

D5.1 Case study stubbing and early assessment of
case study porting

Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contractual Deadline 31.03.2024

Dissemination Level PU

Nature R

Author Mikel Aldalur (IKR), Gabriele Giordana (AIKO), Shruthi Gowda (NAV)

Contributors Joanes Plazaola (IKR), Francesco Rossi (AIKO)

Reviewer Francisco Cazorla (BSC)

Keywords Artificial Intelligence, space, automotive, railway, stubbing

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

Ref. Ares(2024)2277662 - 26/03/2024

http://www.safexplain.eu/

 1

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Change Log

Version Description Change

V0.1 First draft

V0.2 Reviewed version

V1.0 Final version

 2

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Table of Contents

1. Introduction ... 4

2. Space Case Study ... 5

2.1 Datasets collection and generation ... 5

2.2 Architecture ... 9

2.3 Training .. 11

2.4 Local testing ... 11

2.5 Platform testing and early porting ... 12

2.6 Scenario Generation .. 13

2.7 Next steps .. 14

3. Automotive Case Study .. 16

3.1 Datasets collection and generation ... 16

3.2 Architecture ... 20

3.3 Training .. 21

3.4 Local testing ... 22

3.5 Platform testing and early porting ... 23

3.6 Scenarios generation ... 24

3.7 Next steps .. 27

4. Railway Case Study .. 28

4.1 Datasets collection and generation ... 28

4.2 Architecture ... 29

4.3 Training .. 30

4.4 Local testing ... 31

4.5 Platform testing and early porting ... 32

4.6 Next steps .. 34

5. Toy model .. 36

5.1 Dataset Generation .. 36

5.2 Model Architecture .. 36

5.3 Training .. 37

6. Conclusion .. 38

 3

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Executive Summary
This document focuses on state-of-the-art and representative mixed-criticality case studies
from the automotive, railway and space domains, and their preparation for the project
activities. It describes the specifications and stubbing activities performed to deliver the case
studies, including designing the models, collecting datasets for training and testing the
algorithms, and implementing the features needed in the scope of the project. All these
tasks were carried out with continual interaction with other work packages in order to
assess the impact on the overall work and provide a common direction.

An accurate implementation of the case studies is paramount, since SAFEXPLAIN outcomes
will be demonstrated by integrating its solutions in a commercial toolset for system testing
and applying its principles to the case studies. The project wishes to capture real challenges
that can emerge from the application of the techniques in industrial-size projects.

In all case studies, Deep Learning is the building block of Critical Autonomous AI-based
Systems (CAIS) safety-related functions. All three case studies will follow the same
procedure: stubbing of the inputs and the operational environment, porting and integration
into the project selected platform, evaluation and assessment within SAFEXPLAIN software
environment.

 4

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

1. Introduction
This project seeks to close the gap between Functional Safety Requirements and the nature
of Deep Learning (DL) solutions. Functional Safety systems need deterministic, verifiable and
pass/fail test-based software solutions, however, DL-based solutions currently lack
explainability, traceability, robustness and security.

AI explainability may help during the process of safety system certification by proposing
evidence that helps show certification authorities that AI-based sensors are properly trained,
and work as expected. AI explainability may also help by adding diagnosis capabilities to the
safety system to implement redundant systems with diagnosis capabilities during safety
system operation.

To test the functional safety requirements, the case study solutions will be applied as first
test benchmarks. These solutions are specific to each use case and will be described in detail
in the following sections, including the operational scenarios, the envisioned applications
and their practical implementations. Secondly, each case study section will describe the
activities performed so far to prepare the algorithms: the gathering and/or generation of
datasets, an essential element for DL applications, the stubbing of inputs from the real
operational environment, the training and testing of the AI models and the porting to the
platform.

Finally, an early need arose in the first phase of the project: bridging the gap between work
packages in order to provide cohesion in the parallel tasks of implementation that were
starting. Since the case studies are complex models that need careful design,
implementation and training, it was not possible to provide them as an early testbed;
nonetheless, the first prototypes of the SAFEXPLAIN software stack (WP4), explainability
techniques (WP3) and safety architectures (WP2) needed a DL model to early test their
assumptions and identify potential integration issues. To allow this, WP5 devoted effort to
provide a DL model fast enough to be designed and trained, without confidentiality issues to
be shared openly, and which exercises the core functionalities of the case studies. This
model, referred to as the Toy Model and described in detail in section 5, was prepared and
handed over to the other work packages.

 5

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

2. Space Case Study
The space case study is composed of a DL algorithm included in a safety critical autonomous
system, in the operational scenario of spacecrafts autonomous navigation and docking.

An autonomous GNC (Guidance, Navigation and Control) system is designated to navigate a
spacecraft acquiring information from the asset sensors (cameras, star trackers, inertia
measurement units and more), assessing the position and attitude of the spacecraft and
performing the adequate manoeuvres to specific ends, being motion, orbital station-
keeping or approaching to targets.

In this scenario, a crewed spacecraft is envisioned to perform a docking manoeuvre to an
uncooperative target (a space station or another spacecraft) on a specific docking site. The
system must be able to acquire the pose estimation of the docking target and of the
spacecraft itself, to compute a trajectory towards the target and to send commands to the
actuators to perform the docking manoeuvre.

The safety goal is to dock with adequate precision and avoid crashing or damaging the
assets; since both the spacecraft and the target have a crew, minor damages to the vehicles
may put at risk the crew safety. Moreover, approaching the target in an orthogonal way
with respect to the docking site is required for a safe manoeuvre.

In order to focus the effort of the project, this case study takes into account a specific
module of the envisioned GNC system, the pose estimation module. This component takes
as input images from a monocular grayscale camera of the target, and must compute its
pose, namely the relative position and rotation (three dimensions each) between the target
and the chaser. This is a fundamental step to being able, later in the GNC pipeline, to plan a
trajectory and compute actuators commands to follow it.

In particular, the pose estimation functions under evaluation are:

1. Detection of the docking target and its orientation
2. Computation of the relative position and attitude between spacecraft and target
3. Computation of orthogonality to the docking site

2.1 Datasets collection and generation
2.1.1 Real vs Simulated Data
In the context of SAFEXPLAIN, the availability and utility of real-world data often pose
significant limitations, particularly when it comes to comprehensive metadata or ground
truth information. This scarcity or complete lack of adequate real data necessitates an
alternative approach to dataset generation and collection, prompting the utilization of
simulated data. Such an approach is not unique to our endeavour; the European Space
Agency, among others, has historically relied on simulated datasets to circumvent these
limitations [1], [2]. Over the years, various versions of simulated datasets have been
progressively opened to the scientific community, marking a significant trend towards the
adoption of synthetic data. This trend is evident across numerous institutions, academia,
and private entities, underscoring the strategic advantages of synthetic data development.

 6

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Concerning the topic of Satellite Pose Estimation, the most relevant one is SPEED+ [3], made
by the Space Rendezvous Laboratory (SLAB) of Stanford University.

The creation of simulated data offers unparalleled freedom in generating not only the data
itself but also the associated metadata. This flexibility extends to the simulation of extreme
or catastrophic conditions, which are crucial for the balanced training of artificial
intelligence (AI) models. Ensuring a comprehensive representation of all possible scenarios,
especially critical cases, is fundamental for the models’ inferencing capabilities and the
realism targeted. Our approach draws direct inspiration from the SPEED+, yet we have
endeavoured to enhance the realism, diversity, and quality of the associated metadata. This
initiative has allowed us to achieve a higher level of complexity, in line with the state-of-the-
art in estimating the pose of cooperative and non-cooperative satellites. By adopting a data-
centric approach, we have incorporated a wide range of simulated conditions, from
standard operational ranges to extreme and catastrophic scenarios.

