

D4.1 Interim Platform Technologies Report
Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contratual Deadline 31.03.2024

Dissemination Level PU

Nature R

Authors Enrico Mezzetti (BSC), William Guarienti (EXI)

Contributors Mikel Fernandez (BSC), Sergi Vilardell (BSC), Francisco Cazorla (BSC)

Reviewer Gabriele Giordana (AIKO)

Keywords Platform support, Hardware and Software stack, Timing characterization

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

Ref. Ares(2024)2277928 - 26/03/2024

http://www.safexplain.eu/

1

D 4.1 Interim Platform Technologies Report
Version 1.0

Change Log

Version Description Change

V0.1 First draft

V0.2 Reviewed version

V1.0 Final version

2

D 4.1 Interim Platform Technologies Report
Version 1.0

Table of Contents
Executive Summary ... 3

1 Introduction .. 4

1.1 Scope .. 4

1.2 Structure of the Document .. 5

2 NVIDIA ORIN MPSoC... 6

2.1 Orin overview .. 6

2.2 Default software stack ... 7

3 Timing Interference Control (T4.1) .. 9

3.1 Software Sources of Timing Interference .. 9

3.2 Hardware Sources of Timing Interference .. 12

3.3 Technological assessment ... 22

4 Observability Channels (T4.2) ... 24

4.1 PMU and HEM analysis .. 24

4.2 HEMs identification ... 25

4.3 Hardware Event Monitors PMULib .. 29

4.4 SCF HEMs overhead ... 31

4.5 Technological assessment ... 33

5 Timing Prediction Methods and Tools (T4.3) .. 35

5.1 Timing characterization strategy ... 35

5.2 Inter-Run Variability... 35

5.3 Statistical Analysis based on the Markov Inequality ... 40

5.4 Interference monitoring mechanism and Templates .. 42

5.5 Technological assessment ... 44

6 Platform- and System-level V&V support (T4.4) ... 48

6.1 SAFEXPLAIN Middleware concept ... 48

6.2 SAFEXPLAIN Middleware support ... 49

6.3 Technological assessment ... 53

7 Acronyms and Abbreviations .. 55

8 References.. 56

9 Annex 1 – PMULib interface ... 58

9.1 Function Documentation ... 58

9.2 Macro Documentation .. 60

9.3 Usage Example ... 63

3

D 4.1 Interim Platform Technologies Report
Version 1.0

Executive Summary
This deliverable reports on the technical and technological progresses achieved in WP4 during the
first 18 months (MS2) of the project. In particular, this report captures the advancements done in
all WP4 tasks (T4.1-T4.4) by MS2 hence covering aspects related to hardware and timing
characterization as well as specific solutions adopted at platform level to support the activities of
other work packages. In the following we provide an assessment of the degree of completion in
each of the WP4 tasks and the respective outcomes (technologies and tools). Technologies and
tools will be also assessed with respect to their readiness for integration and next steps.

4

D 4.1 Interim Platform Technologies Report
Version 1.0

1 Introduction
This report reports on the progress achieved in the scope of WP4. This work package brings
together all platform-level aspects that are relevant for the supporting both performance and
FUSA requirements on top of the platform. The overarching goal of WP4 is to support the
development, execution, and analysis of the solutions proposed by other technical work packages
and deployed through SAFEXPLAIN case studies.

1.1 Scope
The Platform WP comprises 4 tasks and a higher-level meta-task to support the integration of WP2
and WP3 solutions in the case studies. As such, WP4 has strict relations with all SAFEXPLAIN work
packages and, in fact, facilitates their alignment. Figure 1 below depicts the main tasks in WP4 and
how they support SAFEXPLAIN technologies and integration by capturing explicit and implicit
requirements from other WPs.

Figure 1 - WP4 role and relation with other WPs.

The main technological tasks in the WP are:

• T4.1 Timing interference control, covering the hardware analysis of the target platform to
identify the sources of interference and the available support for segregation and
partitioning. This task is critical to support FUSA aspects, and particularly the deployment,
under the supervision of WP2, of FUSA architecture and patterns presented in [1].

• T4.2 Observability channels, dealing with available means of collecting hardware-level
information on program execution on top of the target platform, and providing an

5

D 4.1 Interim Platform Technologies Report
Version 1.0

integrated tool to configure those means and access extract the relevant information at
both run and analysis time.

• T4.3 Timing prediction methods and Tools, providing support for the analysis of the timing
behavior of the deployed functionalities, building on timing interference mitigations
enabled by T4.1 analysis and SAFEXPLAIN FUSA solutions (WP2) and exploiting timing
information gathered on top of T4.2 outcomes.

• T4.4 DL libraries integration and validation in the industrial toolset, facilitating the
integration of SAFEXPLAIN DL libraries and solutions in a partially automated setup
supporting FUSA task through offline V&V activities and run-time monitoring.

1.2 Structure of the Document
In the following sections we provide a review of WP4 activities and progresses up to MS2.

• We will start with a section devoted to the introduction to the NVIDIA AGX Orin [2], the
reference platform adopted in SAFEXPLAN. This covers both hardware and software
aspects.

• We will then continue following the task structure of the WP.

Each section will include a description of the task objectives, the strategy followed, the obtained
results, and an assessment over maturity of the provided solutions from the standpoint of the
integration on the case studies.

6

D 4.1 Interim Platform Technologies Report
Version 1.0

2 NVIDIA ORIN MPSoC
One of the main objectives of WP1 consisted in the selection of the relevant target boards for the
project. The selection process aimed to identify target platforms that were both representative of
the target domains (critical embedded systems) and therefore interesting from the FUSA
perspective, and apt to sustain the execution of performance intensive AI-based applications,
hence providing support for general-purpose and AI-specific hardware accelerators.

Based on the technological and performance requirements emerging form the use cases, the
project partners reached a consensus on the adoption of the NVIDIA AGX Orin [2] as target
platform.

In the following we summarize the main hardware features relevant for the project. We also report
on the adopted software stack, which is equally relevant to provide a homogeneous development
and execution environment across project partners and tools.

2.1 Orin overview
The NVIDIA Jetson AGX Orin is a family of heterogenous MPSoC (Orin 32/64 Nano) developed by
NVIDIA to cover the emerging requirements form diverse markets, all sharing the need for high-
performance to support AI-based functionalities at reduced SWaP (Size, Weight, and Power). In
SAFEXPLAIN, the AGX Orin Dev Kit has been selected.

The Orin comprises 3 clusters of 4 Arm Cortex-A78AE CPUs [3], a NVIDIA Ampere GPU, ad-hoc AI-
oriented accelerator such as NVDLA and PVA, as well as a video encoder and a video decoder (see
Figure 2). The system also exploits a high-speed IO, with 204 GB/s of memory bandwidth, and 32GB
of DRAM (in the Dev Kit version). The Orin can deliver up to 275 TOPS which are enabling the
execution of multiple concurrent AI application.

Figure 2 - Block Diagram of our target platform (from [4]).

7

D 4.1 Interim Platform Technologies Report
Version 1.0

2.2 Default software stack
The NVIDIA AGX Orin [2] comes with tailored OS support and libraries. The software stack includes
a specific version of a Linux-based Operating System as well as a score of dedicated libraries to
support the development and execution of AI applications. To favour homogenization and
coordination across development environments in the different WPs, WP4 promoted the early
identification of a shared software stack configuration to guarantee inter-compatibility of tools.
Figure 3 illustrates the positioning of the low-level software layer in the SAFEXPLAIN stack.

Figure 3 - Baseline HW and SW stack.

As anticipated the low-level software stack includes a tailored instance of an Ubuntu release also
called Linux Tegra version. The set of tools normally available on Linux systems is complemented
by the NVIDIA proprietary SDK JetPack, providing the necessary support to exploit the
programming of the GPU and accelerators and the exploitation of standard deep learning libraries.
Technological solutions developed in WP2 and WP3 are meant to rely on this software substrate.
The setup is also the baseline for the development and porting of the different case studies.

Current SAFEXPLAIN setup consists in the following elements and versions:

• Jetpack 5.1
• Jetson Linux 35.2.1
• Ubuntu Version 20.04
• Kernel Version 5.10.65-tegra
• Tensor RT 8.5.2
• cuDNN 8.6.0
• CUDA 11.4.19
• OpenCV 4.5.4
• Python 3.8.10
• PyTorch 1.14
• Vulcan 1.3.203
• Vulcan SC 1.0

8

D 4.1 Interim Platform Technologies Report
Version 1.0

Changes to the setup are expected to happen during the project, only after checking the
compatibility of the updates with the partners assumptions. We expect to move to the new release
of the Jetson Linux and JetPack later this year (the new version is still under beta release).

9

D 4.1 Interim Platform Technologies Report
Version 1.0

3 Timing Interference Control (T4.1)
This task analyses and classifies the sources of timing interferences, and the hardware/software
mechanisms available to control such interference (e.g., cache partitioning). Then, it uses those
mechanisms to limit timing interference by construction, especially for DL-based tasks, as part of
the SAFEXPLAIN software stack, so they can be used in the case studies, and allow implementing
the ‘containers’ described in T2.4. Timing interference analysis strategy, including analysis time
and run-time interference mitigation and control approaches, are designed, and developed in
alignment with WP2 strategy [1]. At the top level we classify the sources of timing interference
between software (Section 3.1) and hardware (Section 3.2).

3.1 Software Sources of Timing Interference
The Orin software stack builds on Linux Tegra, which consists in the tailoring of a full Ubuntu
distribution. The use of a Linux-based, general-purpose operating system introduces some
interference or jitter in the execution of tasks stemming from the many background activities the
OS is undergoing. This would not be the case in real-time operating systems where OS services are
limited, and timing of user applications is preserved. Real-time OSes, however, are not available
on the target platform.

3.1.1 Linux Ubuntu setup
We start our analysis by running several reference benchmarks on the default Orin software-stack,
only including the Linux layer. Selected benchmarks consist in carefully designed pieces of code
exercising configurable large amount of a specific type of data accesses (read or write operations)
to a specific layer in the cache and memory hierarchy (L2, L3 L4, or main memory). We tracked the
wall-clock time and the cycle count. Figure 4 shows the results for a benchmark performing reads
to the L3 (L3R) and the benchmark performing writes to the L3 (L3W).

Figure 4a shows that every 15 to 30ms approximately the wall clock time suffers a spike. This
behavior can be most clearly observed for the L4W benchmark. This relates to activities of the
Linux OS that are triggered periodically. Figure 4b shows that those peaks do not arise when we
measure the actual execution time of the task, i.e. the time it was actually running in the CPU: as
it can be seen the peaks disappear. This confirms that the peaks are due to the OS activity.

(a) Execution time measured as the Wall clock time using clock_gettime().

10

D 4.1 Interim Platform Technologies Report
Version 1.0

(b) Execution time measured with the hardware event monitor CPU_CYCLES

Figure 4 - Execution time of the L3R and L3W benchmarks.

We extended the analysis to other benchmarks performing reads and writes to the different levels
of the memory hierarchy (L2, L3, and memory). For each of them, we perform a comparison
between the wall time and the clock time as reported by the CPU_CYCLES counter. We identify
that the wall clock time is approximately 40% higher than the time reported by CPU_CYCLES, due
to activities performed by the OS.

Ratio
(avg)

L2R 1.45
L2W 1.48
L3R 1.41
L3W 1.46
L4R 1.38
L4W 1.38
MEMR 1.34
MEMW 1.36

These results confirm the existence of OS activities that can affect the execution time of running
programs and hence need to be removed.

3.1.2 ROS2 setup
The Robotic Operating System (ROS) is the de-facto standard for developing complex autonomous
systems characterized by a strong interaction with the physical environment. ROS, which
underwent through a major release and is now available in version 2 (aka ROS2), is also typically
used as a middleware layer in AI-based applications in several domains. ROS2 [5] provides a
relatively simple and scalable application semantics based on communication among functional
nodes that cooperates to deploy a given functionality, from sensers to actuators. The
communication semantics is based on the publisher-subscriber paradigm.

11

D 4.1 Interim Platform Technologies Report
Version 1.0

In the scope of SAFEXPLAIN, ROS2 has been selected as a baseline element in the software stack
as all use cases clearly fit its publisher-subscriber semantics. More details on SAFEXPLAIN software
stack, and how ROS2 fits in it, are provide and discussed in Section 6.1.

ROS2 contributes an additional software layer that can introduce further jitter on top of the OS-
induced one.

We assessed the overheads introduced by ROS2 on top of those introduced by Linux. To that end
we ported the benchmarks as ROS2 nodes and executed them, measuring CPU_CYCLES. We
Compared the resulting distributions of two benchmarks, L2R and L3R.

In Figure 5 and Figure 6 we see that the shape of the distribution of execution for both experiments
done with Linux and with Linux + ROS2 are very similar. ROS2 seems to add some overhead to the
overall execution time, which is relatively small, about a 0.5% increase in the distribution mean in
both cases. Nonetheless, it does not provide additional noise to the execution time.

We can test that by compensating the overhead induced by ROS2 and comparing the distributions
with a Kolmogorov-Smirnov (KS) test. The KS test uses as statistic the maximum difference in the
Empirical Cumulative Distribution Function (ECDF) in this case. When performing the KS test with
bootstrap resampling for a more robust estimation, the p-values are 0.40 and 0.47 for L2R and L3R
respectively, therefore we cannot reject that the distributions are different.

Figure 5: Empirical Cumulative Distribution Functions for

the execution time of L2R with Linux and Linux + ROS2

Figure 6: Empirical Cumulative Distribution Functions for the

execution time of L3R with Linux and Linux + ROS2

Overall we conclude that not additional means are needed to control ROS2 impact on the
execution time of applications.

3.1.3 Custom middleware setup
For the sake of completeness, the software-level interference analysis will be completed by
considering the additional layer contributed by the SAFEXPLAIN Middleware, which is an
abstraction layer we developed to accommodate various project level aspects, as detailed in
Section 6.1. A thorough analysis is postponed to the final release of the Middleware and, hence,
results will be included in the next release of this deliverable. Nonetheless, we performed some
preliminary experiments on an intermediate version which seems to confirm the trend observed
with ROS2. This is indeed not surprising in reason of the limited intrusiveness of the Middleware
on the functional behavior, which is preserved and contained within the ROS2 entities.

12

D 4.1 Interim Platform Technologies Report
Version 1.0

3.2 Hardware Sources of Timing Interference
A high-level view of the Orin block diagram, showing the main clusters and devices, is provided in
Figure 7) from the official documentation [2].

3.2.1 CPU Complex
The high-level overview of the CPU Complex showing its CPU cores is presented in Error! Reference
source not found.Error! Reference source not found.. We can see three different CPU clusters,
each one implementing four Cortex-A78AE cores and a cluster-private L3 cache that is shared
among the cores of each cluster.

