded Computing

IoU Intersection over Union

L1DM L1 Diagnostics and Monitoring

L2DM L2 Diagnostics and Monitoring

L3DM L3 Diagnostics and Monitoring

ML Machine Learning

MPSoC Multi-Processor System-on-Chip

NMS non maximum suppression

ODD Operational Design Domain

OS Operating System

SIL Safety Integrity Level

SoC System on Chip

SM Stream Multiprocessor

SP Safety pattern

TMR Triple Modular Redundancy

WCET Worst Case Execution Time

51

D2.2: DL safety architectural patterns and platform
Version 1.0

6 References

[1] EGAS Workgroup, “Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine
Control Units. Version 5.5,” 2013.

[2] International Standardization Organization, “ISO 26262. Road Vehicles - Functional Safety.
Second edition,” 2018.

[3] European Union Aviation Safety Agency (EASA), “EASA Concept Paper: guidance for Level 1
& 2 machine learning applications,,” 2023.

[4] R. Padilla, S. Netto and E. da-Silva, “A Survey on Performance Metrics for Object-Detection
Algorithms,” in International Conference on Systems, Signals and Image Processing (IWSSIP),
Niteroi, Brazil, 2020.

[5] M. Caro, H. Tabani and J. Abella, “At-scale assessment of weight clustering for energy-
efficient object detection accelerators,” in In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing (SAC '22), 2022.

[6] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of
Object Detection,” in ArXiv, 2020.

[7] J. Heras, “Clodsa image augmentation library for object detection,” Accessed Oct-2023.

[8] M. Caro, J. Fornt and J. Abella, “Efficient Diverse Redundant DNNs for Autonomous Driving,”
in IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), Torino,
Italy, 2023.

[9] C. Li, “YOLOv4 TensorFlow Keras implementation,” Accessed Oct-2023.

[10] Lin, TY. et al., “Microsoft COCO: Common Objects in Context,” in European Conference on
Computer Vision (ECCV), 2014.

[11] Everingham, M., Eslami, S.M.A., Van Gool, L. et al., “The PASCAL Visual Object Classes
Challenge: A Retrospective,” International Journal of Computer Vision, no. 111, 2015.

[12] J. Hauser, “Berkeley SoftFloat,” 2018.

52

D2.2: DL safety architectural patterns and platform
Version 1.0

 7 Annexes

7.1 Preliminary evaluation of L0 Diverse Redundancy solutions
7.1.1 Input image transformation
In this section, we first introduce the evaluation setup (YOLO implementation, dataset and
metrics), and then analyze the results obtained with our scheme considering the different image
transformations and results merging schemes.

7.1.1.1 Setup
We use a 32-bit floating point Tensorflow Keras implementation of YOLOv4 (Li, Accessed Oct-2023)
with the pre-trained YOLOv4 parameters with the training subset of the Common Objects in
Context (COCO) dataset (Lin, TY. et al., 2014). We evaluate our proposal with COCO, using the
testing subset, with image sizes of 320x320 pixels, and keeping only those images that contain
objects such as vehicles and pedestrians, which delves 880 images for evaluation. More extensive
evaluations with other datasets, including larger image sizes will be provided in the future.

As evaluation metrics, we use the Accuracy (ACC) and Mean Average Precision (mAP). To obtain
those, first we have to compute the Intersection over Union (IoU), i.e. the fraction of the
intersection of the bounding boxes w.r.t. the union of those bounding boxes. In particular, we do
so for the final objects detected by our proposal and the groundtruths. Since the detection process
is stochastic and subject to some variation, whether an object is regarded as detected or not is
done with a threshold, which in our case is 0.5, as set in other works . This leads to true positives
(TP) if the IoU is above the threshold, false positives (FP) if the IoU is below the threshold for a
predicted object, and false negatives (FN) if the IoU of a groundtruth is below the threshold.

The accuracy (ACC) is obtained as follows:

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

The mAP averages the ACC values across the existing object classes [4], and is often the reference
metric for object detection evaluation.