This methodology enables us to iteratively improve the accuracy, precision, and reliability of
our AI model’s output. By expanding the scope and depth of our simulated data, we position
our project at the forefront of technological advancements, ensuring our AI models are well-
equipped to handle a diverse array of challenges with enhanced efficacy.

The generation of our dataset is a meticulously designed process that integrates both real-
world constraints and the expansive potential of simulated environments. This dual
approach ensures that our AI models are not only trained on a broad spectrum of data but
are also capable of generalizing across a variety of unseen, real-world situations. The
dataset generation process involves several key steps:

• Synthesis of Simulated Data: Leveraging advanced simulation technologies, we
generate a wide array of synthetic data that mirrors real-world phenomena under
various conditions, including those that are rare or have not been observed. This
process allows for the inclusion of comprehensive metadata, enhancing the dataset’s
utility for training AI models.

• Enhancement of Realism: Building on the foundation laid by predecessors such as
SPEED+, we incorporate advanced algorithms to increase the realism of our
simulated data. This includes refining physical models, improving environmental
variables, and ensuring that simulated entities behave in ways that are
indistinguishable from their real-world counterparts.

• Metadata Enrichment: Each piece of data in our dataset is accompanied by detailed
metadata, providing essential context that is crucial for effective model training. This
metadata includes information about the conditions under which the data was
generated, parameters that influence the simulation, and annotations that facilitate
the accurate interpretation of data by AI models.

• Scenario Coverage: Our dataset encompasses a comprehensive range of scenarios,
from routine operational conditions to extreme and unlikely events. This ensures
that the AI models trained on our dataset are robust and can perform reliably under
a wide variety of circumstances.

• Iterative Refinement: The dataset generation process is iterative, allowing for
continuous refinement based on feedback from ongoing model training and
validation efforts. This cyclical process ensures that the dataset evolves in line with

 7

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

emerging requirements and technological advancements, maintaining its relevance
and effectiveness.

Through this structured and strategic approach to dataset generation, we ensure that our AI
models are trained on high-quality, diverse, and realistic data. This foundation empowers
the models to achieve high levels of accuracy and reliability, crucial for the success of our
project and the advancement of AI applications in our field.

2.1.2 Dataset generation pipeline
Our dataset generation pipeline is a sophisticated system designed to create a
comprehensive and detailed dataset for satellite imagery, leveraging state-of-the-art
technological components. This pipeline is critical for the development, training, and
validation of our artificial intelligence (AI) models, aimed at enhancing satellite pose
estimation and other space-related applications. Below is a detailed overview of the
pipeline’s components and processes:

• Satellite 3D CAD Model Enhancements: The pipeline initiates with an enhanced 3D
CAD model of the target satellite. Significant improvements have been made to this
model, including the addition of detailed material properties. These enhancements
are crucial for achieving realistic simulation outcomes, as they directly affect the
model’s interaction with simulated environmental conditions.

• Integration into the Unity Simulation Environment: The 3D model is then integrated
into the Unity simulation environment. Within Unity, we have meticulously set up
various parameters to simulate realistic conditions accurately. These include:

o Lighting Conditions: Customizable to replicate positions of the sun and
lighting scenarios.

o Environmental Conditions: Incorporates dynamic backgrounds, including a
high-resolution Earth asset, which can be adjusted for various viewing angles
and positions.

o Camera Properties: The simulation includes detailed settings for the camera
used to capture images of the satellite model. These settings encompass
sensor type, optics characteristics, field of view, and additional features such
as noise addition and lens distortion. Images are captured both randomly and
along predefined trajectories, at set frequencies, to generate a diverse
dataset.

• Image Acquisition: the pipeline can generate images in both colour and grayscale
formats. While grayscale images are preferred for their efficiency in processing time
for space applications (an example in Figure 1), colour images are also produced to
future-proof the dataset for potential advancements in perception capabilities.

• Metadata, Labels, and Ground Truth Association: beyond mere image capture, our
pipeline excels in its ability to associate each image with a rich set of metadata,
labels, and ground truths, as can be seen in Figure 2. These include:

o Relative 6D Pose Estimation: Data regarding the relative positioning and
orientation between the satellite and its target, including Rotation (3D) and
Translation (3D) vectors.

 8

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

o Masking and Depth Estimation: Information on the geometric properties
critical for docking and engagement scenarios, such as the level of
orthogonality at the docking point.

o This metadata is essential for accurately training and validating AI models,
providing a detailed contextual framework for each image in the dataset.

• GUI Customizable Parameters and Exporting Process: A key feature of our pipeline is
the extensive customization it offers, allowing for precise control over various
parameters, including:

o Camera Settings: Adjustments to sensor type, optical view angle, and image
resolution

o Operational Range: Defining the minimum and maximum distances within
which image capture is conducted, tailoring the dataset to specific simulation
needs for both training and testing purposes.

Eventually, the pipeline culminates in the automatic generation of a zipped folder
containing all pertinent images, metadata, and ground truths. This folder serves as the
foundation for the AI model's training and validation processes.

Figure 1. Dataset example images

 9

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Figure 2. Ground-Truth Example Images, associated to the main camera frame (top left):
segmentation mask (top-right), normal map (bottom-left), shadow mask (bottom-right)

2.2 Architecture
This case study employs a multitask deep learning model, specifically utilizing convolutional
neural networks (CNNs), to address complex challenges in satellite relative navigation. This
model is designed to process a single input — a simulated camera image of a target satellite
— and produce multiple outputs, leveraging the strengths of a multitask framework to
enhance the efficiency and accuracy of the task at hand. Below, we delineate the
architecture and functionalities of our model.

The architecture is structured around a single-input, multiple-output (SIMO) framework,
where the input is an image capturing the relative navigation context between the
observing satellite and the target satellite. The model is tasked with generating several
critical outputs from this input:

• Object Classification: Identifies the type of satellite or object within the image.
• Bounding Box Detection: Locates the object within the image by defining its

bounding box.
• Direct Pose Estimation: Provides a 6D pose estimation of the target, combining 3D

rotation and 3D translation to offer a comprehensive spatial understanding.
Calculates the pose directly from the input image, leveraging the multitask learning
framework to integrate seamlessly with other output tasks.

 10

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

• Segmentation Mask: Outputs a binary mask delineating the silhouette of the
satellite, facilitating precise object boundary identification.

• Depth Mask: Like the segmentation mask, this grayscale mask encodes distance
information, providing depth perception relative to the camera's position.

• Shadow Mask: A binary mask highlighting the areas directly illuminated by a light
source versus those in shadow, aiding in the understanding of lighting conditions.

• Normal Map: An RGB mask that encodes the orientation of the satellite's surface in
space, using color coding to represent spatial configurations in a target-centric
manner.

• Indirect Pose Estimation: This branch employs a two-step process. First, it detects
key points on the target using non-maximum suppression (NMS) algorithms applied
to heatmaps of the key points. Then, it utilizes a Perspective-n-Point (PnP) algorithm
to reconstruct the object's pose based on these identified key points, offering an
alternative pose estimation that complements the direct approach.