3.2.1.1.1 DynamIQ™ Shared Unit (DSU-AE)

Each cluster in the CPU Complex comprises the DynamIQ Shared Unit (DSU-AE) that embeds a 2-
MiB L3 Cache and the Snoop Control Unit (SCU), as seen in Figure 9b. The L3 and SCU are in charge
of maintaining coherency between caches in the cores and L3. So, while the caches in the cores
are private, the L3 is shared among the 4 cores in the cluster.

The DSU-AE provides the internal interfaces to the cores, as presented in Figure 9a where the
connection to the four cores can be observed.

Figure 7 - Orin high-level block diagram (from [2]).

13

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 8 - Block diagram of the CPU Complex (from [2]).

(a) Internal and external connections of the DSU-AE (b) Detail of the DSU-AE blocks

Figure 9 – Block diagrams of the DSU-AE [6]

Comparators

Comparator logic is only enabled when the Cortex®-A78AE is operating in Lock-mode. There are
two instances of each comparator, reporting on separate outputs. Delay flops are also associated
with Lock-mode. The delay flops create the temporal diversity between the primary and redundant
logic and align the comparison logic.

Snoop Control Unit (SCU)

The SCU contains buffers that can handle direct cache-to-cache transfers between cores without
having to read or write data to the L3 cache. Cache line migration enables dirty cache lines to be

14

D 4.1 Interim Platform Technologies Report
Version 1.0

moved between cores, and there is no requirement to write back transferred cache line data to
the L3 cache.

L3 cache

The cache is 16-way set associative with a 64-byte line length and a total size of 2MB. It is shared
by all the cores in the cluster and supports stashing request from the ACE/CHI interface. However,
if it is heavily loaded and does not have any free buffers, it drops the stash request.

The L3 cache data allocation policy changes depending on the pattern of data usage. Exclusive
allocation is used when data is allocated in only one core. Inclusive allocation is used when data is
shared between cores. The L3 cache implements two slices, each with a set of tag and data RAMs.
Requests are allocated to a particular slice based on the address of the request. Splitting the cache
into slices improves the bandwidth because the two slices can be accessed in parallel.

The L3 supports the creation of groups of cache ways to partition and assign to individual
processes. Cache partitioning ensures that processes do not dominate the use of the cache to
disadvantage other processes.

L3 cache partitioning is achieved by partition scheme IDs and groups of cache ways, where:

• Each group contains four ways.
• Each group can either be assigned as private to one or more partition scheme IDs, or be

left unassigned.
• Each unassigned group can be shared between all eight partition scheme IDs.

Each core in the cluster must be assigned to at least one of the eight partition scheme IDs. L3 cache
accesses from a given core can allocate into:

• Any cache way that belongs to a group that is assigned as private to the partition scheme
ID of this core.

• Any cache way that belongs to an unassigned group that is shared by the entire cluster.

L3 cache placement

The placement algorithm used for the L3 is undocumented. BSC investigated to empirically
determine how data is placed into L3 sets. There are two main assumptions that were investigated:

• Modulo placement
• XOR placement, similar to the one used in the Cortex-A78AE L2 cache.

BSC prepared an experimental setup where, based on the initial assumption, more than 16 pieces
of data would be placed into a single L3 set. If the assumption was correct, we would observe L3
cache misses, as the L3 only provides 16-ways per cache set.

The result showed that the formula used for determining the L3 set for placement is ([26:17] XOR
[16:7]). Bits [5:0] are within the cache line offset (64 bytes) while bit 6 is used to select L3 cache
slice. Figure 10 shows how memory address bits are used to access a cache lines in L2 and L3.

15

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 10 – Address bits used for L2 and L3 cache placement.

3.2.2 GPU Cluster
The Orin SoC has an NVIDIA Ampere GPU with two Graphics Processing Clusters (GPCs). A GPC is
the high-level hardware block with all the compute/graphics processing units for graphics-related
computation, rasterization, rendering, Ray Tracing, pixel generation, etc. A high-level block
diagram view is presented in Figure 11.

Figure 11 – Orin Ampere GPU high level block diagram (from [2])

The Ampere GPC contains the following components: A Raster Engine, four Texture Processing
Clusters (TPCs), each consisting of 2 Streaming Multiprocessors (SMs), each with its own Ray
Tracing (RT) core, and 1 PolyMorph Engine (PE). These elements can be seen in Figure 12.

address 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L3XORLL3XORH
L3 placement

L2 placement

line

OS page
slice+line

XOR lowXOR high

16

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 12 – Orin Ampere GPU detailed block diagram (from [2]).

Streaming Multiprocessor

The Ampere Streaming Multiprocessor has 128 CUDA cores. As shown in Figure 13, the SM is
partitioned in four processing blocks, with each containing:

• 1 3rd-generation Tensor core,
• 1 64-KiB Register Files (in 16,384 x 32 organization),
• 1 Texture (TEX) unit,
• 1 L0 I-Cache, 1 Warp Scheduler, and
• 1 Dispatch (32 threads/clk) unit,

and all four sharing:

• 1 192-KiB for L1 Data Cache and Shared Memory, and
• 1 2nd-generation Ray Tracing (RT) core.

3.2.3 Interconnect
The interconnect is based on 2 technologies based on the AMBA protocol of ARM: AXI3 and AXI4.
The system control fabric is based on AXI3, this means no QOS protocol is applied on them. On the
other hand, the data fabric to access main memory (DDR) is based on AXI4 protocol.

3.2.4 Other features
The board is also equipped with a series of clusters focused on special tasks that are configured by
Nvidia on their firmware. Those modules are: SPE Sensor processing engine; APE Audio processing
engine; Safety Island in charge of the power control of the board; Boot power management; Real
time cameras processing.

17

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 13 – Ampere Streaming Multiprocessor block diagram (from [2])

3.2.4.1 Input / Output (I/O)
GPC-DMA

There are 32 channels in GPC-DMA. A DMA channel can transfer a specified range of data between
a memory address space (SysRAM or external memory) and an MMIO address space. A DMA
channel can also transfer data between a memory address space and another memory address
space (Mem-to-Mem copy). The DMA controller follows a simple round robin arbitration scheme
between the channels, starting with channel 0. Each channel can have an independent burst
transfer size programmed to one word, two words, four words, eight words, or 16 words. For
Memory transfers, we only support two-words and 16-words bursts. There is a corresponding
read/write buffer in the memory buffer manager for each channel. There is also a corresponding
buffer for each channel on the peripheral side.

Continuous Mode

In continuous mode single buffer mode, software has two separate buffers that are maintained by
software to emulate the hardware ping pong buffer. In this mode, software enables the DMA with
the ping-buffer address and then reprograms the DMA with pong buffer after enabling the DMA.
The DMA registers are shadowed (latched) every time upon entering the continuous cycle. The
register programming can be done for the pong buffer either after enabling the channel (for the
first reprogramming) or receiving an interrupt (for any subsequent reprogramming).

3.2.4.2 SCF and L4
The System Coherency Interconnect (SCF) connects the CPU Complex (CCPLEX) to the DRAM. It is
in charge of maintaining coherency between the clusters and connecting them to the rest of the
SoC. The SCF embeds a shared L4 cache that is shared among the three CPU clusters. The cache is
also shared with the GPU, but it’s not fully coherent; coherency is one-way [7], so the GPU is able
to read CPU cache, but not the other way around. In Figure 14 a view of how the SCF is connected
to the clusters and to the interfaces to the rest of the SoC is shown.

18

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 14 – Block diagram of the CCPLEX, including the SCF [6].

The L4 cache is set-associative and is partitioned in 8 512KB slices, for a total of 4MB. Memory
requests from the CPU clusters are routed through the L4 cache and to the Memory Controller
Fabric (MCF) as seen in Figure 14. Transactions to memory mapped Input/Output (MMIO) are
routed through the Input Output Bridge (IOB).

3.2.5 Interference channel identification
In order to identify the sources of inter-process interference, BSC performed an analysis of the
hardware architecture as presented in this Section. We studied possible bottlenecks in the design.
We also interact with the use case providers to understand how their application uses the
platform. The combination of the potential source of contention at hardware level and how the
application actually uses the hardware, leads us to conclude the actual sources of contention.

3.2.5.1 Domains of resource sharing
We use the term resource sharing domain or resource sharing level to categorize how applications
share hardware shared resources. It is worth noting that the hardware resources that are shared
among cores and may become a contention point are related mainly to the datapath to memory:

• Intra CPU core. Private computing resources, private first level data and instruction caches,
private L2, which ultimately request data to the shared L3 on miss.

• Intra CPU cluster. The SCU, including the shared L3. This component includes the snoop
control and and L3 shared withing the CPU Cluster.

• Inter CPU cluster. The SCF, including the shared L4. This component centralises accesses to
memory from the three CPU Clusters and the GPU.

• Accelerators. Accelerators can be shared among applications. This includes the GPU and
specific accelerators like the DLA.

19

D 4.1 Interim Platform Technologies Report
Version 1.0

3.2.5.2 Usage of shared resources
We developed a questionnaire that we shared with the use case providers. The questionnaire
included questions about the usage of shared resources in the Orin. The main conclusions from
the questionnaire were the following:

1. End users are using 1 CPU cluster and might need to use several.
2. GPU is being used by one application only. Hence, the GPU is time shared and not space

shared.
3. The accelerators are not being used and in case they are they will be time shared.

Hence our focus on the contention side goes on the intra CPU cluster and inter CPU cluster.

3.2.6 Empirical results
In order to empirically assess the impact of contention we develop a set of benchmarks that
read/write to a given cache level. By running several of those benchmarks together we can assess
whether they suffer contention in a given resource level The benchmarks are:

• L2R and L2W. Benchmarks that perform mainly reads (R) and (W) most of which hit in L2.
• L3R and L3W. Benchmarks that perform mainly reads (R) and (W) most of which hit in L3.
• L4R and L4W. Benchmarks that perform mainly reads (R) and (W) most of which hit in L4.
• MEMR and MEMW. Benchmarks that perform mainly reads (R) and (W) most of which do

not hit in any cache level and go to memory.

It is noted that when a benchmark hits in a cache level it is implicitly missing the lower cache levels.

3.2.6.1 L2
In this first experiment we run a L2R benchmark against 3 instances of the L2W benchmarks. Each
benchmark executes in one of the cores of a given cluster. Figure 15Error! Reference source not
found. below shows the execution time of the L2R benchmark. As it can be seen in Figure 15 it
suffers no significant increase in the execution time when running in multicore vs when running in
isolation, providing evidence that the L2 are private per core. Comparing figures Figure 15a and
Figure 15b we also appreciate no difference between running all contenders in the same cluster
or in a different one, due to L2 being private per core.

(a) Execution time of L2R in isolation and with contenders

running on the same cluster.
(b) Execution time of L2R in isolation and with contenders

running on a different cluster.

20

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 15 - Execution time in ms of the L2R benchmark in isolation (blue) and contending with 3 instances of L2W (orange).

Figure 16 shows the L2 miss rate distribution for the L2R benchmark running in isolation and when
with 3 contenders running L2W. It can be seen that the miss rate remains very low in both cases
(mostly sub 1%), and with a very similar distribution, proving that contenders do not increase miss
rate and hence that the L2 caches are private per core.

Figure 16 - Histogram with the distribution of the miss rate across different executions of L2R, in isolation (blue) and with 3

contenders running L2W (orange). This includes execution in a single cluster and in multiple clusters.

3.2.6.2 L3
In this experiment we run a L3R benchmark against 3 instances of L3W benchmarks. Each
benchmark executes in one of the cores of a given cluster. Figure 17 below shows the execution
time of the L3R benchmark. As it can be seen in Figure 17b it suffers no significant increase in the
execution time when running in multicore vs when running in isolation, while in Figure 17a a very
significant difference can be seen. This provides evidence that the L3 are private per cluster but
shared among cores within the cluster.

(a) Execution time of L3R in isolation and with contenders

running on the same cluster.
(b) Execution time of L3R in isolation and with contenders

running on a different cluster.

21

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 17 – Execution time in ms of the L3R benchmark in isolation (yellow) and contending with 3 instances of L3W (grey).

Figure 18 shows the L3 miss rate distribution for the L3R benchmark when running in isolation and
with 3 contenders running L3W. In Figure 18a, it can be appreciated how multicore execution in a
single cluster causes a high amount of L3 cache misses, as the contenders compete with the task
under analysis for the shared L3. In Figure 18b we can see how L3 miss rate does not vary between
execution in isolation and with contenders when the latter run in a different cluster, proving that
the L3 is private per cluster.

(a) Execution time of L3R in isolation and with contenders

running on the same cluster.
(b) Execution time of 3R in isolation and with contenders

running on the different cluster.

Figure 18 – Histogram with the distribution of the miss rate across different executions of L3R, in isolation (yellow) and with 3
contenders running L3W (grey).

3.2.6.3 L4
In this experiment we run a L4R benchmark against 3 instances of L4W benchmarks. Each
benchmark executes in one of the cores of a given cluster. Figure 19 below shows the execution
time of the L4R benchmark. As it can be seen in Figure 19b, in average the execution time is not
greatly affected by multicore execution when contenders are running in a different cluster. This is
due the L3 being the bottleneck in the memory hierarchy, so we only appreciate an increase in
contention when running in the same cluster, as seen in Figure 19a. This is true for this scenario,
where the GPU is not being used and hence the L4 cache is only used by cores, but the L4 may
become the bottleneck when the GPU is in use.

(a) Execution time of L4R in isolation and with contenders

running on the same cluster.
(b) Execution time of L4R in isolation and with contenders

running on the different cluster.

22

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 19 – Execution time in ms of the L4R benchmark in isolation (blue) and contending with 3 instances of L4W (green).

3.2.6.4 MEM
In this experiment we run a MEMR benchmark against 3 instances of MEMW benchmarks. Each
benchmark executes in one of the cores of a given cluster. Figure 20 below shows the execution
time of the MEMR benchmark. As it can be seen in Figure 20a, the execution time is greatly
affected by contenders running in the same cluster. Meanwhile, Figure 20b shows a smaller
difference in execution time when contenders run in a different cluster.

(a) Execution time of MEMR in isolation and with contenders

running on the same cluster.
(b) Execution time of MEMR in isolation and with contenders

running on the different cluster.

Figure 20 – Execution time in ms of the MEMR benchmark in isolation (brown)
and contending with 3 instances of MEMW (blue).

3.3 Technological assessment
In accordance with the task main objectives, we have been performing an in-depth analysis of the
hardware platform to understand and identify the major sources of timing interference at the
software and hardware level. At the software level, we have been focusing on the SAFEXPLAIN
software stack and adapted our analysis, when possible, to address the contribution of the
different software layer (operating system, ROS2 layer, and SAFEXPLAIN middleware). At the
hardware level, we complemented the available documentation on the NVIDIA Orin with results
from an ad-hoc test campaign, supporting hypothesis defined building on long-standing hardware
and software expertise.