7.1.1.2 Results
We have obtained the TP, FP, and FN counts, as well as the ACC and mAP values for all TMR
configurations and decision function algorithms, namely voting, averaging and NMS. Since the
number of combinations is too large to allow reporting data for all those configurations (around
1,000 per decision function), we show the mAP for all configurations in Figure 29, and the detailed
results for the top-5 (in terms of mAP) for each algorithm in Table 8.

Results in the figure are sorted independently for each decision function, meaning that the nth best
configuration for one function may differ for the other functions despite being aligned w.r.t. the
X-axis. Hence, the X-axis is not labelled. However, showing the data this way allows us to get
several conclusions: (1) NMS provides consistently the best results in terms of mAP across all
decision functions; (2) Averaging is consistently worse than the baseline with the original image
only in terms of mAP; (3) Voting is slightly better than the baseline in some cases; and (4) all
decision functions provide a smooth degradation of the mAP across image transformation
combinations, hence meaning that, while some transformations may delve better results than

53

D2.2: DL safety architectural patterns and platform
Version 1.0

 others, there is not a strong dependence on very few combinations, so the approach provides
robust results.

Figure 29. Sorted mAP for all TMR configurations for all merging algorithms.

Configuration TP FP FN ACC mAP
BL 3087 373 3104 47.0% 48.69%

VOTING
Configuration TP FP FN ACC mAP
BL, RV, BS 3098 357 3093 47.31% 48.97%
RV, LS, BS 3091 290 3100 47.69% 48.95%
BL, LS, BS 3087 296 3104 47.59% 48.87%
BL, RV, TS 3093 362 3098 47.20% 48.85%
GC, LS, BS 3083 283 3108 47.62% 48.85%

AVERAGING
Configuration TP FP FN ACC mAP
BL, BL, BL 3087 373 3104 47.03% 48.69%
BL, GC, RV 3079 370 3112 46.93% 48.59%
BL, GN, RV 3057 369 3134 46.60% 48.24%
GC, GN, RV 3052 371 3139 46.51% 48.15%
BL, GC, GN 3050 363 3141 46.54% 48.15%

NMS
Configuration TP FP FN ACC mAP
EQ, LS, TS 3409 606 2782 50.15% 53.39%
EQ, LS, BS 3398 613 2793 49.94% 53.23%
RS, LS, TS 3405 617 2786 50.01% 53.20%
EQ, RS, TS 3403 626 2788 49.92% 53.19%
GC, RS, TS 3403 616 2788 49.99% 53.17%

Table 8. TMR results for the top-5 configurations of each decision function.

Results in the table offer a different angle to our analysis. In the case of voting, for instance, we
note that the bottom shift (BS), left shift (LS), and raise value (RV) transformations, as well as the
baseline (BS), are the most popular ones since they appear in 4, 3, 3, and 3 of the top-5 TMR
combinations respectively, and only Gamma correction (GC) appears once. In the case of
averaging, the best combination, despite not providing diversity, consists of using 3 times the
baseline (BL). RV, GC, and Gaussian Noise (GN) are also quite frequent, and appear 3 times each
one. Finally, in the case of NMS, we observe that slightly shifting the original image in one direction

54

D2.2: DL safety architectural patterns and platform
Version 1.0

 is a frequent choice since 11 out of the 15 choices correspond to top, bottom, left or right shift.
Equalization (EQ) also appears 3 times and GC once.

Regarding TP, FP and FN results, we note that voting may increase a bit TPs and decrease a bit FPs.
Hence, despite not providing the best ACC and mAP values, it provides an interesting tradeoff since
it outperforms the baseline in all fronts. Averaging, instead, tends to decrease TPs while failing to
decrease FPs, and hence, it is systematically worse than the baseline case. Finally, NMS tends to
increase TPs and FPs, which is expected since any object being detected by at least one of the three
redundant inferences is regarded as a detection, and hence, a TP or a FP. Still, the combined effect
clearly increases ACC and mAP values w.r.t. the baseline. Overall, if we care only about mAP or
ACC, NMS is clearly the best choice. If, instead, FPs are particularly problematic, voting is the best
solution. Still, we plan to expand the evaluation to additional datasets in the near future.