• Docking Point Orthogonality Estimation: A dedicated branch within the architecture
focuses on estimating the normal relative to the docking site. This component is
crucial for understanding the approach vector needed for successful docking
operations, providing valuable data for mission planning and execution.

At the heart of our multitask architecture is a shared backbone, specifically employing an
Efficient-Net architecture. This choice of backbone is strategic, allowing for "hard parameter
sharing" across various tasks. This means the same backbone processes the input image,
distributing its learned features to each task-specific head of the network. This approach
optimizes the use of computational resources and enables the model to learn more
generalized representations.

The whole schema of the implemented AI model architecture is provided in Figure 3.

Figure 3. Architecture of the space case study

 11

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

2.3 Training
The training of the satellite pose estimation multitask deep learning model was meticulously
executed on a dataset comprising 60,000 images, adhering to a data split of 70% for
training, 20% for validation, and 10% for testing purposes. This section details the training
process, the computational infrastructure used, and the techniques applied to optimize the
model's performance.

The model training was carried out on our corporate server, which is equipped with state-
of-the-art hardware to facilitate the intensive computational demands of deep learning
tasks. The specifications of our training infrastructure are as follows:

• CPU: AMD Ryzen Threadripper 3970X (32 cores)
• RAM: 128GB
• GPU: Nvidia RTX A6000 (48GB GDDR6)

The training was conducted using Python, as a programming language, and PyTorch, as a
deep learning framework. Additionally, OpenCV was utilized for image processing tasks,
supporting the implementation of advanced computer vision functionalities.
The training regimen was optimized to achieve the best possible balance among the tasks,
with a primary focus on the direct and indirect pose estimation tasks. This optimization
process involved careful tuning of the model's parameters to enhance its learning efficiency
and accuracy in these critical areas.

To further improve the robustness of the model, online data augmentation techniques were
applied during the training phase. These techniques included various transformations such
as noise addiction and colour adjustments to the training images. By exposing the model to
a broader spectrum of data variations, we aimed to enhance its ability to generalize from
the training data to new, unseen images, thereby improving its performance in real-world
satellite navigation tasks.

The training was conducted optimally, with the total training time under five days. This
efficient timeframe was achieved through the combined use of our powerful computational
infrastructure and the targeted optimization of training parameters.

2.4 Local testing
The evaluation of our model's performance has revealed significant insights into its
capability in direct pose estimation, particularly in distinguishing between translation and
rotation errors. This section presents an analysis of the results obtained, highlighting the
precision and accuracy of the multitask deep learning model in satellite relative navigation
tasks.

The simulated operation is in the range of 1-20 meters, with a 45° camera FOV, 512x512
pixels input image of grayscale type. The number of tested images is 6000.

METHOD ERROR MEAN STD MEDIAN IQR
Direct Pose
Estimation

TRANSLATION [m] 0.052 0.075 0.029 0.046
ROTATION [deg] 2.650 6.958 1.930 1.584

 12

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Indirect Pose
Estimation

TRANSLATION [m] 0.216 0.476 0.165 0.188
ROTATION [deg] 3.440 8.569 1.506 1.828

Table 1. Testing results of the space case study

Pose Estimation Accuracy:
• Translation Error: The model demonstrates good performance in estimating the

satellite's position, with the mean and standard deviation of translation errors being
within a few centimetres. This level of accuracy is notable, especially considering the
complexity of satellite relative navigation and the variability of space conditions.

• Rotation Error: For rotation estimation, the model achieves errors within the unit
degree range. This precision is exceptional and indicative of the model's robustness
in understanding the satellite's orientation in 3D space, even when relying on data
from a single frame.

Statistical Performance Indicators used:
• Mean and Standard Deviation: These metrics for both translation and rotation errors

show that the model can consistently predict the pose with a high degree of
accuracy. The relatively low standard deviation indicates minimal fluctuation in
performance across different test cases.

• Median and Interquartile Range: The median and interquartile range further
substantiate the model's reliability. These statistics show that most predictions are
accurate and clustered around a high accuracy level, with a limited number of
outliers.

When comparing the direct and indirect methods of pose estimation, both approaches yield
commendable results, with the direct method showing slightly better performance in terms
of translation accuracy. This is particularly noteworthy since the direct method operates on
raw single-frame data, without the benefit of trajectory synthesis or filtering approaches
that might smooth out errors over multiple frames. The achieved results, especially the
precision in translation within a few centimetres and rotation within a single degree, are
highly satisfactory for the field of satellite navigation. Such accuracy levels highlight the
effectiveness of the implemented approach. These outcomes are indicative of the model's
potential to significantly improve the accuracy and reliability of satellite pose estimation
tasks, providing a solid foundation for further improvements.

2.5 Platform testing and early porting
The initial phase of the space model optimization involved porting the deep learning model
from its original PyTorch implementation to the ONNX (Open Neural Network Exchange)
format. This format facilitates model sharing and deployment across different platforms and
frameworks, enhancing the versatility and applicability of our AI solution.

The model's conversion from PyTorch to ONNX was executed using the standard PyTorch
torch.onnx.export function. This process required careful preparation of the model and its
inputs to ensure compatibility with ONNX's requirements, such as fixed input sizes for
certain layers and the inclusion of all necessary metadata for a complete representation of
the model in the new format.

 13

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

To verify the successful conversion of the model, a statistical analysis was conducted on a
set of test images (i.e. 6000). This involved comparing the outputs of the original PyTorch
model with those of the ONNX-converted model, focusing on the consistency and accuracy
of predictions across both formats. The comparison was based on a tensor-by-tensor
analysis, examining the differences in output values to assess any discrepancies that might
indicate issues with the conversion process. Moreover, and more understandable, a
performance comparison result is here depicted:

METHOD ERROR METRIC DIFFERENCE
MEAN

METRIC DIFFERENCE
STD

Direct Pose
Estimation

Translation [m] 2.4e-06 2.3e-05
Rotation [deg] 8.9e-04 1.8e-03

Indirect Pose
Estimation

Translation [m] 0 0
Rotation [deg] 0 0

Table 2. Pytorch2ONNX Performance Comparison Results

The indirect method has no difference from Pytorch to ONNX, since the double steps made
by key-points detection and PnP algorithm do not introduce any disturbance.
On the other hand, the differences for the direct method are slight but not impactful,
concerning the previously described metrics, for the scenario into consideration. For this
reason, we can attest that there is no model degradation from torch to ONNX format.

After the conversion of the model, inference was executed on the platform, the NVIDIA
Jetson Orin, in different tests. The platform was set to minimum power (15W), and the
model was ported in a full-branches version (both direct and indirect methods,
orthogonality and maps computations). Results showed an acceptable performance:

PORTED MODEL PERFORMANCE

Full-branches 3.7 fps

Table 3. Porting performance results.

In order to provide robust functioning during operations, embedded performance
improvements are desirable, and they can be gained through a careful analysis and tuning
of the conversion process, without affecting the model components and thus the
integration into the software environment inside the platform.

2.6 Scenario Generation
The verification test catalogue for the space case study is envisioned to be developed
following the activities on the automotive and railway ones. This is due to the fact that the
automotive domain has a much wider range of already available guidelines and testing
scenarios, from which it is easy to build a consistent and complete catalogue, and that the
railway operational scenario is easily comparable with the automotive one, allowing to
smoothly derive test cases for it. The space domain, being the most complex and the least
explored in terms of autonomous systems, will leverage the work done on the previous two.