With the work done until month 18, we have already captured the main objectives of this task and
produced a detailed analysis of the hardware platform, covering both functional and non-
functional aspects. We have also identified the sources of timing interferences (interference
channels) at both software and hardware level, which serves as an input to T4.3 and WP2.

Delivered tool and positioning in the SAFEXPLAIN stack
The result of this task is not a tool but consolidated knowledge on which further project-level
decisions are taken. As such, it does not occupy concrete position in the SAFEXPLAIN stack.

Intra-WP dependencies
Within the scope of WP4, the obtained results are fundamental inputs to other tasks.

23

D 4.1 Interim Platform Technologies Report
Version 1.0

T4.2: The identification of the main sources of hardware interference steers the selection of

those events and monitors that are critically relevant for timing and interference analysis.
It is also important that both tasks work consistently towards achieving WP4 objectives.

T4.3: The sources of timing interference and the mitigation actions identified in T4.1 are in fact
determining the strategy to follow for timing and interference analysis, where the
particular solution for supporting isolation among application must be modelled.

Inter-WP contribution and alignment
The contributions of this task are also relevant in the scope of other work packages. The analysis
results are supporting many of the deployment decisions that are taken when tailoring and
bringing software and concepts to the actual target.

WP2: The sources of hardware interference and segregation solutions are critical aspects to be
considered in the definition of the FUSA architecture and in particular of the Safety
Patterns, where a concrete mapping of applications/components to the platform is
required. Task 2.4 is explicitly defined to favor the transition from FUSA concepts to
corresponding deployment configurations.

WP5: The hardware analysis results can be exploited by use case providers to take informed
decisions on where and how to deploy the applications.

The alignment with other work packages, and WP2 in particular, is guaranteed by the continuous
interaction between the work packages.

T4.1 Next steps
Task T4.1 is running until m24. The hardware and software analyses have already produced a
deep understanding of the platform, providing a more than appropriate level of details to execute
the other project tasks. We have no relevant component or major area of interest in the
hardware left to be analysed. In the next project period, the task will be capturing any emerging
requirements from other tasks and work-packages, with bearing on hardware and low-level
software aspect. The task will also support WP2 for incremental deployment of Safety Patterns.

24

D 4.1 Interim Platform Technologies Report
Version 1.0

4 Observability Channels (T4.2)
Information on low-level hardware events is typically made available in modern Commercial Off
The Shelves (COTS) platform via specialized hardware support provided by more or less complex
Platform Monitoring Units (PMU). This task identifies and tests the platform monitors (hardware
event monitors or HEMs) providing information about timing behavior, multicore timing
interference, shared resource usage, and many more metrics. In the scope of WP4 observability is
fundamental to run other tasks. Among all HEMs, we then make a selection of those needed to
properly predict the timing behaviour of running applications, as needed by the statistical timing
estimation techniques in T4.3. Another key activity of this task is producing a monitor configuration
support library integrated in the software stack to collect as many measurements as needed for
relevant monitors for timing prediction in T4.3. We refer to this library as PMULib (Performance
Monitoring Unit Library).

In this section, we start with identifying the need for observability in SAFEXPLAIN. We then identify
the set of HEMs that are available in the platform. We introduce PMULib, a fundamental tool in
SAFEXPLAIN to make HEMs accessible to all other tasks on top of SAFEXPLAIN stack. We then make
an analysis of the HEMs accuracy and single out those HEMs that better help tracking timing-
related aspects, including multicore contention.

4.1 PMU and HEM analysis
Observability is a fundamental property embedded
critical platform must fulfil in order to enable the
collection of evidence on the behavior of the
system at execution and exploit such information
to perform various types of analysis. Different
hardware platforms come with different
observability support: depending on the debug
support for the different hardware units, the
degrees of observability may largely vary across
products.

When considering the Orin platform, we were
aware of the observability support granted by ARM
Cortex CPUs, the main interconnect, as well as in
the previous family of AGX platform (Jetson AGX).
Due to the complexity and heterogeneity of the
platform, we had first to understand the different
support available in each of the different scopes in the Orin: CPU cluster, GPU cluster, Accelerators,
and MPSoC levels (see Figure 21).

4.1.1 Use of hardware-level information in SAFEXPLAIN
The set of events happening at the hardware level, and gathered through HEMs, has been
increasingly considered as a valuable source of information to decipher the deepest details of
hardware design and ultimately of software execution. SAFEXPLAIN fully recognizes the usefulness
of hardware-level information and identified the need to collect this type of information and make
it available to the tools and analyses designed and developed in the project.

Figure 21 - Observability scopes.

25

D 4.1 Interim Platform Technologies Report
Version 1.0

We identified different aspects and activities in SAFEXPLAIN that justify the collection of hardware
events:

• Hardware analysis: Collecting empirical evidence to support reverse engineering activity
on the platform, which is often required to corroborate or clarify hardware features and
operational details that are loosely documented in the officially available documentation.
This cover, for example, the exact ID of hardware modules or the assessment of a
partitioning mechanism. This objective is therefore instrumental to T4.1 goals.

• System monitoring: Supporting on-line monitoring of low-level behaviour of target
applications. The library allows to track relevant events, for example, to measure and limit
the impact of multicore timing interference on a software partition. This objective is
therefore instrumental to T4.1 goals and ultimately to WP2 (T2.4) goals.

• Timing characterization: Supporting timing characterization by enabling the collection of
timing information while the program executes and use it later to reason on the application
timing behavior. Timing information, including execution time and other resource usage
metrics, are fundamental information for measurement-based timing analysis approaches
and SAFEXPLAIN is indeed focusing on statistical measurement-based methods for the
analysis of complex AI-based systems. This objective is therefore instrumental to T4.3
goals.

These aspects motivated the analysis of observability support on the target platform and,
subsequently, the design and development of a user-level library to make hardware events easily
accessible to SAFEXPLAIN tools and on top of the project hardware and software stack.

As the first step in the overall strategy followed to adequately exploit platform-level observability
we analysed the actual support offered by the target hardware, which implies understanding the
support on the many hardware modules and the complementary support offered by module-
specific monitoring units and monitoring libraries. The support, in fact, depends on the
manufacturer design but also on the specific model as support may largely vary even within the
same family of products. This is the case, for example, of configuration and monitoring control in
advanced accelerator. We assessed the offered support against the planned use in the scope of
the project. We concluded that, although the support is not the same as that offered in high-end
platform for mainstream (i.e. not embedded) market, all SAFEXPLAIN scopes are sufficiently
covered by the available support.

Moreover, we also had to ensure the sources of information was ultimately trustworthy, in terms
of correctness and accuracy. This activity consisted in selecting test scenario with well-known
behavior in terms of hardware events and assessing HEMs observed values against expected ones.

4.2 HEMs identification
There are two main hardware blocks that expose HEMs that can be used. The A78 [3] cores and
the SCF [8].

• The HEMs of the A78 focus on cpu, DL1 caches, L2 and L3. They are architectural HEMs
described in the architecture manual [3]. They can be accessed with very low latency.

• The HEMs of the System Coherency Fabric (SCF), an uncore component connecting the CPU
Complex and the GPU Complex to the Memory Controller Fabric. These HEMs are poorly
documented and take a very high latency to be accessed.

We analysed a total of 130 HEMs and developed a taxonomy organizing the best candidates in 8
classes:

26

D 4.1 Interim Platform Technologies Report
Version 1.0

• cpu-pipeline, counting events generated at core level by the pipeline
• bus-memory accesses, counting accesses to the main bus
• TLB, grouping different types of events involving DL1 (data cache), IL1 (instruction cache),

and L2 TLBs (Transaction Lookaside Buffer)
• IL1, grouping different types of accesses to the instruction cache
• DL1, grouping different types of accesses to the data cache
• L2, grouping different types of accesses to private L2 cache
• L3, grouping different types of accesses to cluster-shared L3 cache
• SCF, grouping different types of accesses to shared SCF (including L4 cache events)

Using this taxonomy, we selected a series of HEMs as most promising. Their selection is based on
their expected usefulness to predict the impact the software could have on the shared resources.

As it can be seen the HEMs in the subsections below are related to the number of accesses and
misses to each cache level, the accesses to shared resources in the data path, and to program
execution. Those HEMs are the ones that most closely could predict the amount of pressure put
on the hardware shared resources by the program being executed.

4.2.1 CPU-pipeline HEMs
Mnemonic Description ID

INST_RETIRED Instruction architecturally executed. This event counts all retired instructions,
including those that fail their condition check. 0x8

BR_PRED Predictable branch speculatively executed. This event counts all predictable
branches. 0x12

LD_SPEC Operation speculatively executed, load 0x70

ST_SPEC Operation speculatively executed, store 0x71

4.2.2 Instruction cache HEMs (L1I)
Mnemonic Description ID

L1I_CACHE_REFILL

L1 instruction cache refill. This event counts any instruction fetch which misses in
the cache.
The following instructions are not counted:
• Cache maintenance instructions
• Non-cacheable accesses

0x1

L1I_CACHE

L1 instruction cache access or L0 Macro-op cache access. This event counts any
instruction fetch which accesses the L1 instruction cache or L0 Macro-op cache.
The following instructions are not counted:
• Cache maintenance instructions
• Non-cacheable accesses

0x14

L1I_CACHE_LMISS L1 instruction cache long latency miss 0x4006

4.2.3 Data cache HEMs (L1D)
Mnemonic Description ID

L1D_CACHE_REFILL

L1 data cache refill. This event counts any load or store operation or page table walk
access which causes data to be read from outside the L1, including accesses which do
not allocate into L1.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Stores of an entire cache line, even if they make a coherency request outside
the L1
• Partial cache line writes which do not allocate into the L1 cache
• Non-cacheable accesses.

0x3

27

D 4.1 Interim Platform Technologies Report
Version 1.0

This event counts the sum of L1D_CACHE_REFILL_RD and L1D_CACHE_REFILL_WR.

L1D_CACHE

L1 data cache access. This event counts any load or store operation or page table
walk access which looks up in the L1 data cache. In particular, any access which could
count the L1D_CACHE_REFILL event causes this event to count.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Non-cacheable accesses
This event counts the sum of L1D_CACHE_RD and
L1D_CACHE_WR.

0x4

L1D_CACHE_WB

L1 data cache Write-Back. This event counts any write-back of data from the L1 data
cache to L2 or L3. This counts both victim line evictions and snoops, including cache
maintenance operations.
The following instructions are not counted:
• Invalidations which do not result in data being transferred out of the L1
• Full-line writes which write to L2 without writing L1, such as write streaming
mode

0x15

L1D_CACHE_LMISS_RD L1 data cache long-latency miss 0x39

L1D_CACHE_RD

L1 data cache access, read. This event counts any load operation or page table walk
access which looks up in the L1 data cache. In particular, any access which could
count the
L1D_CACHE_REFILL_RD event causes this event to count.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Non-cacheable accesses

0x40

L1D_CACHE_WR

L1 data cache access, write. This event counts any store operation which looks up in
the L1 data cache. In particular, any access which could count the
L1D_CACHE_REFILL_WR event causes this event to count.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Non-cacheable accesses

0x41

L1D_CACHE_REFILL_RD

L1 data cache refill, read. This event counts any load operation or page table walk
access which causes data to be read from outside the L1, including accesses which do
not allocate into L1.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Non-cacheable accesses

0x42

L1D_CACHE_REFILL_WR

L1 data cache refill, write. This event counts any store operation which causes data to
be read from outside the L1, including accesses which do not allocate into L1.
The following instructions are not counted:
• Cache maintenance instructions and prefetches
• Stores of an entire cache line, even if they make a coherency request outside
the L1
• Partial cache line writes which do not allocate into the L1 cache
• Non-cacheable accesses

0x43

L1D_CACHE_REFILL_INNER
L1 data cache refill, inner. This event counts any L1 data cache linefill (as counted by
L1D_CACHE_REFILL) which hits in the L2 cache, L3 cache or another core in the
cluster.

0x44

L1D_CACHE_REFILL_OUTER
L1 data cache refill, outer. This event counts any L1 data cache linefill (as counted by
L1D_CACHE_REFILL) which does not hit in the L2 cache, L3 cache or another core in
the cluster, and instead obtains data from outside the cluster.

0x45

L1D_CACHE_WB_VICTIM L1 data cache write-back, victim 0x46

L1D_CACHE_WB_CLEAN L1 data cache write-back cleaning and coherency 0x47

L1D_CACHE_INVAL L1 data cache invalidate 0x48

4.2.4 L2 cache HEMs (L2)
Mnemonic Description ID

L2D_CACHE
L2 unified cache access. This event counts any transaction from
L1 which looks up in the L2 cache, and any write-back from the L1 to the L2. Snoops
from outside the core and cache maintenance operations are not counted.

0x16

28

D 4.1 Interim Platform Technologies Report
Version 1.0

L2D_CACHE_REFILL
L2 unified cache refill. This event counts any Cacheable transaction from L1 which
causes data to be read from outside the core. L2 refills caused by stashes and
prefetches that target this level of cache, should not be counted.

0x17

L2D_CACHE_WB

L2 unified cache write-back. This event counts any write-back of data from the L2
cache to outside the core. This includes snoops to the L2 which return data,
regardless of whether they cause an invalidation. Invalidations from the L2 which do
not write data outside of the core and snoops which return data from the L1 are not
counted.

0x18

L2CACHE_INV L2 unified cache invalidate 0x58

L2D_CACHE_LMISS_RD L2 unified cache long latency miss 0x4009

4.2.5 L3 cache HEMs (L3)
Mnemonic Description ID

L3D_CACHE_ALLOCATE
Attributable L3 unified cache allocation without refill. This event counts any full
cache line write into the L3 cache which does not cause a linefill, including write-
backs from L2 to L3 and full-line writes which do not allocate into L2.

0x29

L3D_CACHE_REFILL

Attributable L3 unified cache refill.
This event counts for any cacheable read transaction returning data from the SCU for
which the data source was outside the cluster. Transactions such as ReadUnique are
counted here as 'read' transactions, even though they can be generated by store
instructions.
Prefetches and stashes that target the L3 cache are not counted.

0x2a

L3D_CACHE
Attributable L3 unified cache access.
This event counts for any cacheable read transaction returning data from the SCU, or
for any cacheable write to the SCU.

0x2b

L3_CACHE_RD L3 cache read 0xa0

L3D_CACHE_LMISS_RD L3 unified cache long latency miss 0x400b

4.2.6 Bus-memory HEMs
Mnemonic Description ID

BUS_ACCESS

Bus access. This event counts for every beat of data transferred over the data
channels between the core and the SCU. If both read and write data beats are
transferred on a given cycle, this event is counted twice on that cycle. This event
counts the sum of BUS_ACCESS_RD and BUS_ACCESS_WR.