7.1.2 Diverse data types
In this section, we first introduce the evaluation setup, and then analyze the results obtained with
our scheme considering different data types.

7.1.2.1 Setup
We use YOLOv4, as in the previous section, which builds on native fp32 arithmetic. However, for
some of our analyses we want to explore other non-native data types, such as, for instance, fp16
and fp13. To do so, we have integrated the SoftFloat library [12] in YOLOv4. With this library, all
floating-point operations are emulated by software, hence enabling the evaluation of fp16 and
fp13. Also, this framework allows us to perform fault injection campaigns by poisoning the results
of floating-point operations with specific probabilities.

For our fault injection campaigns, we inject transient faults by randomly selecting floating-point
operations of the DNN and flipping one bit of the exponent or the sign of the result (selected
randomly). The probability of performing a bit flip is set to 10−10, which leads to a 3-5%
misdetection rate (either FP or FN) in our datasets. We note that faults can also be injected in the
mantissa. However, the impact is often completely negligible, hence making the fault injection
campaign highly ineffective since results mostly match those of the fault-free case. Instead, faults
injected in the exponent or sign have a much higher impact and allow evaluating the effectiveness
of TRUST. Finally, note that, when injecting faults, they are injected at most once every 5 frames.
This ensures that any YOLO prediction is affected by a single fault injection since they combine
results across 3 consecutive frames only.

We resort to the same metrics as before to determine whether two detections in the different
instances correspond to the same object (IoU metric) and to assess prediction accuracy (mAP).

Regarding datasets, since we want to evaluate DMR, to bring a different example to that in the
previous section, we use the COCO dataset for few experiments since it provides independent
images for which we cannot use temporal redundancy. We lack labelled videos for autonomous
operation, which YOLOv4 can process with high accuracy when using the pre-trained YOLOv4
model, trained with the COCO dataset. Hence, we have used unlabelled videos (see Table 9) using
the fault-free fp16 implementation of YOLOv4 as the ground truth. This may lead to false
mispredictions if a FP or FN in the baseline case is properly classified with our DMR scheme.

55

D2.2: DL safety architectural patterns and platform
Version 1.0

 SET OF VIDEOS train start
time

eval start
time

train start
frame

eval start
frame

https://youtu.be/hWCN1yV9TY 2:50 5:20 5094 9604
https://youtu.be/jJ08h2cgWjI 2:20 4:04 4214 7325
https://youtu.be/E7t3QyEfyLA 2:00 3:36 3639 6486
https://youtu.be/zfblxgasy-0 18:30 20:05 33237 36115
https://youtu.be/xj7abSp07w0 13:25 15:05 24142 27140
https://youtu.be/X9U5DafT0d4 1:10 3:05 2097 5554

Table 9. Set 1 of videos used.

For the videos, since we run YOLOv4 on a CPU emulating floating-point operations with a software
library, which is time consuming, we study 100 consecutive frames per video (3.3 seconds given
the 30 frames per second rate of the videos). The starting point has been selected arbitrarily, and
then forwarded until relevant driving scenarios are found (e.g., skipping phases where no cars or
signs are nearby).

Note that we use the set of videos for training purposes (SET1train). The second start time for Set
1 (SET1eval) is used for evaluation purposes and has been selected sufficiently far away from the
first one to grant independence.

7.1.2.2 Results
As explained before, the lower the precision of a given data type, the lower the detection
confidence is expected. We illustrate this fact with the example in Figure 30 where we show, for
the COCO dataset (selecting only images with vehicles and persons) how many objects are
detected within each confidence range using fp32, fp16 and fp13. As shown, differences between
fp32 and fp16 are tiny since fp16 allows preserving values very close to 1. However, this is not the
case for fp13, and the number of detections with confidence values above 0.5 drops by 11% w.r.t.
fp16, and the ones above 0.95 drop drastically by 55%. Hence, the usual case is that 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓16 >
𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓13.