Nevertheless, the preparation for the activity has already started; the aforementioned
dataset generation pipeline was designed with the possibility of producing images based on

 14

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

trajectories and with different customizable parameters, which allows to simulate realistic
operational environments. As soon as test cases will be developed, they will be enacted and
verified without further effort.

2.7 Next steps
As we move forward with the development of our AI model, some key areas have been
identified for further optimization and enhancement. These areas are crucial for improving
the model's performance and ensuring its applicability in practical satellite navigation tasks,
especially in complex operational scenarios such as docking. Below, we outline the future
development directions and the steps we plan to undertake.

• WP5 development:
o Auto-Weighting Strategy for Loss Functions: given the model's architecture,

which accommodates multiple tasks with varying degrees of importance, a
critical area for development is the refinement of auto-weighting strategies.
These strategies involve dynamically adjusting the weight of each task's loss
function during training. This optimization aims to balance the learning
process more effectively, ensuring that primary tasks, such as direct and
indirect pose estimation, receive appropriate emphasis compared to
secondary tasks. Implementing and perfecting auto-weighting strategies will
require extensive testing and could significantly enhance the model's overall
accuracy and efficiency.

• Integration with WP2 (safety):
o Trajectory Simulation for Safety Analysis: Another area for development

concerns the simulation aspects, particularly the simulation of trajectories
under various conditions. By examining limit conditions and specific
trajectory types, in conjunction with relative pose conditions and lighting
factors, we can gain deeper insights into how these variables impact pose
estimation accuracy. This investigation is not only critical for improving the
model's performance but also for ensuring the safety and reliability of space
docking operations, where precise trajectory prediction and adjustment are
paramount. The test cases catalogue that will be developed together with the
safety experts will be enacted by actual scenarios of trajectories and
environmental conditions to evaluate the model performance and safety
level.

• Integration with WP3 (XAI):
o Application and Testing of Explainability techniques: While WP5 is providing

the case studies, WP3 is releasing tools and techniques for explaining and
verifying datasets and models. In the next phase of the project, XAI
techniques will be applied to the space model, identifying the best
approaches for enabling and validating safe executions of the algorithm.

• Integration with WP4 (platform):
o Complete the Platform Porting: Another step in our development roadmap

involves completing the porting of our model to the envisaged platform. The
porting process will involve optimizing the model for the target hardware and
software environment, ensuring that it can operate efficiently and reliably.

o Integrate the Case Study into the project software stack: The algorithm will
be prepared for integration as a ROS2 application, modelling core

 15

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

components as nodes communicating with each other; this will allow to
integrate the model with the SAFEXPLAIN API and access to the features
implemented in WP4 on the Orin platform. This overall effort will ensure that
our model can be seamlessly integrated with other work packages work
within the current project, facilitating and enabling all the developed
platform features.

 16

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

3. Automotive Case Study
The detection system's primary objective is to prevent collisions with all road users,
including vehicles and vulnerable users, by identifying them as relevant to a collision. The
automotive use-case is of higher complexity as the system operates within a challenging
environment characterized by (1) [4] a large field of view, dynamic surroundings, numerous
road users, road markings, and traffic signs. (2) Multiple AI modules and the need for a
consistent coordinate system. (2) different domains requiring domain adaptation.

Using a case requires detailed scene understanding, identifying different objects and signs in
the scene, finding collision-relevant objects, estimating distances and thresholds, and
deciding on the appropriate action. The system architecture comprises a Perception Module
responsible for data processing and AI model execution, along with a Plan Module tasked
with identifying collision-relevant objects, ensuring uniform coordinate systems, and
integrating vehicle dynamics. By effectively executing these modules, the system aims to
safeguard vulnerable road users while navigating complex and dynamic traffic
environments.

3.1 Datasets collection and generation
Multiple Datasets were considered for automotive use cases as there are different models
with different criteria.

Dataset Description Classes Env

VOC - 20 Classes
16551 training
4952 test images

person, bird, cat, cow, dog, horse,
sheep, airplane, bicycle, boat, bus,
car, motorbike, train, bottle, chair,
dining table, sofa, potted plant, TV

NA

COCO - 80 classes
118287 training
5000 test images

person, vehicle, animal, indoor,
outdoor, appliances, electronics,
furniture, food, kitchen, sports,
accessory

everyday
scenes

BDD BDD100K person, rider, car, truck, bus, train,
motorcycle, bike, traffic light, traffic
sign

day-time,
night-time

Mapillary Large-scale street-
level image dataset
- 25,000 high-
resolution images

annotated into 66/124 object
categories

 various
weather,
season and
daytime.

CityScapes - 30 classes Human, vehicle, road, construction,
nature, sky, object, void

Daytime,
Several seasons

NuScenes 1000 scenes of 20
secs each,

car, bus, bike, truck, people and
others

rain: 19.4%,
night: 11.6%

Oxford
RobotCar

 No detection/
segmentation GT

Pedestrians, riders, vehicles (car,
bus)

dusk, night,
night+rain,

 17

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

dataset overcast(summ
er+winter),
snow, sun

Euro City
Person

4 seasons, 12
countries, 31 cities,
47.300 images,
238.200 persons

Pedestrians and Riders (bicycles,
moped, bikes)

Day/
Night,
all four seasons

KITTI mobile robotics and
autonomous driving
- no GT for semantic
segmentation

building, sky, road, vegetation,
sidewalk, car, pedestrian, cyclist,
sign/pole, and fence

CU Lane Large-scale
challenging dataset
for academic
research on traffic
lane detection
- 88880 for training
set,

Lanes mounted
cameras on six
different
vehicles
- urban, rural,
and highway
scenes.

Table 4. List of datasets considered during data stubbing

We explored many datasets during the stubbing process and evaluated them on various
criteria: the availability, the different classes, recording conditions.

We also collected data for testing and explored synthetic and simulated data.

• Detection:
o COCO
o BDD

• Segmentation
o Mapillary
o CU Lane

3.1.1 Simulator
To test the automotive-use case collision avoidance system, we explored the use of
simulators. Using simulators for testing collision avoidance systems in automotive
applications is a common practice due to its safety, cost-effectiveness, reproducibility,
scalability, and rapid prototyping benefits. Simulators provide a controlled environment for
engineers to explore various scenarios without risking real vehicles or lives, allowing for
precise replication of conditions and rapid iteration of system improvements.CARLA (an
open-source simulator for autonomous driving research) simulator [11] has a huge and
detailed eco system and multiple components that requires a deep dive understanding. We
explored the Documentation, the tutorial videos, the examples to utilize the software
effectively. Some simulation visuals relevant to the use case are shown in Figure 4.

 18

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Figure 4. Examples of CARLA simulator

3.1.2 Selection of Models
Detection. We explored multiple detection networks (object detectors) and backbone
(encoder) networks to choose the most efficient and effective (Table 5).

Table 5. All the models and datasets considered

Figure 5. Overall summary of all the detection networks against various metrics

The analyses are summarized in Figure 5, where each vertex corresponds to a metric, and
the eight different colors represent different detectors. We report eight metrics, namely
accuracy, robustness to natural and adversarial corruptions, speed, number of parameters,
MAC (Multiply-Accumulate operations) count, energy consumption, and calibration error
(which measures reliability). The plot is represented such that the ideal network should
occupy the entire octagon. Such a network would have the highest accuracy, robustness,

 19

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

and speed, the lowest number of parameters and MAC count, while consuming the lowest
energy and being the best calibrated.