0x19

BUS_ACCESS_RETRY Bus access write. This event counts for every beat of data transferred over the write
data channel between the core and the SCU. 0x61

MEM_ACCESS

Data memory access. This event counts memory accesses due to load or store
instructions.
The following instructions are not counted:
• Instruction fetches
• Cache maintenance instructions
• Translation table walks or prefetches
This event counts the sum of MEM_ACCESS_RD and MEM_ACCESS_WR.

0x13

MEM_ACCESS_RD

Data memory access, read. This event counts memory accesses due to load
instructions. The following instructions are not counted:
• Instruction fetches
• Cache maintenance instructions
• Translation table walks
• Prefetches

0x66

MEM_ACCESS_WR

Data memory access, write. This event counts memory accesses due to store
instructions.
The following instructions are not counted:
• Instruction fetches
• Cache maintenance instructions
• Translation table walks
• Prefetches

0x67

REMOTE_ACCESS Access to another socket in a multi-socket system 0x31

29

D 4.1 Interim Platform Technologies Report
Version 1.0

4.2.7 TLB HEMs
Mnemonic Description ID

L1I_TLB_REFILL

L1 instruction TLB refill. This event counts any refill of the instruction L1 TLB from
the L2 TLB. This includes refills that result in a translation fault.
The following instructions are not counted:
• TLB maintenance instructions
This event counts regardless of whether the MMU is enabled.

0x2

L1D_TLB
L1 data TLB access. This event counts any load or store operation which accesses
the data L1 TLB. If both a load and a store are executed on a cycle, this event counts
twice. This event counts regardless of whether the MMU is enabled.

0x25

L1I_TLB L1 instruction TLB access. This event counts any instruction fetch which accesses the
instruction L1 TLB. This event counts regardless of whether the MMU is enabled. 0x26

L2TLB_REFILL
Attributable L2 unified TLB refill. This event counts on any refill of the L2 TLB,
caused by either an instruction or data access. This event does not count if the
MMU is disabled.

0x2d

L2TLB_REQ
Attributable L2 unified TLB access. This event counts on any access to the L2 TLB
(caused by a refill of any of the L1 TLBs).
This event does not count if the MMU is disabled.

0x2f

L2TLB_RD_REFILL L2 unified TLB refill, read 0x5c

L2TLB_WR_REFILL L2 unified TLB refill, write 0x5d

L2TLB_RD_REQ L2 unified TLB access, read 0x5e

L2TLB_WR_REQ L2 unified TLB access, write 0x5f

4.2.8 SCF HEMs
Mnemonic Description ID

SCF_BUS_ACCESS Bus accesses in the SCF 0x10190

SCF_BUS_ACCESS_RD Read bus accesses in the SCF 0x10600

SCF_BUS_ACCESS_WR Write bus accesses in the SCF 0x10610

SCF_CACHE_ALLOCATE SCF L4 cache allocates 0x10f00

SCF_CACHE_REFILL SCF L4 cache refills 0x10f10

SCF_CACHE SCF L4 cache accesses 0x10f20

SCF_CACHE_WB SCF L4 cache write-backs 0x10f30

4.3 Hardware Event Monitors PMULib
Once we identified the HEMs that could be used to track contention, our next step relates to
developing a library to read it.

4.3.1 PMULib
During this first period, BSC worked on the design and implementation of PMULib a platform
specific lightweight library to configure and extract (collect) values from the different event
monitors in the Orin platform, exploiting the available support at the different scopes. PMULib is
a fundamental tool for supporting the required degree of platform observability necessary to
support diverse elements in the SAFEXPLAIN technological stack (see Figure 22):

• Collecting empirical evidence to support reverse engineering activity on the platform,
which is often required to corroborate or clarify hardware features and operational details
that are loosely documented in the officially available documentation. This cover, for

30

D 4.1 Interim Platform Technologies Report
Version 1.0

example, the exact ID of hardware modules or the assessment of a partitioning mechanism.
This objective is therefore instrumental to T4.1 goals.

• Supporting on-line monitoring of low-level behaviour of target applications. The library
allows to track relevant events, for example, to measure and limit the impact of multicore
timing interference on a software partition. This objective is therefore instrumental to T4.1
goals and ultimately to WP2 (T2.4) goals.

• Supporting timing characterization by enabling the collection of timing information while
the program executes and use it later to reason on the application timing behavior. Timing
information, including execution time and other resource usage metrics, are fundamental
information for measurement-based timing analysis approaches and SAFEXPLAIN is indeed
focusing on statistical measurement-based methods for the analysis of complex AI-based
systems. This objective is therefore instrumental to T4.3 goals.

Figure 22 - PMULib role and interactions.

The provided library greatly reduces the complexity for the engineers and analysis tools for
retrieving platform-level information. Further, the library is fundamental to increase modularity
and automation of the proposed V&V solutions.

PMULib works at very low level, in conjunction with the OS or even at lower level (see Figure 22).
For this reason, the PMULib includes a platform specific layer, in this case tailored to the Orin, and
a more generic layer, which has been modelled to allow future portability and to adapt to the
generic Linux-based software stack used in SAFEXPLAIN.

We are following an incremental strategy in the design and development of PMULib. The main
efforts in this first phase of the project have been devoted to secure extensive support to the
events related to the core clusters and the interconnect (shared among clusters and accelerators).

We offer a lightweight C interface and implementation of PMULib as the main goal was to integrate
it on top the hardware/OS layer to make it compatible with the SAFEXPLAIN Middleware layer,
which will be deeply discussed in Section 6.1. Currently, PMULib can also be exploited standalone,
outside the middleware framework but its integration in the middleware allows for better
automation of the supported analysis processes.

We currently offer no consolidated support to the GPU cluster as the NVIDIA libraries for this
platform do not support fine grain control of the GPU debug modules. We are anyway
guaranteeing observability at the boundaries of GPU workloads and on the interconnect. The
restricted scope seems to be reasonable also in considerations of the deployment scenario

31

D 4.1 Interim Platform Technologies Report
Version 1.0

observed in the case studies. In any case, alternative and complementary observability solutions
are currently under assessment.

4.3.2 PMULib Validation and accuracy
In order to validate the correctness of the PMULib we perform some experiments in which we
compared, for some small code snippets, the expected value for observed HEMs with respect to
the values observed with the HEMs and read with the PMULib. Our focus is on the so called
functional counters like instruction count, load count, and store count that are less subject to
variability across runs.

In particular, we focus on the L2R benchmark which we expect to have 130,000 instructions out of
which 128,000 are reads (load operations). Some extra instructions and load operations are
expected as part of the code setting the initial conditions after the PMULib is called, but with very
small contribution in number (less than 1%).

We have run the benchmark a thousand times and collected counters 0x8 (INST_RETIRED) and
0x70 (LD_SPEC), which we expect to closely match the aforementioned numbers.

(a) Histogram for the INST_RETIRED showing no variability (b) Histogram for LD_SPEC showing small variability

Figure 23 – Accuracy of PMULib, shown as histograms for 1000 executions of the L2R benchmark.

In Figure 23a, we can see no variability for the INST_RETIRED counter, which suggests the PMULib
does not introduce noise, or if introduced, it is constant. We also see that the deviation from the
expected value is just 0.06%, a very small amount.

In Figure 23b we observe minimal variability in LD_SPEC for more than 90% of accesses, but we
observe a few accesses that are up to 0.13% higher than the expected value. Again, we see minimal
deviation from the expected value, suggesting high accuracy and small variability in both the
counters and the library.

The higher variability in LD_SPEC results probably arises from the fact that it counts speculative LD
instructions, not retired LD instructions. Still the observed variability is minimal and well within
reasonable margins (0.13%).

4.4 SCF HEMs overhead
One of the main insights when using our library is that we detected that using SCF counters carries
a very big overhead in terms of execution time.

In the table below we present the increase in execution time of the eight benchmarks presented
in Section 3.2.6. The baseline is the execution time (Wall time) of the benchmarks when reading
core counters.

32

D 4.1 Interim Platform Technologies Report
Version 1.0

OH wrt core cnt

Cpu 1cnt 6cnt
L2R 36.4 646.8
L2W 43.5 779.7
L3R 22.8 394.2
L3W 26.8 479.0
L4R 11.0 192.4
L4W 10.8 190.7
MEMR 1.5 26.4
MEMW 5.5 99.4

Although all SCF counters seem to report values very close to our expectation as seen in Figure 24,
the Wall time is increased up to 44x when reading a single SCF counter, up to 780 when reading 6
counters.

Figure 24 – Accuracy of PMULib for SCF_CACHE_ALLOCATE, shown as a histogram for 1000 executions of the MEMR

benchmark

Hence, we cannot use SCF HEMs at operation time due to the overhead the introduce. However,
in pre-operation / analysis phases they can be used to provide additional evidence on the timing
behaviour of application running on the Orin.

33

D 4.1 Interim Platform Technologies Report
Version 1.0

4.5 Technological assessment
In accordance with the task main objectives, we have been performing an analysis of observability
support on the Orin platform to understand and identify the available (and relevant) set of HEMs.

We have designed, developed, and validated a lightweight software library for configuring and
reading HEMs on the target platform. The library, which has been tested and deployed on top of
the SAFEXPLAIN software stack, is meant to capture all monitoring and analysis needs in the
project.

With the work done until month 18, we have already captured the main objectives of this task and
produced an exhaustive analysis of observability support on the hardware and software stack. The
developed PMULib is covering an exhaustive (though preliminary) set of events, which can be
further extended to support other relevant metrics in the project.

Delivered tool and positioning in the SAFEXPLAIN stack
This task is also delivering a software tool.

The PMULib is a low-level software library, interfacing with lowest-level software and hardware
interfaces in the platform support package and operating system layers. The integration of PMULib
on the SAFEXPLAIN software stack answers a two-fold usage scenario:

− Within the Middleware: the PMULib can be transparently integrated in the Middleware
layer, making it possible to transparently collect timing information at the functional node
level. This approach builds on injecting instrumentation code at the node boundaries,
hence wrapping each execution of the monitored function.

− As a user-land API: the PMULib can also be used explicitly by the end user, thus enabling
the user to define the monitoring scope and type of events (HEMs) to be tracked. This
approach enables the use of the library to collect metrics other than timing and allows to
define on-line monitoring approaches using a standardized, common interface to the HEM
layer.

Intra-WP dependencies
Within the scope of WP4, the obtained results, including PMULib, are fundamental inputs to other
tasks.

T4.1: The PMULib support has been instrumental to perform well-concocted tests to support the
reverse-engineering efforts required to fill the gap in the available technical
documentation. The PMPULib has been also exploited to perform an empirical
characterization of the software-level interference arising through the software stack,
including but not limited to operating system noise.

T4.3: The PMULib is clearly at the basis of any measurement-based timing analysis approach and
even more in those approaches requiring some sort of automation for collecting large
execution samples, like statistical timing analysis methods. PMULib is also instrumental in
confirming properties on the software under analysis or instrumental to the analysis (e.g.
synthetic code and interference templates). Additionally, the support offered by PMULib
at run-time is the fundamental enabler for the monitoring of shared resource usage, at the
basis of interference limitations techniques.

Inter-WP contribution and alignment
The contributions of this task are also relevant in the scope of other work packages. The PMULib
is meant to be exploited for supporting WP2, WP3 and WP5 objectives:

34

D 4.1 Interim Platform Technologies Report
Version 1.0

WP2: The PMULib is meant to support the validation of Safety Patters to check the intended

degree of segregation and performance isolation is achieved at run-time. PMULib is also
used to collect various metrics, including but not limited to timing, that can be used for
diagnostic task within the FUSA architecture, through the Middleware layer. Finally PMULib
is used to offer resource usage monitoring in the scope of SAFEXPLAIN timing multicore
interference mitigation strategy.

WP3: The PMULib can be exploited to collect and convey run-time information to support
explainability methods and supervision tasks.

WP5: The use cases can use PMULib to support performance tuning and optimization tasks.

The alignment with other work packages, and WP2 in particular, is guaranteed by the continuous
interaction between the work packages.

T4.2 Next steps
Task T4.2 is running until m30. PMULib is already offering an extensive coverage of hardware
events. The main focus has been so far on most critical aspects form the FUSA perspective, to
support V&V and qualification through timing-related analysis and resource usage monitoring. As
next steps, we foresee we will devote most effort in extending PMULib support for non-timing-
related metrics in the scope of WP3 tasks and to accommodate potential emerging needs in the
different use cases. In general, T4.2 will be providing continuous support to other tasks and work
packages by refining existing features and developing novel ones, hence covering all observability
needs on hardware and low-level software aspects.

35

D 4.1 Interim Platform Technologies Report
Version 1.0

5 Timing Prediction Methods and Tools (T4.3)
This task aims at covering timing V&V requirements for AI-based safety-critical systems.
SAFEXPLAIN seeks statistical timing prediction methods suitable for DL-based software. The
developed methods are expected to exploit statistical methods, and particularly Markov’s
inequality. The timing verification strategy is extended also to coping with multicore timing
interference within a FUSA strategy.

This section starts by providing a description of the overall timing V&V verification strategy and
then proceeds by developing a preliminary consideration on the characteristics of the input
samples related to the way HEMs are read from the platform. We then move to describe the work
done on statistical timing analysis and multicore interference characterization.

5.1 Timing characterization strategy
The work performed in T4.1 and T4.2 led us to conclude that the Orin is a massively parallel
architecture with high degree of resource sharing. In fact, the Orin is a high-end MPSoC or edge
computing that is more complex than other existing MPSoCs in this domain.

1. The interaction among tasks in shared resources is going to be high. As a result, tasks are
going to have a distribution of execution times rather than a single value. This calls for the
use of statistical analysis tools to produce WCET estimates.

2. The theoretical (analytical) worst-case scenarios that a task can face in terms of execution
time in multicore setups can be simply too pessimistic. To provide for the worst-case timing
interference, those scenarios would need to assume all requests conflict in every access to
every shared resource, resulting in a WCET estimate that can be too pessimistic to be
usable in practice.

In order to capture the first point, we build on several statistical methods as described in Sections
5.2 and 5.3. In order to capture the latter, we need to create a set of contention scenarios, or
contention templates, under which the contender tasks are limited in the contention they can
introduce on the analysis task (Section 5.4). Templates are used to derive realistic contention
scenario that can be used to derive bounds and can be enforced at run-time with a contention
monitoring mechanism.