Figure 30. Objects detected across confidence ranges for varying precision arithmetic.

We have calculated the results of injecting a fault every 5 frames for different setups:

• Baseline: we use a single instance of YOLOv4, or two of them operating in DMR.
• DMR with diverse data types (DDDT for short): we use the prediction of the fp16 instance

except when it varies by more than 0.2 w.r.t. the average of the last 2 frames, and the
confidence of the fp13 instance for the given object is higher than for fp16.

If more than one instance is used, fault injection is performed in the very same operation of both
instances to mimic the impact of a fault potentially leading to a common cause failure. Our results

56

D2.2: DL safety architectural patterns and platform
Version 1.0

 show that our DDDT scheme is able to correct around 70% of the errors, whereas the baseline
cannot correct any.

A more detailed and complete evaluation will be provided in future releases of this deliverable.

	1 Introduction
	1.1 Background
	1.1.1 AI-based systems
	1.1.2 NVIDIA Jetson AGX Orin
	1.1.3 Standards and technical reports

	1.2 Structure of the Document

	2 Sources of Risk and Incremental Strategy
	2.1 AI Risk factors
	2.1.1 Functional Safety Standards
	2.1.2 Technical reports on multicore integration (CAST-32A / AMC-20-193)
	2.1.3 AI and FUSA Technical Reports (ISO/IEC TR 5469)
	2.1.4 Safety of The Intended Functionality (SOTIF) (ISO/DIS 21448)
	2.1.5 Summary of risk factors

	2.2 Incremental strategy

	3 Reference architecture pattern
	3.1 Diverse redundancy
	3.1.1 Decision Function
	3.1.2 Diverse Redundancy techniques
	3.1.2.1 Lockstep execution
	3.1.2.2 Diverse Input Image Transformations
	3.1.2.3 Diverse Data Types
	3.1.2.4 Diverse Framework [IKL]
	3.1.2.5 Diverse Concept – Object detection vs object part detection [IKL]

	3.2 Diagnostic and Monitoring mechanisms
	3.2.1 L1DM mechanisms – AI subsystem
	3.2.1.1 Input image comparison
	3.2.1.2 Generation of execution signatures
	3.2.1.3 Output trajectory prediction
	3.2.1.4 Input-Output correlation
	3.2.1.5 Information monitoring

	3.2.2 L2DM mechanisms – Traditional subsystem
	3.2.2.1 Traditional functional safety diagnostics
	3.2.2.2 Techniques for multicore / high-performance platforms

	3.2.3 L3 mechanisms – External

	3.3 Supervision function
	3.4 Traditional subsystem

	4 Safety Patterns
	4.1 Safety Pattern 1 (SP1)
	4.1.1 System Architecture
	4.1.2 Diagnostic and monitoring mechanisms
	4.1.2.1 L1DM – SAFEXPLAIN PLATFORM
	4.1.2.2 L2DM – SAFEXPLAIN PLATFORM

	4.2 Safety Pattern 2 (SP2)
	4.2.1 System Architecture
	4.2.2 Diverse redundancy
	4.2.3 Diagnostic and monitoring mechanisms
	4.2.3.1 L1DM – SAFEXPLAIN PLATFORM
	4.2.3.2 L2DM – SAFEXPLAIN PLATFORM

	4.3 Safety Pattern 3 (SP3)
	4.3.1 System Architecture

	5 Acronyms and Abbreviations
	6 References
	7 Annexes
	7.1 Preliminary evaluation of L0 Diverse Redundancy solutions
	7.1.1 Input image transformation
	7.1.1.1 Setup
	7.1.1.2 Results

	7.1.2 Diverse data types
	7.1.2.1 Setup
	7.1.2.2 Results