NanoDet: NanoDet is an innovative lightweight detector that doesn't rely on anchors for
detection. It leverages Adaptive Training Sample Selection (ATSS) to automatically pick
positive and negative training samples based on object characteristics. Using a Generalized
Focal Loss (GFL) for classification and regression, NanoDet optimizes performance by
extending Focal Loss into the continuous domain. It also employs Generalized IoU loss
(GIoU) to handle non-overlapping cases effectively. With a Feature Pyramid Network (FPN)
utilizing three feature maps, NanoDet enhances lower-level features via Path Aggregation
Network (PAN) blocks, which include bottom-up path augmentation. These PAN blocks feed
into individual detection heads for computing classification labels and bounding boxes,
optimizing object detection accuracy.

YOLOX - YOLOX, introduces significant advancements to the YOLO series with features such
as an anchor-free approach, decoupled detection head, and advanced label assignment
strategy SimOTA. This architecture enhances efficiency by reducing parameters and
GFLOPs. It is built upon YOLOv3 and has multiple versions – small, medium, large and still
has computation demands. Hence, we consider multiple detection networks to test on the
hardware.

Segmentation. Segmentation is a computer vision task that involves partitioning an image
into multiple segments or regions based on certain characteristics. We explore different
segmentors for better scene understanding, road markings and lane detection.

RGPNet is a real-time semantic segmentation network designed for complex scenarios,
featuring an asymmetric encoder-decoder structure with an innovative adaptor module.
This module captures multiple levels of abstraction to refine segment boundaries and
facilitates better gradient flow through short-paths. Results are shown in Figure 6.

Figure 6. Examples of Semantic Segmentation from RGPNet segmentation network

CLRerNet: CLRerNet is a novel lane detection method that significantly improves upon
existing approaches by introducing LaneIoU, a novel intersection-over-union metric that
considers local lane angles, enhancing accuracy and reliability in lane detection systems. By
leveraging dynamic sample assignment and replacing traditional IoU loss with LaneIoU for
regression of horizontal coordinates, CLRerNet ensures effective learning of confidence
scores and appropriate penalization of predicted lanes at different tilt angles. Few examples
are shown in Figure 7.

 20

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Figure 7. Examples of lane detection using CLReRNet

3.2 Architecture
The SAFEXPLAIN automotive case study architecture (Figure 8) comprises two primary

modules: the AI Perception Module and the Plan Module.

Figure 8. Architecture of Automotive Use case

The Perception Module encompasses various AI models and data processing operations,
starting with data processing, pre-processing, and post-processing. Initially, the data
undergoes preparation, including transformation and standardization, to ensure
compatibility with AI models. A detection model then identifies road users, such as
pedestrians, cars, vehicles, and cyclists, followed by the segmentation model, which
comprehensively segments elements like roads, lanes, sidewalks, and structures to
understand the scene better. Finally, a depth system assesses the distance to objects within
the scene for enhanced spatial awareness.

Conversely, the Plan Module receives outputs from the Perception Module and focuses on
identifying collision-relevant objects. It integrates outputs from all AI models, aligning them
in a common coordinate space, whether pixel-based or real-world. This involves identifying
lanes and the objects within them, tracking their movements, and estimating distances.
Additionally, the module incorporates vehicle dynamic heuristics to establish thresholds for
distance and time to collision. These thresholds are critical parameters used to trigger

 21

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

actions such as braking or issuing warnings before a potential collision occurs, enhancing
overall safety and collision avoidance strategies.

Figure 9 shows the detailed architecture implementation with all the components, including
the coordinate systems, the pre and post processing and planning modules.

Figure 9. Detailed architecture of automotive use case

3.3 Training
Table 6 contains the shortlisted models. In this section, we delve into the training specifics
of these models.

• Detection - The Nanodet-Hardnet is trained on BDD training images. The initial
learning rate (LR) is decayed by a factor of 0.1 and we use a common batch size of 32
and confidence threshold of 0.01 for all the experiments. Number of iterations is
240K with optimizer.

• Segmentation – CLRerNet is trained on CULane dataset. It is trained with ADAM
optimizer with initial learning rate of 0.0006 with cosine decay.

• Depth – Depth model is a transformer network trained in a self-supervised way to
perform monocular depth estimation with unknown camera intrinsics. However,
please note that this is only used (as a backup) if camera intrinsics are not available.
If camera intrinsics are available, we directly use this to project our distance from
pixel to real world coordinates.

Table 6. Shortlisted modules with deep neural networks and datasets

Final models-datasets

Detection NanoDet- [6]
YOLO-X [12]

COCO [4] BDD [5]

Segmentation CLRerNet – DLANet [7] CULane [8]

Depth - Transformer [9]
- Using Camera Intrinsics if
available

Kitti [10]

 22

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

3.4 Local testing
We assess the performance of different models using desktop GPUs and analyse the results
through performance evaluation and visualization.
The performance of models in terms of accuracy and speed both on the desktop GPU are
presented in Table 7. Further, visualizations of the results on real videos and simulated
scenarios and presented in Figure 10.

Task Accuracy (mAP) Speed (FPS) on GeForce RTX 3090
Detection mAP:

COCO - 33.61
BDD - 30.09

45

Lane Segmentation F1 Score:
CULane - 81.12

12

Table 7. Performance on GeForce RTX 3090 desktop GPU

(a) Detection of road users and vehicles

(b) Segmentation of lanes in the road

 23

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

(c) Detection of objects and segmentation of lanes in synthetic data

Figure 10. Detection (a) and lane segmentation (b) on real images and simulated image (c)

3.5 Platform testing and early porting
Moreover, our deployment involves porting the developed models onto a dedicated
hardware platform tailored for the project's requirements. The system architecture, as
depicted in Figure 11, integrates components including the CARLA Simulator, ROS2 agent,
Safexplain Middleware (SMW), and the automotive use case agent. This setup facilitates
interaction with the simulator to facilitate testing across various safety scenarios. The
performances of these components on the project hardware platform are meticulously
documented in Table 8.

Figure 11. System architecture with CARLA Simulator, ROS agent, Safexplain Middleware

(SMW) and the automotive use case agent

The lane segmentation network is slower than the detector, owing to the heavy backbone
and the feature pyramid networks. Notably, the deployment utilizes the trained PyTorch
models without any optimization. However, our forthcoming strategy entails optimizing the

 24

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

models using ONNX to achieve enhanced performance. This optimization process will be
guided by meta-information extracted from the models, which will be provided to the
supervisor architecture for seamless integration and performance enhancement.

Task Speed (FPS) on Nvidia ORIN

Detection 26

Lane Segmentation 6.6

Table 8. Performance on NVIDIA ORIN device

3.6 Scenarios generation
To effectively and efficiently test the automotive case, we rely on a standard catalogue for
applying V&V (Verification and Validation) strategies. Using this, we have constructed a
catalogue comprising scenarios that encompass the potential situations and events the
automated driving system might face.

This is discussed in detail with figures and parameters below.

Goal: The detection system’s goal is to avoid collisions with all road users (vehicle and
vulnerable users) identified as collision relevant.