5.2 Inter-Run Variability
One of the first problem we addressed relates to inter-run variability or IRV. IRV relates to the fact
that a platform as complex as the Orin keeps an internal hardware state that is impossible to reset
after every run. This means that every experiment we carry out starts from different initial
conditions, which translates into IRV. This problem has been studied in the literature [9] with focus
on processors arguably much simpler than the Orin, where HEMs relevant to multicore analysis
increase up to 50% from the minimum value observed. Furthermore, the HEM readings are limited
by the number of PMCs available in the platform. Then if the number of HEMs to analyse is greater
than the number of PMCs, the observation needs to be done in separate experiments of HEM
groups. For instance, if we have 10 HEMs to compare and 5 PMCs, we need to perform 2 separate
experiments with HEM groups of 5, from HEMs 1-5 and another from HEMs 6-10. HEMs 1-5 can
always be compared among themselves, same for HEMs 6-10, because they were measured at
once. But if the IRV is high, runs observed from HEM1 and HEM10, for instance, cannot be directly
compared because the initial conditions are unknown for each run. The combination of IRV and a
low number of PM Cs causes a limited observability. This can be a problem if the number of

36

D 4.1 Interim Platform Technologies Report
Version 1.0

relevant HEMs for the platform is high, like in the Orin as seen in Section 4.2. In the next section
we will observe how the IRV applied also to non-functional counters which monitor shared
resources like cache accesses or misses.

5.2.1 Empirical evidence
Our first experiments focused on running several times the same application reading the same
HEMs in every run. In order to show the IRV we observe the HEM L2D_CACHE_REFILL for different
benchmarks. In case of considerably variable values for the event we can conclude the platform
(the stack indeed) exhibit Inter-run variability and it must be dealt with.

In Figure 25 below, we show the IRV for L2W, L3W, L4W, MEMW benchmarks.

Figure 25 - Inter-run variability for selected benchmarks.

We can observe how, even when not accounting for outliers, all benchmarks suffer from IRV. More
specifically, we computed an adjusted variability (ADJ_VAR) to remove the influence of outliers. In
the adjusted variability, we compute the ratio between the quantile 1% and 99% of the observed

37

D 4.1 Interim Platform Technologies Report
Version 1.0

runs i.e. 𝐴𝐴𝐴𝐴𝐴𝐴_𝑉𝑉𝐴𝐴𝑉𝑉 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(99%)

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(1%) . In this group of benchmarks, the lowest adjusted variability

observed is 30% in MEMW and the highest at 2505% in L3W. Even in benchmarks like L2W where
L2D_CACHE_REFILL usually would report low activity, in the Orin the IRV is still high. These results
show how, even for a fixed HEM, the IRV is still high across different benchmarks. Now, we will
show in Table 1: Relevant HEMs for L2W benchmark another set of observations coming only from
benchmark L2W.

Table 1: Relevant HEMs for L2W benchmark.

L2W ADJ_VAR MAG COR
0x17 244% -2.22 0.74
0x18 373% -2.26 0.93
0x19 372% -1.29 0.93
0x23 687% -3.04 0.28
0x26 423% -3.1 0.14
0x29 382% -2.26 0.92
0x2b 384% -1.89 0.92
0x36 314% -2.15 0.91
0x52 240% -2.22 0.67
0x56 371% -2.27 0.92
0x60 375% -1.54 0.91
0x61 375% -1.67 0.91
0xa0 320% -2.14 0.91
0x4005 211% -1.2 0.86
0x4009 240% -2.22 0.68

Here we want to highlight how for a single benchmark there can be many HEMs which show high
IRV. In L2W we have adjusted variability between 211% and 687%. The second column represents
the difference in order magnitude of the HEM w.r.t. the ET. As we can observe, these HEMs are
within 2 orders of magnitude below the ET. This is done in order to avoid HEMs that can be in low
order of magnitude w.r.t. the ET which would produce trivial high variability.

Finally, we show the correlation between these HEMs and the ET. The correlation is shown to give
evidence that those HEMs contribute to the ET in a significant way. HEMs which have correlation
0 do not provide information on the timing. Similarly, HEMs with correlation 1 reproduce the
behaviour of ET, and therefore provide no information. We filtered the HEMs with correlation
between 0.05 and 0.95. With this table we want to highlight a group of HEMs which i) have high
variability, ii) have magnitude comparable to the ET, and iii) are correlated with the ET in a
significant manner. This implies that, in order to characterise the ET for the L2W, ideally, we need
to observe all HEMs on the table at once. But because of the high IRV this is not directly possible,
and we need a solution that let us merge observation from different HEM groups.

5.2.2 MUCH
As mentioned, the IRV plus the limited number of PMCs cause a limited observability. Due to the
IRV we can treat the HEMs as marginal distributions, which are governed by a joint probability
distribution which is not possible to observe, i.e. an observation with all HEMs at once. Fortunately,
there exists techniques to estimate the joint probability distribution from the observed marginal

38

D 4.1 Interim Platform Technologies Report
Version 1.0

distributions of HEMs [10]. The approach we are using is based on modelling the dependency
structure of the HEMs with copulas. Specifically, we use the technique MUCH which provides a
single output from partially observed data maintaining the dependencies as if they were measured
at once. MUCH is based on the multivariate Gaussian distribution (MVG) to model the relationships
between HEMs and integrate them while maintaining the pairwise correlations among each pair
of HEMs. The multivariate Gaussian distribution is defined as follows,

Where µ� are the estimated mean of each HEM, and 𝛴𝛴� is the estimated pairwise covariance matrix
of all measured HEMs, and 𝑝𝑝 is the number of HEMs. The dependency structure between the HEMs
is stored in the covariance matrix of the MVG. MUCH requires each pair of HEMs to be measured
together in order to estimate their pairwise correlation. Then, each element of the correlation
matrix 𝑉𝑉 is the pairwise correlation of a pair of HEMs. Then, the covariance matrix can be
calculated exactly using the formula:

where 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖(𝑆𝑆) is a diagonal matrix of the standard deviations of the HEMs. It is worth noting that,
even when measuring all pairwise correlations, preserving them at once when merging is a very
complex optimization problem. Measuring every pair of HEMs can become expensive very fast as
the number of relevant HEMs increases. In combinatorics, it is an optimization problem to find the
smallest number of readings required to observe all pairs of HEMs with a given number of PMCs.
For instance, that the optimal experimental design for measuring all pairs from 15 different HEMs
with 6 PMCs is 10 different readings, with 100 runs for each group of HEMs to account for
variability, with 1000 runs we could produce a merge with MUCH in this case. For other cases, in
[11] one can search for the optimal covering design with multiple combinations of HEMs and PMCs

In the following Figure, we show the procedure of MUCH. After generating the optimal number of
readings (1) we compute the correlation matrix (2) and feed it to the MVG model (3). The MVG
allows us to generate synthetic data (4) that mimics the dependency structure of the experimental
data. With (4) we have a model of the joint distribution of HEMs, but the values are synthetic. The
final merge should be with the experimental data. In order to do that, we make use of order
statistics to transfer the dependency of the synthetic data to the experimental data. Given a
random variable 𝑋𝑋 are the order statistic 𝑋𝑋(k) is the 𝑘𝑘-th lowest value of 𝑋𝑋. We translate the data
generated from the MVG to its order statistics (5). What this gives us is a map to arrange the
experimental data which preserves the experimental pairwise correlations.

Figure 26: Procedure for the MUCH algorithm.

39

D 4.1 Interim Platform Technologies Report
Version 1.0

For instance, let us say that the synthetic MVG data in terms of order statistics looks like this 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀
= {HEM1(8), HEM2(3), HEM3(4), HEM4(7), HEM5(1), HEM6(5)}, this means that when HEM 1 takes the 8th
lowest value, then HEM 2 takes its 4th lowest value, and so on. We use the order statistics from
the MVG synthetic data in this way to arrange the experimental data. After arranging, we have a
single output of merged experimental data that maintains the pairwise correlations. While MUCH
requires additional runs, and for this reason we use it in our methodology Figure 26: Procedure for
the MUCH algorithm when we cannot prevent IRV, the accuracy on the preservation of the
pairwise correlation increases with the number of runs. Overall, MUCH deals with IRV as if all HEMs
could be read in the same run, effectively removing IRV given that now HEMs that were measured
in different runs can be compared and analyzed.

 We show in Table 2 the output of MUCH from the merging of experimental runs coming from the
L4R benchmark. The HEMs measured were selected from the list of relevant HEMs in Section 4.2,
and specifically those which have high IRV.

Table 2: merged experiments from MUCH.

As a way to measure the accuracy of the merge we show the pairwise correlation difference of
each pair of HEMs before and after merging with MUCH. Note that the challenge in MUCH is
preserving all pairwise correlations simultaneously: in Table 3 we can see how the correlation
difference is low for all pairs of HEMs.

Table 3: Correlation difference before and after merging.

 0x11 0x45 0x15 0x2a 0x2b 0xa0 0x17 0x18 0x400b 0x19
0x11 0 -0.02 0.01 -0.02 0 -0.02 -0.01 -0.01 -0.05 -0.15
0x45 -0.02 0 0.03 -0.02 0.01 0 0.03 -0.02 0.01 -0.05
0x15 0.01 0.03 0 0 0 -0.02 0.04 0.02 0.06 0.02
0x2a -0.02 -0.02 0 0 0.02 -0.01 0.07 -0.01 0 -0.06
0x2b 0 0.01 0 0.02 0 0 0.01 0 0.01 0.03
0xa0 -0.02 0 -0.02 -0.01 0 0 -0.03 -0.01 -0.02 0
0x17 -0.01 0.03 0.04 0.07 0.01 -0.03 0 -0.03 0.09 -0.08
0x18 -0.01 -0.02 0.02 -0.01 0 -0.01 -0.03 0 -0.01 -0.06
0x400b -0.05 0.01 0.06 0 0.01 -0.02 0.09 -0.01 0 -0.06
0x19 -0.15 -0.05 0.02 -0.06 0.03 0 -0.08 -0.06 -0.06 0

0x11 0x45 0x15 0x2a 0x2b 0xa0 0x18 0x17 0x400b 0x19
1365418 41692 466 89348 258608 143488 140366 52524 89254 1131969
1367885 42510 475 99571 271593 151482 143760 53278 100836 1192341
1321751 38681 475 91269 272021 150383 142908 49725 91169 1176444
1375869 42813 476 93540 259103 145442 140724 53631 93534 1144997
1346175 42589 463 97651 273419 152187 143978 53371 98047 1199099
1367048 43350 473 94906 260957 142982 139957 54036 94866 1128890
1314183 37701 619 88345 266902 144565 140022 48833 88276 1139224
1336464 41682 476 95189 270054 146733 141496 52514 95199 1154454
1361514 41295 468 93081 267294 148630 142777 52206 93086 1164818

40

D 4.1 Interim Platform Technologies Report
Version 1.0

5.3 Statistical Analysis based on the Markov Inequality
As discussed above, the inherent complexity of heterogenous high-performance MPSoCs and the
AI-based applications running on top of them is jeopardizing the application of traditional methods
for timing analysis, which are well suited for comparatively simpler systems and applications [12].
Probabilistic timing analysis techniques have been increasingly considered as alternative
approaches to comply with timing verification requirements in an effective and efficient way in
complex scenarios. Probabilistic methods entail a paradigm shift with respect to deterministic
approaches and their use for supporting certification of critical systems is still under debate.

The approach we intend to follow in SAFEXPLAIN is oriented towards certification and is therefore
considering a practical approach making the use of statistical methods more appealing from a
traditional perspective. SAFEXPLAIN considers a more holistic approach where (probabilistic)
timing bounds are used in combination of an augmented assured safety net concept that is not
anymore limited to capturing and reacting to timing failures but provides adequate coverage also
for timing failures. Diagnostic and monitoring mechanisms are therefore responsible for capturing
residual risk of timing failure. This approach allows to consider timing overruns within the concept
of residual random fault in ISO-26262 [13].

The score of probabilistic methods in the literature is mainly focused on Extreme Value Theory
(EVT). EVT has been shown to provide proper conservative timing upperbounds in general. In
timing analysis, the peak over threshold (PoT) methodology has been studied extensively. The
basis of PoT is that the tail of the distribution, defined from a threshold where the extreme values
belong, pertains to the generalised pareto distribution (gpd). In general, PoT works adequately
when the threshold for the tail can be adequately estimated. However, in more complex scenarios
EVT can struggle to assess the nature of the tail.

Figure 27: Histogram for IMAGE0 of the toy model.

Figure 28: Histogram for IMAGE1 of the toy model.

In Figure 27 and Figure 28, we show the histograms of the execution time distribution of processing
two images with the Toy Model developed by WP5 [14]. The rest of the images show a similar
pattern. These execution time profiles show a mixture distribution, which is complex to analyse
from an EVT point of view due to the wide shape of the distribution and the lack of information on
the tails.

41

D 4.1 Interim Platform Technologies Report
Version 1.0

Recently, an alternative method to upperbound extreme value based on Markov’s Inequality was
proposed [15]. Let 𝑋𝑋 > 0 a positive random variable, then Markov’s Inequality is defined as:

Which means that the cumulative probability that 𝑋𝑋 takes a value bigger than 𝑏𝑏 is bounded by the
expected value of 𝑋𝑋 divided by 𝑏𝑏. Markov’s Inequality works properly for lower values of 𝑏𝑏, but for
more extreme values it gets overly pessimistic. Markov’s Inequality can be modified to provide
bounds which are much close to the real cumulative probability with an increasing non-negative
function like the power function. Here we define Markov’s Inequality to the power-of-k function
as:

where 𝐸𝐸(𝑋𝑋𝑘𝑘) are the moments of the distribution of 𝑋𝑋. Because in general these moments are not
known, we use the sample moment estimator:

This estimator is unbiased, but it is inconsistent for higher values of 𝑘𝑘. As we increase the value to
be upperbounded, 𝑏𝑏, the value of 𝑘𝑘 needs to increase also to get tight upperbounds. In order to
obtain tight upperbounds, in [15] there is an implementation of Markov’s Inequality to the power-
of-k with an algorithm called Restricted 𝑘𝑘 (RESTK) that limits the value of k used in accordance to
the target probability to upperbound. To obtain a limit on 𝑘𝑘 we exploit a linear relationship
between the logarithm of the probability and the highest value of 𝑘𝑘 for a tight upperbound.

Here we show some preliminary results for the timing analysis of the Toy Model [14] for the timing
profile of two images. In this analysis outliers were removed to provide a more consistent
projection of the extreme values. We provide two projections of the timing for extreme quantiles
with two models. One based on EVT, by fitting an exponential distribution to the tail of the
empirical values; and the other using the RESTK algorithm based on Markov’s Inequality. The EVT
methodology to select the threshold for the tail is based on minimizing the estimated quantiles
mean absolute error, of the empirical quantiles and the estimated model [16]. In Figure 29Figure
29: extreme value estimates with the Exponential and RESTK for IMAGE0 and Figure 30 we show
the estimates of the extreme values for IMAGE0 and IMAGE1 respectively. The exponential
distribution is regarded to be a proper upperbound for the extreme values. However as we can
see, while in Figure 29 it seems to estimate quantiles which are quite far from the empirical
distribution; in Figure 30 it seems to be too conservative in its extreme value estimations. In
contrast, RESTK provides a more consistent projection of the extreme values. Because we do not
have the reference values for extreme quantiles to assess their accuracy, we can compare these
models by their consistency in the extreme value projections. In Figure 31 we provide some results
computed with the ratio between the estimated extreme value at probability 𝑝𝑝 = 10−8 and the
maximum value in the empirical data. There we can see how RESTK provides a much more
consistent extreme value estimation at around 8% increase w.r.t. the maximum value observed.
The Exponential model instead is much more inconsistent across all timing profiles with estimates
up to 20% increase w.r.t. the maximum value observed.