Automotive AI module Challenges:

• Large field of view, Dynamic surroundings, more road users, road markings, traffic
signs

• Consistent Coordinate systems – Pixel to real-world for all 3 tasks (approximate
calibration)

• Domain adaptation

Settings:

• Urban scenarios with moderate traffic conditions + Few cases on highway
• Road user is at least 30% visible, exposure time is more 3s and the size is more

than 80cm.
• Assume heuristics (speed, deceleration)

Safety Scenario 1: DS1 from the Catalogue:

Driving following a target vehicle on highway

• The Ego vehicle drives with a longitudinal acceleration lower than 2m/s2 towards

https://onedrive.live.com/view.aspx?resid=2D3A4F6E0F1E809!280827&cid=2d3a4f6e0f1e809&authkey=!AtZljR7tz8Rwe18&CT=1704807491372&OR=ItemsView

 25

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

a moving target vehicle and is at a distance corresponding to a Time To Collision
(TTC) of at least 4 s.

• The Ego vehicle speed range is [50 km/h, 130 km/h]
The target vehicle drive at 80 km/h
The following environmental conditions shall be present:

o Dry and daylight with minimum 1000 lux and Sun angle >15° to horizon
o Dry and night with maximum 10 lux

• Road surface is asphalt or concrete
• The following Pre-conditions shall be respected:

o both vehicles shall keep steady speed and path and path
o steering angle shall be lower than the override threshold
o yaw rate shall be lower than the override threshold

Safety Scenario 2: DS6 from the Catalogue:

Driving with a target vehicle coming from opposite direction

• The Ego vehicle drives with a longitudinal acceleration lower than 2m/s2 towards
a moving target vehicle and is at a distance corresponding to a Time To Collision
(TTC) of at least 4 s.

• The Ego vehicle speed range is [50 km/h, 130 km/h]
• The target vehicle drive from 10 to 30 km/h
• The offset between the vehicles is 1,5 m
• Road surface is asphalt or concrete
• The following environmental conditions shall be present:

o Dry and daylight with minimum 1000 lux and Sun angle >15° to horizon
o Dry and night with maximum 10 lux

• The following Pre-conditions shall be respected:
o both vehicles shall keep steady speed and path
o steering angle shall be lower than the override threshold
o yaw rate shall be lower than the override threshold

https://onedrive.live.com/view.aspx?resid=2D3A4F6E0F1E809!280827&cid=2d3a4f6e0f1e809&authkey=!AtZljR7tz8Rwe18&CT=1704807491372&OR=ItemsView

 26

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Safety Scenario 3: Same as DS1 but with Pedestrian on the road instead of car

• The Ego vehicle drives with a longitudinal acceleration lower than 2m/s2 towards
a static pedestrian and is at a distance corresponding to a Time To Collision (TTC)
of at least 4 s.

• The Ego vehicle speed range is [50 km/h, 130 km/h]
Road surface is asphalt or concrete

• The following environmental conditions shall be present:
o Dry and daylight with minimum 1000 lux and Sun angle >15° to horizon
o Dry and night with maximum 10 lux

Safety Scenario 4: Same as DS1 but with no one on the road but with parked car and
pedestrians on sidewalk (to test the basic case of not doing any action)

• The Ego vehicle drives with a longitudinal acceleration lower than 2m/s2 on a
empty road

• The Ego vehicle speed range is [50 km/h, 130 km/h]
Road surface is asphalt or concrete

• The angular offset of parked car is 45 degrees
• The following environmental conditions shall be present:

o Dry and daylight with minimum 1000 lux and Sun angle >15° to horizon
o Dry and night with maximum 10 lux

 27

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

3.7 Next steps
We enumerate the next steps below:

• WP5 - Enhance Model Performance: Through extensive testing on various scenarios and
datasets, optimize the models to improve both accuracy and speed.

• WP5 - Enhance Plan Module: Refine the Plan module for better and accurate post-
processing through extensive testing.

• WP2- safety architecture integration is prioritized, emphasizing the incorporation of
safety protocols into the process pipeline. This integration guarantees compliance with
safety standards and ensures the project's overall security and reliability.

• WP3 - Supervisor Integration from WP3 for both data and model explanations. Integrate
supervisor modules tailored for the automotive use case. As there are multiple models
at play in the use-case, explainability of these models must be explored and integrated.
The supervisor aids the decisions of the deep neural networks by providing additional
reliability check.

• WP4 - The integration of the SAFEXPLAIN API involves incorporating the developed API
into the project framework. Integrate and test the perception module (deep learning
components), the planning module, the ROS agents and the Carla simulator. Finally
integrate with hardware components for comprehensive testing and validation.

 28

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

4. Railway Case Study
This CS is pursuing the development of a safety functions that will minimize the risk
associated with Automatic Train Operation. The scenarios developed will offer approaches
for minimizing the risk of a train running over or injuring people on the track as well as
avoiding damages during opening/closing operations on the platform. Four activities are
underway to support these scenarios, training dataset generation, track detection
techniques research, obstacles detection techniques research, stereo distance calculation.

4.1 Datasets collection and generation
Dataset collection for Railway is a challenging task that requires a lot of resources and
expertise. Unlike other domains, such as automotive or robotics, there is not much data
available for railway applications, and the generation of real data is costly and time-
consuming. Moreover, most of the existing datasets are proprietary and not accessible to
the research community.

Two ways of collecting or creating a dataset. One of the would be to collect or fin real data
and the other one would be to create synthetic datasets.

As previously said, creating a dataset from real scenarios would be hard. The process of
capturing railway frames is expensive in terms of time and resources, as many parties take
part in operations. The track and the train need to be allocated, with the bureaucratic
obstacles that this entails. A driver to drive the train and a person to take frames are needed
in order to record the runs. Therefore, just for the obtention of the images, train and track
allocation time and cost, the time and cost of the driver, and the time and cost of the
recorder need to be considered.

On the other side, one of the few exceptions is RailSem19, an open-source dataset of
images for railway scenes. However, RailSem19 is limited in its scope and diversity, and does
not cover all the aspects of railway analysis. In any case, it is a great opportunity for this CS
to make an effort to adapt this dataset and attempt to focus on the options that RailSem19
gives.

It would be also an option to create synthetic dataset. Generating synthetic dataset even
with a simulator or an AI model would be good way in terms of training a model for its
robustness. This kind of dataset has good and bad sides.

The bad side of using this kind of dataset would be that there could be a gap between the
real and the synthetic data. But the great side would be that, for example, there is no
limitation in generating any kind situation or that weather and lightning conditions could be
changed easily. That gives the opportunity to generate situations that may not happen in
real scenarios, for example having a car on a railway or having different kind of snowy days.

In this CS we present two datasets to train semantic segmentation models for rail scenes.
The first dataset is generated with a train simulator that renders realistic images of trains,
tracks, signals, and other objects in various weather and lighting conditions with an
additional post-processing step that applies a stable diffusion algorithm to smooth the
boundaries, reduce the noise and give a realistic tone. The second dataset is RailSem19, a
real-world dataset that contains 19 classes of rail objects annotated on high-resolution

 29

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

images captured by a camera mounted on a train. See Figure 12 and Figure 13 showing two
of the options.

Figure 12: RailSem19 dataset image

Figure 13: TrainSimulator + StableDiffusion

4.2 Architecture
The main goal is to create a simple architecture to obtain a good performance, for that it
needs to be simple. This means that the design should avoid unnecessary complexity and
focus on clarity, cohesion, and modularity. A simple architecture is easier to understand,
maintain, and extend, and it reduces the risk of errors and bugs. A simple architecture also
enables faster development and testing, as well as better scalability and reliability.
Therefore, simplicity is not only a desirable quality, but also a strategic advantage for the CS.
In this CS the main architecture is separated in other modules as shown in Figure 14.