42

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 29: extreme value estimates with the Exponential and RESTK

for IMAGE0.

Figure 30: extreme value estimates with the Exponential and RESTK

for IMAGE1.

Figure 31: Ratio of the estimated value and the maximum observed value in the sample for all 21 images.

5.4 Interference monitoring mechanism and Templates
While MPSoCs offer the necessary performance for complex AI-based applications, they also
expose to multicore timing interference or contention impact. Timing interference stems from
massive hardware resource sharing and the delays potentially incurred when requests hit the same
resource simultaneously. The incurred variability cannot be disregarded [17] and can have
disruptive and disproportionate effects on the timing bounds computed in isolation. The main
problem with contention modelling approaches is that they are meant to be conservatively
bounding the impact of interference, which translates into assuming all concurrent requests to a
given resources are serialized. This leads to overly conservative bounds, accounting for scenarios
that, despite being theoretically possible, will never happen in practice as overlapping in time of
requests to the same device cannot always happen.

More practical approaches, in view of avoiding excessive pessimism, build on observation of
contention impact under pre-defined multicore scenarios where the application under analysis is
deployed against synthetic applications or attackers that put very high pressure on specific shared
resources, intended as interference channels. We note, however, that there is no silver bullet
solution and also these methods based on empirical observations can fall short: on one hand, they
can only support arguments based on the observed scenarios so that if the attackers are not

43

D 4.1 Interim Platform Technologies Report
Version 1.0

aggressive enough, we may not consider critical scenarios at run-time. On the other hand, too
aggressive attackers may be overly effective and hitting the interference channels more than
actually possible at run-time, given the actual applications that will be executing in the systems at
operation.

5.4.1 Templates
The approach adopted in SAFEXPLAIN exploits the idea of templates as a set of configurable
attackers that are built and configured in a way that resembles (and only slightly over-represent)
the non-functional behavior of the contender applications in the system. The concept of templates
builds on the concept of signatures introduced in [18]. The approach then consists in defining
different contention thresholds by adjusting the ‘aggressiveness’ of templates and perform an
empirical assessment of the interference suffered by the target application, under different but
realistic contention scenario mimicking the behaviour of the actual co-runner applications, thus
preventing excessive pessimism. We also address the possible residual lack of representativeness
of contention scenarios at analysis time by deploying a safety mechanism, intercepting when
contention scenario at run-time exceeds that assumed and synthetically enforced at analysis time.

We have developed a set of prototype templates that offer a coarse-grained configurability, which
we aim at improving in the next steps while adapting templates to automatically capture use case
scenarios. We report below results on the experiments conducted to assess the behavior of
templates.

In Figure 32 we can see the execution times of different templates tailored to put different
amounts of pressure on the shared L3. The execution time is presented relative to the single core
execution time of L3R. The contenders are presented as different series, where L3W is the
benchmark putting full pressure on the L3 cache, while L3W-6% to L3W-1% put a decreasing
amount of pressure on the L3 cache, being L3W-1% the one putting less pressure of all the
templates. As expected, it can be observed that the L3W benchmark causes the most slowdown
due to it being the most aggressive contender, while L3W-1% has an execution time almost
identical to the baseline case where no pressure is observed.

44

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 32 – Execution time of different templates of L3W compared to the baseline in single core. All contenders running in the

same cluster.

We have been also working on an early prototype for the contention monitoring mechanism. Such
mechanism is mainly consisting in two modules: one responsible for detecting whenever
contention thresholds are exceeded, and another one responsible for reacting to such events. In
this first phase we focused on the capability of intercepting contention thresholds overruns by
focusing on the identification of what hardware events to exploit and how to monitor them. We
converged on an initial set of HEMs that are accessible via PMULib and can be arguably related to
activities on shred resources and, hence, contention. We will further refine this selection by
applying correlation analysis techniques to an extensive set of HEM tests. The reaction module is
prototyped as a warning mechanism that notifies contention anomalies at system level, exploiting
Middleware system level diagnostic support (see Section 6.2).

5.5 Technological assessment
In accordance with the task main objectives, we have been working on the definition of an effective
strategy for the timing analysis of DL-based components, covering both characterization of timing
behavior and impact of multicore timing interference.

In this first reporting period we have been focusing on the two aspects by developing an holistic
strategy, combining statistical timing analysis and interference monitoring together with
interference mitigation solutions identified after an in-depth analysis of the hardware and
software stack.

On the timing analysis aspect, we focused on the identification of the most appropriate statistical
method to capture the inherent variability (hence complexity) of AI modules. We have taken

45

D 4.1 Interim Platform Technologies Report
Version 1.0

advantage of early release of the SAFEXPLAIN stack (including the Middleware) and an illustrative
AI module (Toy Model, see [14]) developed in WP5 to evaluate different methods in a
representative setup. On the timing interference analysis part, we have been identified an
effective strategy (aligned with WP2 FUSA approach) to analyse timing interference in a tight way
and provide assurance at run-time by leveraging contention monitors. Prototype tools have been
developed and will be refined/complemented for the early technological integration.

Delivered tool and positioning in the SAFEXPLAIN stack
Prototype tools, while available in the common project code repository, they are not meant to be
exploited yet by the end users. Prototypes will be mature in time for early tool integration, as
planned.

− Statistical timing analysis tool: it consists in a set of R scripts that can be used to analyse
raw sample data corresponding to execution time samples. The tool is functionally ready
and will be shared with the project partners together with exhaustive documentation and
examples.

− Templates: consisting in a set of synthetic code snippets that can be configured to mimic a
real application in terms of timing interference they can produce. Templates have been
already deployed for preliminary analyses and will be undergo few improvements on
configurability before being shared with project partners in time for tool integration.

− Contention monitoring: early prototype tool to monitor HEMs correlated to resource
contention through PMULib. Will complement monitoring with a reaction strategy in case
predefined resource usage thresholds are exceeded.

Intra-WP dependencies
Within the scope of WP4, the activities in T4.3 are building on the results achieved in other WP4
tasks:

T4.1: The multicore timing interference strategy devise in T4.3 builds on the conclusions
developed from the in-depth hardware analysis on the Orin platform. The identification of
the interference channels is a prerequisite for the identification of the HEMs that are
correlated to resource contention and must be therefore tracked to monitor contention at
run-time.

T4.2: For this task, we built on PMULib as a fundamental enabler for collecting the execution time
samples provided in input to the timing analysis tools developed in this task. The same
library is also enabling the monitoring of resource usage to intercept activity from
contender tasks exceeding the expected resource usage thresholds at operation.

T4.4 The resource usage monitoring mechanism we are developing in this task is building on the
functionalities offered by the SAFEXPLAIN middleware to perform the monitoring as
independent thread and to exploit system level diagnostic support.

Inter-WP contribution and alignment
The contributions of this task are also relevant in the scope of other work packages. Within the
extended scope of the project, hence outside of WP4, T4.3 software tools are meant to be
exploited for supporting other work packages objectives, but mainly WP2 ones:

WP2: Timing analysis tools are meant to support the (timing) V&V strategy, covering both timing
characterization and multicore timing interference mitigation strategy, including run-time
monitoring of resource usage. The timing analysis and interference mitigation strategy and
tools are fundamental inputs for the deployment of the timing V&V strategy on the use
cases, in alignment with WP2 FUSA strategy and Safety Patterns [1]

46

D 4.1 Interim Platform Technologies Report
Version 1.0

WP5: The use cases can use PMULib to support performance tuning and optimization tasks.

The alignment with other work packages, and WP2 in particular, is guaranteed by the continuous
interaction between the work packages. The main aspects on which we consolidated the technical
alignment with WP2 can be summarized as follows:

1. Platform configuration. Platform configuration is a critical concept form the FUSA
perspective as it affects performance, functional correctness, and eventually also the degree
of freedom from interference that can be obtained on the system. Configuration must be
fixed, analysed, and protected from unintended changes at operation [1]. The most
prominent configuration affecting performance is the power mode. Our approach
advocates for fixing it and keeping it unchanged during system operation. When it comes to
interference mitigation, the timing characterization strategy defined in this section is largely
dependent on the configuration of the system in terms of, for example, execution mode of
COU clusters (e.g. lockstep), partitioning of the cache hierarchy, and application to core
mapping. The exact configuration is determined by the Safety Pattern, which can also be
seen a selection among the possible configuration options surveyed in this document.

2. Usage of resources. Safety Patterns also need to accommodate specific requirement from
the system and the set of provided functionalities. We considered it relevant to intercept
potential limitation and constraints from the case studies as early as possible in the
definition of the Patterns. We submitted a questionnaire to the case study providers to
understand the resources exploited in their case studies. We have determined that they can
use from 1 to 3 CPU clusters and the GPU. At the moment, they are not using other
accelerators like PVA or DLA. This has left ample freedom for the definition of the Safety
Patterns.

3. Interference channels identification. Among all hardware features in the Orin, we have
identified the cache levels and the path to memory as the main source of interference aka
interference channels. The first and second level (DL1 and UL2) are private, and we have
shown that tasks do not suffer increase in execution time or L2 miss rate, when they run
with other contenders. For the UL3 we propose to enable hardware cache partitioning. For
the L4 and memory not simple ways of space isolation are possible, so we advocate for
contention templates and probabilistic analysis to cover the residual interference stemming
from them (see Section 5.1).

4. WCET and timing analysis strategy. As discussed in Section 5.1, we adopt an holistic
approach to timing analysis that complements statistical pWCET analysis with timing
interference control mechanism based on shared resource monitoring. We add as part of
the configuration the contention template that limits the number of accesses that
contender CPUs can perform to the L4 and memory (as lower memory layers can be
partitioned). Under the specific configuration scenarios, we will perform stress testing to
derive execution time measurements of the task under analysis in stress conditions induced
by templates. The values observed will be used to feed statistical timing analysis and obtain
reference thresholds to be used to implement run-time control mechanism, reacting to
over-use of shared resources by tasks.

T4.3 Next steps
Task T4.3 is running until m30. Timing analysis tools are already consolidated and may require only
minor refinements and tailoring. After assessing different statistical methods, in the next period
we aim at improving the degree of automation we can offer from sample collection to obtaining
timing results. To better support timing-related analysis and resource usage monitoring, we aim
at developing a stronger integration with SAFEXPLAIN middleware, with a view to making timing

47

D 4.1 Interim Platform Technologies Report
Version 1.0

analysis as effortless (and transparent) as possible to the end users. In general, T4.2 will be
providing continuous support to other tasks and work packages by refining and further developing
tool in support to the timing verification strategy. We foresee no obstacles in proceeding towards
the tool integration as expected.

48

D 4.1 Interim Platform Technologies Report
Version 1.0

6 Platform- and System-level V&V support (T4.4)
This task focuses on platform and system-level support for integration and validation of DL libraries
and explainable AI approaches on top of the target platform. The main objective is to support the
integration of the different FUSA and AI solutions on the platform and facilitate (also by means of
enhanced automation) the V&V campaign by providing a consolidated, standardized testing
environment supporting the collection of relevant metrics for functional and non-functional
verification (e.g., AI metrics).

The approach taken in SAFEXPLAIN is building on the definition of an abstraction layer to facilitate
integration of SAFEXPLAIN solutions (both FUSA and AI) on the platform and across use cases. The
abstraction layer, which we call SAFEXPLAIN Middleware is meant to capture the requirements in
terms of traditional V&V support and off-line/on-line support to (explainable) AI modelling,
training, and prediction methods.

In this section, we start with an introduction to the Middleware concept and how it fits in the
SAFEXPLAIN middleware. Next, we provide a description of the main features it provides both for
capturing FUSA/AI needs and for supporting V&V activities.

6.1 SAFEXPLAIN Middleware concept
After considering the objectives of this tasks and the need for supporting diverse configurations
we concluded that we needed an abstraction layer to separate the common platform- and system-
level concerns from the particular AI system and applications.

The two main aspects we wanted to capture with the proposed abstraction are:

• Provide a common setup for porting use cases: this aspect covers both the need for
simplifying the porting by taking care of low-level hardware configurations and setups, and
the benefits (in terms of WP4 objectives) of having a common environment across all use
cases.

• Compliance with FUSA architecture: we aimed at enforcing compliance with FUSA
architecture from WP2 by construction. The user is not required to re-implement or heavily
adapt their system to cover FUSA aspects and modules (e.g., diagnostic levels, etc.). The
middleware is meant to provide a set of consolidated components that can be deployed
and used as containers for the particular applications. Not all components are mandatory,
but a shortlist is necessary to comply with the baseline FUSA requirements and to exploit
at full the benefits of SAFEXPLAIN explainable and dependable AI solutions.

• V&V support: as SAFEXPLAIN solutions need to be tested and assessed in the scope of a
standard V&V campaign aiming at system qualification and certification. In this respect, the
goal of the Middleware is to provide support for standard V&V practice by means of: (i)
support automated, repeatable testing; (ii) collection of functional results; (iii) collection of
timing metrics and execution time samples; (iv) collection of AI metrics (accuracy,
deviation, errors, etc.); and (v) support life-cycle management features.

The Middleware is therefore meant to support the execution of the use cases in a consistent
environment where FUSA and explainable AI concepts are implemented. The middleware is also
supporting the integration of DL and Explainability libraries on top of the hardware and software
stack and consistently with the FUSA architecture and the concrete Safety Patterns.

49

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 33 - SAFEXPLAIN Middleware overview.

Figure 33 illustrates the positioning of the Middleware layer (and its provided API) within the
SAFEXPLAIN stack. We observe how the Middleware support use cases and AI libraries and
integrates with the PMULib, which can be accessed through the Middleware or independently
from it.

Perhaps the most interesting aspect in the diagram is the relation between the Middleware and
ROS2 [5]. ROS2 stands for version 2 of the Robotic Operating System, which is a well-known and
widely used middleware layer supporting a distributed semantics among nodes that communicate
each other through a publisher-subscriber model. The Middleware is indeed implementing a
wrapper layer around ROS2 to provide a set of standard services and features. Therefore, we
exploit the well-consolidated framework to incorporate SAFEXPLAIN features and solutions in a
more or less transparent way to the user application. In this way, we exploit the familiarity of end
users with ROS2 semantics (most of AI based application are already modelled on ROS2 semantics)
while at the same time being able to deploy ad hoc solutions. It is also worth noting that the user
application is also allowed to access some ROS 2 functionalities without using the wrappers
provided by the Middleware. What is relevant, instead, is that the user application is using those
wrappers that implement the FUSA architecture and explainability logic.

In the next sections we will focus on the main features and support provided by the Middleware
layer in terms of FUSA and AI elements, and V&V support.

6.2 SAFEXPLAIN Middleware support
6.2.1 Support to FUSA Architecture
The functional-safety architectural pattern presented on Section 2 of D2.2 [1] represents a
reference architecture to build a safety critical system deploying AI-based modules, integrating
different safety mechanisms to ensure the fulfilling of the system safety objectives. In particular,
the proposed safety architecture can be tailored for each use-case, including (or not) software
blocks in charge of:

- Implementing diverse redundancy within the DL model.
- Implementing a non-AI fallback element.
- Supervising the DL output.

50

D 4.1 Interim Platform Technologies Report
Version 1.0

- Stablishing a safety envelope (i.e. for safe operation).
- ...

Nonetheless, it’s expected that all use-cases make use of diagnostic and monitoring mechanisms
common also to traditional functional safety applications. The SAFEXPLAIN Middleware provides
several libraries and services to standardize access to the core functionalities of platform
applications, including to those traditional diagnostic and monitoring mechanisms. The
Middleware is designed to deploy a set of standard and custom components to allow a
straightforward and modular mapping between FUSA architectural pattern (and concrete Safety
Pattern) and concrete use case deployment.

In the following discussion, we’ll discuss the packages developed in the context of the SAFEXPLAIN
project. The SAFEXPLAIN libraries and executables hereafter discussed are named as smw_*.

In the SAFEXPLAIN Middleware, the supervision of all platform applications is provided by a
platform health manager (package smw_health_manager), as illustrated in Figure 34.

When it detects a violation of the configured temporal, logic or health constraints, it can trigger an
appropriate error handling. Depending on the detection violation, the health manager shall be
configured by the application developer (through a Safe State Setup file) to:

- Trigger an application stop or reset
- Trigger a platform reset, through an external device (e.g. external watchdog)
- Request a pre-defined action from the safety control

Application developers are advised to develop their safety-related applications inheriting from the
smw_base_application::BaseApplication (package smw_base_application), so that they can be
configured as a platform supervised entity. Each supervised entity can communicate the platform
health manager that critical checkpoints have been reached, thus allowing for temporal (alive and
deadline) monitoring.

Currently, the Platform Health Manager already supports automatic discovering of all safety-
related base applications, and it provides alive and deadline monitoring upon user configuration.
Logical supervision might also be performed through checkpoint reporting, but it’s not supported
yet. Indeed, no use-case has manifested the need for it, so it has been handled as a secondary
feature that might be implemented in the future.

Health status monitoring instead can be used to collect diagnostic and monitoring information
from other elements of the system, such as the Safety Control and the Supervision Components
of the AI-based subsystem. For instance, the L0-L1 diagnostics can notify the platform health
manager whether redundant instances are providing too mismatching results or that a particular
AI instance is using excessively a system resource. In such a case, through a Safe State Setup file,
rules can be defined by the application developers upon the notification of a certain health status,
leading to the execution of a different action list. Even though the platform has already been
designed for supporting this Safe State Setup, the implementation is still a working-in-progress
activity and it’s one of the next steps in implementation.

In the SAFEXPLAIN platform, the inter-process communication (IPC), including checkpoint and
health status reporting, is addressed at its core by the ROS2 DDS. However, instead of employing
the usual publish/subscribe mechanisms of ROS2, application developers are advised to use the
package smw_comm.

51

D 4.1 Interim Platform Technologies Report
Version 1.0

Currently, the smw_comm is a light wrapper on top of the ROS2 IPC utilities. In addition to the
standardized features, it allows data consumers to have access to input data buffering. This feature
is absent in ROS2, but it’s especially useful for the use-cases, since the input data streaming
possibly happen at a faster rate than the AI processing constituents. A synchronization mechanism
between different data sources – allowing them to be processed together – is foreseen to be
implemented as part of the next steps. Finally, the smw_comm might support access control
policies that mediate the request to data and services maintained by the platform.

In SAFEXPLAIN Middleware repository (https://gitlab.bsc.es/safexplain/safexplain_middleware),
the full package list developed for the SAFEXPLAIN project can be found. Besides the ones
previously discussed, this list includes a wrapper for the ROS2 logging libraries (package
smw_logging), helper classes for testing (package smw_testing) and a collection of executables and
libraries used internally in the platform to support the aforementioned functionalities provided
(e.g. packages smw_core, smw_lifecycle_manager, smw_state_manager, etc.).

Finally, application developers can count on the examples provided in the package smw_examples
to support their development. It includes a fully functional toy model, that will be keep updated
with the new additions to the platform.

Figure 34 - Middleware architecture overview.

52

D 4.1 Interim Platform Technologies Report
Version 1.0

6.2.2 Support to Verification and Validation
The Middleware software architecture accommodates also standard Verification & Validation
concepts, as illustrated in Figure 35. CI/CD pipelines enhance the process of merging new code in
Gitlab by providing automated tests of three types:

• Unit tests: targets the smallest units of code (e.g. a function or an object).
• Component tests: verifies the correct behaviour of a module, which, in the case of ROS2, is

a node. The tests shall verify the correct behaviour of the node by calling its interfaces,
regardless the details of the internal implementation.

• Integration tests: verifies that multiple modules of the system are capable of cooperating;
through integration tests, we shall make sure that applications can use the core
functionalities of platform applications.

o For example, we shall make sure that the Platform Health Manager will be able to
react in case of a violation of a configured temporal, logic or health constraint from
an application.

Currently, unit and components tests have been written in C++ on top of the Google Testing and
Mocking Framework for some fundamental packages of the system (as the
smw_lifecycle_manager).

The current work in progress is in the following fronts:

• Creating the first unit and component tests for code developed in Python, using the pytest
framework.

o The first package targeted to have tests written in Python is the
smw_base_application. Since the applications will inherit from the class
smw_base_application::BaseApplication, that will also allow developers to have
samples of how to test their own modules.

• Improve and measure the coverage of the unit and component tests, so to reveal
inadequacy or unintended functionalities.

o Test coverage can be verified through gcov (C++), coverage.py (Python) or other
similar tools.

• Construct easy-to-use utilities that will allow application developers test their packages not
only singularly, but in the context of the platform.

o For example, we’ll offer some sample examples in which a Rosbag will be played
alongside the test; in this way, application developers can provide data collected by
sensors on the field to their application tests.

As a final step, SIL testing can be employed to verify and validate the correct operation of the
platform, in case the simulators chosen by the application developers are capable to be integrated
with ROS2. Finally, hardware tests with the Jetson Board are foreseen to verify the core
functionalities of the platform work as intended as well as the correct interaction with external
hardware, since for the L3-level diagnostics the platform health manager shall communicate with
an external device (watchdog).

53

D 4.1 Interim Platform Technologies Report
Version 1.0

Figure 35 - Overview of the verification and validation process for the platform development.

6.3 Technological assessment
In accordance with the task main objectives, we have been designing and developing a set of
software libraries to allow use-case applications to have access to the platform core features. The
SAFEXPLAIN Middleware have been identified as an efficient means to provide the required
functionalities while at the same time supporting the deployment of Safety Patterns [1].

Delivered tool and positioning in the SAFEXPLAIN stack
At M18, we have been able to consolidate a partial implementation of those libraries, including
the main interfaces with the use-case applications. More specifically, this task has delivered:

I. a functional set of libraries that allows the use-case applications to have access to the
platform resources (smw_base_application, smw_comm, smw_logging).

II. a functional set of the libraries that constitute the components needed to support the
health management of the platform (smw_health_manager, smw_health_client,
smw_lifecycle_manager, smw_state_manager, smw_state_client).

III. a prototype library (smw_testing) to support testing on the platform.
IV. a set of examples that allow use-case developers to port their applications to the platform

and at the same time meet FUSA architectural constraints.

The developed tools allowed for early testing and initial integration efforts both in the scope if
WP4 (PMULib, timing analysis instrumentation, etc.) and WP2 (FUSA architectural patterns) and
WP5 (case study porting). Tools are going to be further refined and improved in the next months,

54

D 4.1 Interim Platform Technologies Report
Version 1.0

in line with early feedback received while advancing in the porting of the use cases and Safety
Patterns to the platform.

Intra-WP dependencies
Within the scope of WP4, the SAFEXPLAIN middleware has been developed to provide an easy
integration of the PMULib (Section 4.3) to the use-case applications running on the platform.

− PMULib integration: the instrumentation library has been integrated in the Middleware so
that it can be deployed automatically to track timing information at node level, allowing
configuration, instrumentation, and data collection in a transparent way, without requiring
any modification to the functional specification.

Inter-WP contribution and alignment
The contributions of this task are also relevant in the scope of other work packages, and the
alignment with them has been ensured through continuous interaction.

WP2: T4.4 provides a concrete implementation of the reference safety architecture proposed by
WP2 (T2.3 and T2.4). As a result, the software libraries developed within T4.4 facilitate
compliance of the use-case applications with the reference safety architecture and serves
as a baseline for deploying the Safety Patterns described in [1].

WP5: T4.4 provides use case developers a set of libraries that render easier the access to
communication, logging, diagnostic and safety mechanisms by the use-case applications.
Additionally, the Middleware is being developed to provide partially automated V&V
support. Finally, a set of examples have been provided for developers to integrate their
applications on the platform.

T4.4 Next steps
As previously discussed, we will devote next most of the effort to complete the implementation of
the platform health management, to improve the coverage of unit, component, and integration
tests as well as to develop utilities to provide automated V&V support. Finally, we will continue to
provide support to FUSA architecture mapping, use-case applications porting, by improving and
integrate new features and to refine the already existing ones.

7 Acronyms and Abbreviations
CCPLEX CPU Complex

COTS Commercial Off The Shelves

CUDA Compute Unified Device Architecture

DSU-AE DynamIQ™ Shared Unit

FUSA Functional Safety

GPC Graphics Processing Clusters

GPU Graphics Processing Unit

HEMs Hardware Event Monitor

MCF Memory Controller Fabric

OS Operating System

PMC Performance Monitoring Counter

PMU Platform Monitoring Unit

ROS2 Robotic Operating System version 2

RT Ray Tracing

SCF System Coherency Fabric

SCU Snoop Control Unit

SDK Software Development Kit

SM Streaming Multiprocessor

V&V Verification and Validation

56

D 4.1 Interim Platform Technologies Report
Version 1.0

8 References

[1] SAFEXPLAIN, “D2.2 DL Safety Architectural Patterns and Platform,” 2024.

[2] NVIDIA, “NVIDIA Jetson AGX Orin Developer Kit User Guide,” [Online]. Available:
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-
guide/index.html .

[3] ARM, “Cortex-A78AE,” [Online]. Available: https://www.arm.com/products/silicon-ip-
cpu/cortex-a/cortex-a78ae.

[4] NVIDIA, “NVIDIA Jetson AGX Orin Series - A Giant Leap Forward for Robotics and Edge AI
Applications - Technical Brief,” 2022.

[5] “ROS2 - Version 2 of the Robot Operating System (ROS) software stack,” [Online]. Available:
https://github.com/ros2.

[6] NVIDIA, NVIDIA Orin Series Technical Reference Manual (DP-10508-002), 2022.

[7] NVIDIA, “Integrated GPU cache coherence on Orin,” [Online]. Available:
https://forums.developer.nvidia.com/t/integrated-gpu-cache-coherence-on-orin/263662.

[8] NVIDIA, “Xavier Series SoC Technical Reference Manual,” [Online]. Available:
Xavier_TRM_DP09253002.pdf.

[9] S. Vilardell, I. Serra, E. Mezzetti, J. Abella and F. J. Cazorla, “MUCH: exploiting pairwise
hardware event monitor correlations for improved timing analysis of complex MPSoCs,” in
Symposium on Applied Computing, 2021.

[10] L. V. e. a. Montiel, “Approximating Joint Probability Distributions Given,” Decision Analysis,
2013.

[11] D. Gordon, “Covering Designs,” [Online]. Available: https://www.dmgordon.org/cover/.

[12] J. Abella, C. Hernandez, E. Quinones, F. J. Cazorla, P. Ryan COnmy, M. Azkarate-askasua, J.
Perez, E. Mezzetti and T. Vardanega, “WCET analysis methods: Pitfalls and challenges on their
trustworthiness,” in IEEE Symposium on Industrial Embedded Systems (SIES), 2015.

[13] I. Agirre, F. J. Cazorla, J. Abella, C. Hernández, E. Mezzetti, M. Azkarate-askatsua and T.
Vardanega, "Fitting Software Execution-Time Exceedance into a Residual Random Fault in
ISO-26262," in IEEE Trans. Reliability, 2018.

[14] SAFEXPLAIN, “D5.1 Case study stubbing and early assessment of case study porting,” 2024.

[15] S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla and J. del Castillo, “Using Markov’s
Inequality with Power-Of-k Function for Probabilistic WCET Estimation,” in 34th Euromicro
Conference on Real-Time Systems (ECRTS 2022), 2022.

[16] L. F. Arcaro, K. P. Silva and R. S. D. Oliveira, “On the Reliability and Tightness of GP and
Exponential Models for Probabilistic WCET Estimation,” in ACM Trans. Des. Autom. Electron.
Syst., 2018.

57

D 4.1 Interim Platform Technologies Report
Version 1.0

[17] P. K. Valsan, H. Yun and F. Farshchi, “Taming Non-Blocking Caches to Improve Isolation in

Multicore Real-Time Systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2016.

[18] G. Fenandez, J. Jalle, J. Abella, E. Quinones, T. Vardanega and F. J. Cazorla, “Resource usage
templates and signatures for COTS multicore processors},” in ACM Design Automation
Conference (DAC), 2015.

[19] European Union Aviation Safety Agency (EASA), “EASA Concept Paper: guidance for Level 1
& 2 machine learning applications,,” 2023.

[20] R. Padilla, S. Netto and E. da-Silva, “A Survey on Performance Metrics for Object-Detection
Algorithms,” in International Conference on Systems, Signals and Image Processing (IWSSIP),
Niteroi, Brazil, 2020.

58

D 4.1 Interim Platform Technologies Report
Version 1.0

9 Annex 1 – PMULib interface
In this annex PMULib interfaces are described. The functional documentation refers to the
following custom types and constants:

typedef int pmu_result

static const pmu_result A78AE_PMU_RESULT_OK = 0

 static const pmu_result A78AE_PMU_RESULT_ERR = -1

9.1 Function Documentation
9.1.1 a78ae_pmu_configure()
pmu_result a78ae_pmu_configure (unsigned int mask,

 const unsigned int * events

)

Configure the counters specified in mask to count the events specified in the events array.

Parameters

mask A mask of the counters to reconfigure in this call. If the nth bit is set, the nth will
be configured to count events[m]

events Array of event IDs to count. It must contain exactly as many items as bits are set in
<mask>.

Returns

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.