Figure 14: Railway Case Study Architecture

 30

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

In this CS, as the simulator is not an online simulator, this means that it has not the
possibility to send the images automatically, images are stored and used when needed. That
is why in the left of the image there is a message of pre-recorded video bags.

In the main functions, we can differentiate three parts that are going to be running in
different threads. These are the specifications of each one:

• Distance estimation: It takes the two images given by the cameras, the images of
the right and left camera, and returns a depth image containing the distances in
each pixel.

• Object detection: It takes the two images given by the cameras, the images of the
right and left camera, and returns a list of objects and its bounding boxes.

• Decision function: It takes both distance estimation and object detection outputs
and decides whether it is a risk situation or not. Depending on the situation it sends
a message or pull the brakes.

4.3 Training
Depending on the techniques used, the training and implementation activities differ from
each other. Object detection, Instance segmentation, semantic segmentation and stereo
distance estimation are the ones used in this CS.

The models used in this CS have different licenses but every single one is “open source”,
considering that some of them are not available for commercial use.

Each of the models or techniques is trained and configured differently so each of them will
be explained separately.

• Object detection and Instance segmentation: The models analysed for this purpose
in the CS are different versions of YOLO. The training has been done with a
RailSem19 dataset for object detection mixed with COCO dataset to have more
classes of objects that RailSem19 has. See Figure 15.

Figure 15: Object detection + instance segmentation

• Semantic segmentation: The models analysed are different versions of Segment
Anything and SegFormer. These models were trained with RailSem19 dataset
prepared for semantic segmentation. See Figure 16.

 31

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Figure 16: Sematic segmentation for rail detection

• Distance estimation: The distance estimation is implemented using different
libraries. There tests had to be done to choose the best parameters to ensure the
proper operation. See Figure 17.

Figure 17: Depth estimation example

In summary, the four distinct computer vision tasks involve various deep learning
architectures and datasets designed to address unique challenges related to the CS.

4.4 Local testing

Regarding the testing process for each component of the CS, a workstation is used. This
involves all component such as object detection, instance segmentation, semantic
segmentation, and stereo distance estimation. Testing results are shown below:

• Object Detection: YOLOv7 and YOLOv8n were trained for RailSem19 and COCO
datasets mix. The results obtained were quite good.

Precision Recall mAP0.5 mAP0.95

YOLOv7 0.69201 0.54102 0.60559 0.48221
YOLOv8n 0.69414 0.41693 0.44956 0.31434

Table 94: Comparing YOLOv7 and YOLOv8n

• Semantic Segmentation: These models are used for Dataset Generation with Stable
Diffusion and for testing rail segmentation system. The results obtained were quite
good, but the models used were big and consume high GPU resources.

 32

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

mean_accuracy IoU overall_accuracy

Segformer 0.6509 0.50299 0.8566

Table 105: Segformer training results

• Instance Segmentation: YOLOv7 and YOLOv8n were trained for RailSem19 and COCO
datasets mix. The results obtained were quite good.

Precision Recall mAP0.5 mAP0.95

YOLOv7-seg 0.38856 0.23832 0.036007 0.0246

YOLOv8n-seg 0.58946 0.40033 0.42723 0.26248

Table 116: Comparing YOLOv7-seg and YOLOv8n-seg

• Distance Estimation Testing: Post parameter optimization during development,
comprehensive testing ensued for the stereo distance estimation component.
Leveraging suitable test scenarios and reference measurements, gauged precision
levels attained by generated depth maps or point clouds. Evaluation criteria
comprised disparity error, absolute difference, percentage of correct predictions at
varying thresholds, and overall computational efficiency.

Figure 48: Segmentation or detection options

Overall, after some tests we considered two options to do the rail segmentation and object
detection, see Figure 18. Option 1 seems to be more time consuming than the option 2, also
it consumes more computing resources.

4.5 Platform testing and early porting
Similar tests were done in the platform. Mostly measuring execution times and CPU and
GPU usages.

• Object Detection and Instance Segmentation Testing:

 33

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Detection time

Segmentation
time

YOLOv7 40ms 130ms
YOLOv8 25ms 50ms

Table 127: Detection and segmentation inference times

• Distance Estimation Testing:

Inference time

Distance estimation 10ms
Table 138: Distance estimation inference time

Regarding the porting, there was a need to install all the dependencies. Everything was
ported then to ROS2 to have an easier porting to the SAFEXPLAIN API, which makes use of
ROS2 in the background. As seen in the architecture of Figure 14, each of the block is a ROS2
node and it receives and sends topics defined as rows.

Scenario generation

We have created a document that describes the Operational Design Domain (ODD), which is
the set of conditions and scenarios under which an automated driving system can operate
safely and reliably. We have also developed a catalogue of scenarios that cover the possible
situations and events that the automated driving system may encounter in the ODD, see
Table 14 and Figure 19.

Operational Scenario 2
With the conditions specified, the following operational scenario is described: A stopped
object is detected, classified as a car, which is situated on the side of the track. Another
object is detected too. It is classified as a pedestrian and situated on the tracks in front of
the train. Train is moving at constant 30 km/h speed.
If the detected objects are not positioned on the tracks, will not activate any warning or
braking while they are on one side. If the objects are positioned on the tracks, it will be
analyzed if they are classified as critical or not. In case they are critical and is detected in the
warning zone distance, that is to say, the distance the pedestrian is positioned is less than
the warning distance threshold, a warning to the DMI will be displayed (in our case, an
activation of an output signal). If the distance is higher, no action will be taken. If the
estimated distance is between warning and breaking thresholds, the corresponding digital
output signals will be activated. And in case the estimated distance is less than the breaking
threshold, the corresponding digital output will be activated.

Scenario Conditions:
Scenery
Maximum Speed Limit 60 km/h
Countryside Yes
Multiple tracks Yes
Distance threshold (warning) [1001, 1500] m
Distance threshold (warning &
reduce) [701, 1000] m

 34

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Distance threshold (breaking
activation) 700 m

Environmental Conditions
Cloudy day Yes
Daylight [400, 1400] lm
Dynamic elements
Person Pedestrian at 5 km/h
Vehicle Car at 60 km/h

Table 149: Scenario catalogue example

Figure 59: Example scenario

4.6 Next steps
The next steps of the project entail a integration of the previously worked WPs - WP2, WP3
and WP4. These vital steps include the integration of the SAFEXPLAIN API, performance
testing and improvement, supervisor integration, and safety architecture integration.

• WP4: SAFEXPLAIN API integration is the process of integrating the API developed in
the project. This is designed to leverage the SAFEXPLAIN API’s capabilities to
augment the safety and explainability of AI-based critical embedded systems.

• WP3: Supervisor integration is the process of integrating a supervisor into the CS.
This mechanism will allow the supervisor to monitor the project and ensure that it is
running correctly. The supervisor will also be able to evaluate the AI results.

 35

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

• WP2: Safety architecture integration is the process of integrating the safety
architecture into the project. This will ensure that the project meets the safety
requirements and is designed to be safe and secure.

These integrations collectively form the essence of D5.2.

Furthermore, moving towards the D5.3, Performance testing and improvement will be
addressed. This is the process of testing and improving the performance of the project. This
will ensure that the project meets the performance requirements and is optimized for speed
and efficiency.

 36

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

5. Toy model
In the developmental stages of our project, a toy model was created to demonstrate the
potential of deep learning for object detection within images. This simplified model,
designed for demonstrative purposes rather than operational robustness, was pivotal in
validating our approach to AI-based object detection and facilitating early integration tests
with the SAFEXPLAIN’s platform.