9.1.2 a78ae_pmu_counters_available()
unsigned a78ae_pmu_counters_available (void)

Return the number of counters available in the platform for simultaneous use.

Returns

The number of counters that can be used simultaneously in the platform.

9.1.3 a78ae_pmu_read_counters()
pmu_result a78ae_pmu_read_counters (unsigned int mask,

 uint32_t * values

)

Read the counters specified in mask and store its values in the supplied array.

59

D 4.1 Interim Platform Technologies Report
Version 1.0

Parameters

mask A mask of the counters to read in this call. If the nth bit is set to one, the value of
counter n will be written to values[m]

values Array where counter values will be stored. It must contain exactly as many items
as bits are set in <mask>.

Returns

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.

9.1.4 a78ae_pmu_reset_counters()
pmu_result a78ae_pmu_reset_counters (unsigned int mask)

Reset the counters specified in mask.

Parameters

mask A mask of the counters to reset in this call.

Returns

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.

9.1.5 a78ae_pmu_start()

void a78ae_pmu_start (unsigned int mask)

inline

Starts counters, causing them to increment when the configured event takes place. Callers MUST
NOT assume that all counters are started at the same time.

Parameters

mask Counters to start. Nth counter will be started if the nth bit is set.

9.1.6 a78ae_pmu_start_global()

void a78ae_pmu_start_global (void)

inline

Starts all counters globally, allowing all of them to increment. Whether this call is equivalent to
pmu_start with all bits set is implementation dependent, but its usage is preferred over the latter,
as most PMUs support a global enable/disable in hardware which will be used by this function (if
present) but never will for the non-global variant.

9.1.7 a78ae_pmu_stop()

void a78ae_pmu_stop (unsigned int mask)

inline

Stops counters, preventing them from incrementing. Callers MUST NOT assume that all counters
are stopped at the same time.

60

D 4.1 Interim Platform Technologies Report
Version 1.0

Parameters

mask Counters to stop. Nth counter will be stopped if the nth bit is set.

9.1.8 a78ae_pmu_stop_global()
void a78ae_pmu_stop_global (void)

Stops all counters globally, preventing all of them from incrementing. Whether this call is
equivalent to pmu_stop with all bits set is implementation dependent, but its usage is preferred
over the latter, as most PMUs support a global enable/disable in hardware which will be used by
this function (if present) but never will for the non-global variant.

9.2 Macro Documentation
Library event values can be configured using the event ID as specified in the manual, or the macros
below.

Macro Value
PMU_A78AE_SW_INCR 0x0
PMU_A78AE_L1I_CACHE_REFILL 0x1
PMU_A78AE_L1I_TLB_REFILL 0x2
PMU_A78AE_L1D_CACHE_REFILL 0x3
PMU_A78AE_L1D_CACHE 0x4
PMU_A78AE_L1D_TLB_REFILL 0x5
PMU_A78AE_INST_RETIRED 0x8
PMU_A78AE_EXC_TAKEN 0x9
PMU_A78AE_EXC_RETURN 0x0A
PMU_A78AE_CID_WRITE_RETIRED 0x0B
PMU_A78AE_BR_MIS_PRED 0x10
PMU_A78AE_CPU_CYCLES 0x11
PMU_A78AE_BR_PRED 0x12
PMU_A78AE_MEM_ACCESS 0x13
PMU_A78AE_L1I_CACHE 0x14
PMU_A78AE_L1D_CACHE_WB 0x15
PMU_A78AE_L2D_CACHE 0x16
PMU_A78AE_L2D_CACHE_REFILL 0x17
PMU_A78AE_L2D_CACHE_WB 0x18
PMU_A78AE_BUS_ACCESS 0x19
PMU_A78AE_MEMORY_ERROR 0x1A
PMU_A78AE_INST_SPEC 0x1B
PMU_A78AE_TTBR_WRITE_RETIRED 0x1C
PMU_A78AE_BUS_MASTER_CYCLE 0x1D
PMU_A78AE_COUNTER_OVERFLOW 0x1E
PMU_A78AE_CACHE_ALLOCATE 0x20
PMU_A78AE_BR_RETIRED 0x21
PMU_A78AE_BR_MIS_PRED_RETIRED 0x22
PMU_A78AE_STALL_FRONTEND 0x23

61

D 4.1 Interim Platform Technologies Report
Version 1.0

PMU_A78AE_STALL_BACKEND 0x24
PMU_A78AE_L1D_TLB 0x25
PMU_A78AE_L1I_TLB 0x26
PMU_A78AE_L3D_CACHE_ALLOCATE 0x29
PMU_A78AE_L3D_CACHE_REFILL 0x2A
PMU_A78AE_L3D_CACHE 0x2B
PMU_A78AE_L2TLB_REFILL 0x2D
PMU_A78AE_L2TLB_REQ 0x2F
PMU_A78AE_REMOTE_ACCESS 0x31
PMU_A78AE_DTLB_WLK 0x34
PMU_A78AE_ITLB_WLK 0x35
PMU_A78AE_LL_CACHE_RD 0x36
PMU_A78AE_LL_CACHE_MISS_RD 0x37
PMU_A78AE_L1D_CACHE_LMISS_RD 0x39
PMU_A78AE_OP_RETIRED 0x3A
PMU_A78AE_OP_SPEC 0x3B
PMU_A78AE_STALL 0x3C
PMU_A78AE_STALL_SLOT_BACKEND 0x3D
PMU_A78AE_STALL_SLOT_FRONTEND 0x3E
PMU_A78AE_STALL_SLOT 0x3F
PMU_A78AE_L1D_CACHE_RD 0x40
PMU_A78AE_L1D_CACHE_WR 0x41
PMU_A78AE_L1D_CACHE_REFILL_RD 0x42
PMU_A78AE_L1D_CACHE_REFILL_WR 0x43
PMU_A78AE_L1D_CACHE_REFILL_INNER 0x44
PMU_A78AE_L1D_CACHE_REFILL_OUTER 0x45
PMU_A78AE_L1D_CACHE_WB_VICTIM 0x46
PMU_A78AE_L1D_CACHE_WB_CLEAN 0x47
PMU_A78AE_L1D_CACHE_INVAL 0x48
PMU_A78AE_L1D_TLB_REFILL_RD 0x4C
PMU_A78AE_L1D_TLB_REFILL_WR 0x4D
PMU_A78AE_L1D_TLB_RD 0x4E
PMU_A78AE_L1D_TLB_WR 0x4F
PMU_A78AE_CACHE_ACCESS_RD 0x50
PMU_A78AE_CACHE_ACCESS_WR 0x51
PMU_A78AE_CACHE_RD_REFILL 0x52
PMU_A78AE_CACHE_WR_REFILL 0x53
PMU_A78AE_CACHE_WRITEBACK_VICTIM 0x56
PMU_A78AE_CACHE_WRITEBACK_CLEAN_COH 0x57
PMU_A78AE_L2CACHE_INV 0x58
PMU_A78AE_L2TLB_RD_REFILL 0x5C
PMU_A78AE_L2TLB_WR_REFILL 0x5D
PMU_A78AE_L2TLB_RD_REQ 0x5E
PMU_A78AE_L2TLB_WR_REQ 0x5F
PMU_A78AE_BUS_ACCESS_REQ 0x60
PMU_A78AE_BUS_ACCESS_RETRY 0x61

62

D 4.1 Interim Platform Technologies Report
Version 1.0

PMU_A78AE_MEM_ACCESS_RD 0x66
PMU_A78AE_MEM_ACCESS_WR 0x67
PMU_A78AE_UNALIGNED_LD_SPEC 0x68
PMU_A78AE_UNALIGNED_ST_SPEC 0x69
PMU_A78AE_UNALIGNED_LDST_SPEC 0x6A
PMU_A78AE_LDREX_SPEC 0x6C
PMU_A78AE_STREX_PASS_SPEC 0x6D
PMU_A78AE_STREX_FAIL_SPEC 0x6E
PMU_A78AE_STREX_SPEC 0x6F
PMU_A78AE_LD_SPEC 0x70
PMU_A78AE_ST_SPEC 0x71
PMU_A78AE_DP_SPEC 0x73
PMU_A78AE_ASE_SPEC 0x74
PMU_A78AE_VFP_SPEC 0x75
PMU_A78AE_PC_WRITE_SPEC 0x76
PMU_A78AE_CRYPTO_SPEC 0x77
PMU_A78AE_BR_IMMED_SPEC 0x78
PMU_A78AE_BR_RETURN_SPEC 0x79
PMU_A78AE_BR_INDIRECT_SPEC 0x7A
PMU_A78AE_ISB_SPEC 0x7C
PMU_A78AE_DSB_SPEC 0x7D
PMU_A78AE_DMB_SPEC 0x7E
PMU_A78AE_EXC_UNDEF 0x81
PMU_A78AE_EXC_SVC 0x82
PMU_A78AE_EXC_PABORT 0x83
PMU_A78AE_EXC_DABORT 0x84
PMU_A78AE_EXC_IRQ 0x86
PMU_A78AE_EXC_FIQ 0x87
PMU_A78AE_EXC_SMC 0x88
PMU_A78AE_EXC_HVC 0x8A
PMU_A78AE_EXC_TRAP_PABORT 0x8B
PMU_A78AE_EXC_TRAP_DABORT 0x8C
PMU_A78AE_EXC_TRAP_OTHER 0x8D
PMU_A78AE_EXC_TRAP_IRQ 0x8E
PMU_A78AE_EXC_TRAP_FIQ 0x8F
PMU_A78AE_RC_LD_SPEC 0x90
PMU_A78AE_RC_ST_SPEC 0x91
PMU_A78AE_L3_CACHE_RD 0xA0
PMU_A78AE_CNT_CYCLES 0x4004
PMU_A78AE_STALL_BACKEND_MEM 0x4005
PMU_A78AE_L1I_CACHE_LMISS 0x4006
PMU_A78AE_L2D_CACHE_LMISS_RD 0x4009
PMU_A78AE_L3D_CACHE_LMISS_RD 0x400B
PMU_SCF_BUS_ACCESS 0x10190
PMU_SCF_BUS_ACCESS_RD 0x10600
PMU_SCF_BUS_ACCESS_WR 0x10610

63

D 4.1 Interim Platform Technologies Report
Version 1.0

PMU_SCF_BUS_ACCESS_SHARED 0x10620
PMU_SCF_BUS_ACCESS_NOT_SHARED 0x10630
PMU_SCF_BUS_ACCESS_NORMAL 0x10640
PMU_SCF_BUS_ACCESS_PERIPH 0x10650
PMU_SCF_BUS_CYCLES 0x101d0
PMU_SCF_CACHE 0x10f20
PMU_SCF_CACHE_ALLOCATE 0x10f00
PMU_SCF_CACHE_REFILL 0x10f10
PMU_SCF_CACHE_WB 0x10f30

9.3 Usage Example
#include "a78ae-pmu.h"

int main() {

 const unsigned int mask = 0b111111;

 const unsigned int events[] =

{ PMU_A78AE_L1D_CACHE_REFILL, PMU_A78AE_INST_RETIRED, 0x11, 0x17, 0xA0, 0x400B };
 int values[6];

 if(a78ae_pmu_configure(mask, events) != 0) {

 printf("ERROR configuring the events\n");

 exit(-1);

 }

 a78ae_pmu_reset_counters(mask);

 a78ae_pmu_start_global();

 for (volatile int i = 0; i< 1000; i++); // counting events for this loop

 a78ae_pmu_stop_global();

 if (a78ae_pmu_read_counters(mask, values) != 0) {

 printf("ERROR reading the events\n");

 exit(-1);

 }

 printf("%d,%d,%d,%d,%d,%d\n", values[0], values[1], values[2], values[3],
values[4], values[5]);

}

	Executive Summary
	1 Introduction
	1.1 Scope
	1.2 Structure of the Document

	2 NVIDIA ORIN MPSoC
	2.1 Orin overview
	2.2 Default software stack

	3 Timing Interference Control (T4.1)
	3.1 Software Sources of Timing Interference
	3.1.1 Linux Ubuntu setup
	3.1.2 ROS2 setup
	3.1.3 Custom middleware setup

	3.2 Hardware Sources of Timing Interference
	3.2.1 CPU Complex
	3.2.1.1.1 DynamIQ™ Shared Unit (DSU-AE)
	Comparators
	Snoop Control Unit (SCU)
	L3 cache
	L3 cache placement

	3.2.2 GPU Cluster
	Streaming Multiprocessor

	3.2.3 Interconnect
	3.2.4 Other features
	3.2.4.1 Input / Output (I/O)
	GPC-DMA
	Continuous Mode

	3.2.4.2 SCF and L4

	3.2.5 Interference channel identification
	3.2.5.1 Domains of resource sharing
	3.2.5.2 Usage of shared resources

	3.2.6 Empirical results
	3.2.6.1 L2
	3.2.6.2 L3
	3.2.6.3 L4
	3.2.6.4 MEM

	3.3 Technological assessment

	4 Observability Channels (T4.2)
	4.1 PMU and HEM analysis
	4.1.1 Use of hardware-level information in SAFEXPLAIN

	4.2 HEMs identification
	4.2.1 CPU-pipeline HEMs
	4.2.2 Instruction cache HEMs (L1I)
	4.2.3 Data cache HEMs (L1D)
	4.2.4 L2 cache HEMs (L2)
	4.2.5 L3 cache HEMs (L3)
	4.2.6 Bus-memory HEMs
	4.2.7 TLB HEMs
	4.2.8 SCF HEMs

	4.3 Hardware Event Monitors PMULib
	4.3.1 PMULib
	4.3.2 PMULib Validation and accuracy

	4.4 SCF HEMs overhead
	4.5 Technological assessment

	5 Timing Prediction Methods and Tools (T4.3)
	5.1 Timing characterization strategy
	5.2 Inter-Run Variability
	5.2.1 Empirical evidence
	5.2.2 MUCH

	5.3 Statistical Analysis based on the Markov Inequality
	5.4 Interference monitoring mechanism and Templates
	5.4.1 Templates

	5.5 Technological assessment

	6 Platform- and System-level V&V support (T4.4)
	6.1 SAFEXPLAIN Middleware concept
	6.2 SAFEXPLAIN Middleware support
	6.2.1 Support to FUSA Architecture
	6.2.2 Support to Verification and Validation

	6.3 Technological assessment

	7 Acronyms and Abbreviations
	8 References
	9 Annex 1 – PMULib interface
	9.1 Function Documentation
	9.1.1 a78ae_pmu_configure()
	9.1.2 a78ae_pmu_counters_available()
	9.1.3 a78ae_pmu_read_counters()
	9.1.4 a78ae_pmu_reset_counters()
	9.1.5 a78ae_pmu_start()
	9.1.6 a78ae_pmu_start_global()
	9.1.7 a78ae_pmu_stop()
	9.1.8 a78ae_pmu_stop_global()

	9.2 Macro Documentation
	9.3 Usage Example