5.1 Dataset Generation
The dataset for this toy model comprised 10,000 images of satellites, each annotated with
bounding boxes to identify satellite targets. The generation methodology mirrored that of
the space use case (i.e., Satellite Pose Estimation), utilizing the same simulation
environment to create varied scenarios, stripped of their most sensitive elements in order
to share the asset without IP issues. These scenarios included different satellite distances
and configurations and diverse backgrounds featuring Earth and various lighting conditions.
This approach ensured that the toy model could be trained on a dataset that, while
simplified, still reflected the complexity and variability of a specific environment (i.e.,
space).

5.2 Model Architecture
The toy model was trained using the SSD_Lite_MobileNetV3_Large model, a variant of the
Single Shot MultiBox Detector (SSD) optimized for mobile devices, offering a balance
between speed and accuracy. This architecture is particularly suited for edge computing
scenarios where computational resources are limited. The choice of MobileNetV3 Large,
known for its efficiency and effectiveness in object detection tasks, was strategic, allowing
for rapid training and integration within our platform.

SSD Lite MobileNetV3 Large employs lightweight depth-wise separable convolutions and
incorporates features like Squeeze-and-Excitation blocks, which enhance model efficiency
without compromising performance. This design is optimized for real-time applications,
making it an ideal choice for the toy model.

 37

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Figure 20. Toy model architecture

5.3 Training
Training was executed in a PyTorch environment, leveraging its dynamic graph
computations and extensive library support to streamline the development process. Python
served as the programming language, facilitating rapid development cycles and easy
integration with the data generation pipeline. The training process was completed within a
reasonable timeframe, demonstrating the model's capacity to learn from the generated
dataset effectively. Post-training, the toy model was fully integrated into the platform,
enabling preliminary testing of AI tasks common to our use cases, such as object detection
within images.
It's important to emphasize that the toy model was not intended to meet the operational
robustness required for space missions. Its primary purpose was to serve as a proof of
concept, illustrating the feasibility of employing deep learning for AI-based object detection
tasks within our technological framework. This early demonstration was crucial for aligning
technological specifications and ensuring seamless integration with the broader project
platform.

 38

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

6. Conclusion
In this first deliverable from Work Package 5, the activities of the first phase of the project
are reported, showing the work done to meet the commitment on Milestone 2 (MS2) –
namely, providing case studies ready to be integrated with other work packages outputs.

The industrial partners providing the case studies have developed significant AI models for
applications in critical systems employing Artificial Intelligence to reach autonomy, with a
good variety of approaches and from different industrial domains, in order to provide a
wide benchmark for building and verifying SAFEXPLAIN guidelines and software assets.
Datasets have been adequately gathered or synthetized, the essential features for building
safety-relevant cases have been implemented, and models have been trained reaching
satisfiable and realistic results.

A good effort was spent in synchronizing with the other Work Packages in the project, both
in live discussions and with the support of informal documents, to guarantee a common and
consistent direction. Safety experts in the consortium have been involved in architecting the
safety operational scenario and the safety features to be assessed in the case studies, XAI
researchers have been made aware of the case studies techniques and tasks to guide the
design and implementation of explainability tools. Platform and software stack engineers
have been in constant touch with WP5 for mutually assess requirements and needs,
envisioning integration between case studies and SAFEXPLAIN software stack; in order to
ease the process, the toy model provided a simple AI example mimicking a case study
implementation and functioning without requiring the same effort and was exploited for
early requirements verification and integration testing.

The current results of this first phase are in line with the expectations and objectives posed
by the consortium at the beginning of the project, and a solid basis on which the following
steps will be taken.

 39

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

Acronyms and Abbreviations
- ATSS – Adaptive Training Sample Selection
- CAD – Computer-Aided Design
- CAIS – Critical Autonomous AI-based Systems
- CNN – Convolutional Neural Network
- CPU – Central Processing Unit
- CS – Case Study
- D – Deliverable
- FPN – Feature Pyramid Network
- GFL – Generalized Focal Loss
- GIoU – Generalized Intersection over Union
- GNC – Guidance, Navigation and Control
- GPU – Graphics Processing Unit
- GUI – Graphical User Interface
- LR – Learning Rate
- MS – Milestone
- NMS – Non-Maximum Suppression
- ODD – Operational Design Domain
- ONNX – Open Neural Network Exchange
- PAN – Path Aggregation Network
- PnP – Perspective-n-Point
- SIMO – Single-Input, Multiple-Output
- SLAB – Space Rendezvous Laboratory
- SMW – Safexplain MiddleWare
- SSD – Single Shot MultiBox Detector
- TCC – Time To Collision
- WP – Work Package
- XAI – eXplainable Artificial Intelligence

 40

D 5.1 Case study stubbing and early assessment of case study porting
Version 1.0

References
[1] https://kelvins.esa.int/satellite-pose-estimation-challenge/, (2019)

[2] https://kelvins.esa.int/pose-estimation-2021/, (2021)

[3] Park, Tae Ha, et al. "SPEED+: Next-generation dataset for spacecraft pose estimation
across domain gap." 2022 IEEE Aerospace Conference (AERO). IEEE, 2022.,
https://arxiv.org/abs/2110.03101

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV
2014, pp. 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1

[5] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. BDD100K: A diverse driving video database with scalable annotation tooling.
CoRR, abs/1805.04687, 2018. URL http://arxiv.org/abs/1805.04687.

[6] Rangi Lyu. Super fast and lightweight anchor-free object detection model. real-time on
mobile devices. 2020. URL https://github.com/RangiLyu/nanodet

[7] Honda H, Uchida Y. CLRerNet: improving confidence of lane detection with LaneIoU.
InProceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2024
(pp. 1176-1185).

[8] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Spatial as deep:
Spatial cnn for traffic scene understanding. In AAAI, February 2018. 1, 3, 5, 6

[9] Ranftl R, Bochkovskiy A, Koltun V. Vision transformers for dense prediction.
InProceedings of the IEEE/CVF international conference on computer vision 2021 (pp.
12179-12188).

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
The KITTI vision benchmark suite. In CVPR, 2012.

[11] CARLA Simulator - https://carla.readthedocs.io/en/latest/

[12] Ge Z, Liu S, Wang F, Li Z, Sun J. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430. 2021 Jul 18.

https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://kelvins.esa.int/pose-estimation-2021/
https://arxiv.org/abs/2110.03101
http://arxiv.org/abs/1805.04687
https://github.com/RangiLyu/nanodet
https://carla.readthedocs.io/en/latest/

	1. Introduction
	2. Space Case Study
	2.1 Datasets collection and generation
	2.1.1 Real vs Simulated Data
	2.1.2 Dataset generation pipeline

	2.2 Architecture
	2.3 Training
	2.4 Local testing
	2.5 Platform testing and early porting
	2.6 Scenario Generation
	2.7 Next steps

	3. Automotive Case Study
	3.1 Datasets collection and generation
	3.1.1 Simulator
	3.1.2 Selection of Models

	3.2 Architecture
	3.3 Training
	3.4 Local testing
	3.5 Platform testing and early porting
	3.6 Scenarios generation
	3.7 Next steps

	4. Railway Case Study
	4.1 Datasets collection and generation
	4.2 Architecture
	4.3 Training
	4.4 Local testing
	4.5 Platform testing and early porting
	4.6 Next steps

	5. Toy model
	5.1 Dataset Generation
	5.2 Model Architecture
	5.3 Training

	6. Conclusion

