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• The scene
• Critical Embedded Systems (CES) increasingly rely on Artificial 

Intelligence (AI): automotive, space, railway, avionics, etc.
• CES must undergo certification/qualification
• AI at odds with functional safety certification/qualification 

processes (lack of explainability, lack of traceability, data-
dependent software, stochastic nature)

• SAFEXPLAIN ambition: architecting DL solutions enabling 
certification/qualification

• Making them explainable and traceable
• Preserving high performance
• Tailoring solutions to varying safety requirements by means of 

different safety patterns

In a nutshell
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• Failure or malfunction may result severe harm (casualties, economical loss)

• Exhaustive Verification and Validation (V&V) process, and safety measures deployed to 
guarantee the safety goals are met

• Each domain has it’s own guidelines and regulations for SW and HW

CES
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CES and AI
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• The number of mechanical subsystems enhanced or 
completely replaced by electronic components is increasing

• Advanced software functions are becoming ubiquitous to 
control all aspects of CES, including safety related systems

• AI techniques, and Deep Learning (DL) in particular, are at the 
very heart of the realization of advanced software functions 
such as computer vision for object detection and tracking, 
path planning, driver-monitoring systems,…

• Autonomous operation 
• epitome of safety-related applications of AI in CES, 
• exemplifies the need for increasingly high computing 

performance whilst making AI solutions to comply with FUSA 
requirements
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• When software/hardware implements safety-related 
functionality they inherit safety requirements

• Safety Integrity Level (SIL) decomposition
• E.g., Automotive SIL (ASIL) from D (highest) to A (lowest), and 

then QM (no safety)

• AI used in fail-safe systems (i.e. systems with a safe state)
• E.g., Advanced Driving Assistance Systems (ADAS) can notify 

misbehavior and transfer control to the driver

• With autonomous systems (cars, planes, satellites,…) this is 
no longer doable

• No safe state available, hence AI components inherit safety 
requirements

AI in Safety-critical systems so far and in the future
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Non-AI safe 
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AI non-safe 
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Non-AI safe 
monitor
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(it can be further decomposed 
into lower ASIL, but never QM)
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• Software implements complex AI algorithms that manage huge amounts of data

• This carries huge computing performance requirements

• Hardware in safety-critical systems: from simple micro-controller to heterogeneous 
MPSoC with specific accelerators

• Complex MPSoC complicates established software timing V&V

AI impact on the computing platform
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• Usual V-model

Safety-related Systems Development Process
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Safety goals 
specification

Safety reqs
specification

Architectural 
design

Unit design 
+ implem. Unit testing

Integration 
and testing

Requirements 
testing

Full system 
testing

Precise and unambiguous requirements

• HW: admits failure rates due to random faults
• SW: fully deterministic. Cannot fail

Control SW: 
• Data is abstracted (name, source, but not its values)
• Algorithm is “data-independent” (defined 

independently of how the data looks like) Code (SW) designed 
without a single 

experiment

Data used only for testing 
purposes: PASS/FAIL tests, 

diagnostics, quality assessment

NO DATA USED TO 
DESIGN THE SYSTEM

DATA USED ONLY 
FOR TESTING

But data does not 
determine the design of 

the system
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• AI-related challenges

Safety-related Systems Development Process
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Safety goals 
specification

Safety reqs
specification

Architectural 
design

Unit design 
+ implem. Unit testing

Integration 
and testing

Requirements 
testing

Full system 
testing

Precise and unambiguous 
requirements

• HW: admits failure rates due to random faults
• SW: no longer deterministic. Can deliver 

erroneous output

Data-defined SW: 
• Algorithm behavior is determined by actual 

data (e.g., weights of a DNN)
• Algorithm is fully “data-dependent”

Challenges to define relevant data 
for testing:
• Cannot be exhaustive
• Equivalence classes
• Operation modes cannot be 

enumerated deterministically
• Etc.

Moreover, independence 
between training and test 

data must be proven

Code (SW) designed 
mostly based on 

experiments

DATA DETERMINES SYSTEM DESIGN
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• Current practice in DL frontally clashes with Functional Safety (FUSA)-related processes since:
• DL software is built as a combination of 

• control (model configuration such as what layers to use, in which order, etc.) and 
• data (algorithm parameters are obtained from training with specific datasets) 

• stochastic nature
• data-dependent nature

• There is a lack of sufficient explainability and traceability
• Why each layer is used and what it does (semantics)
• Why they are deployed in a specific order (composed semantics) 
• How safety requirements can be traced end-to-end
• What the scope of application is (e.g. valid input data range)
• What confidence can be reached on the predictions obtained (e.g. by detecting occlusions)

• Prediction accuracy is stochastic, and test campaigns deliver, in the best case, success rates linked to 
specific testing datasets, therefore exposing to dataset-dependent test conclusions in many cases

AI (and DL) Specific Challenges
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• Ambition: architecting DL solutions enabling 
certification/qualification

• Making them explainable and traceable
• Preserving high and predictable 

performance
• Tailoring solutions to varying safety 

requirements by means of different safety 
patterns

Ambition/objectives
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Functional Safety 
Certification

Deep Learning 
Solutions

Platform and  
toolset-level support

Industrial case
studies

Auto Space

Railway

Safety G
uidelines

Explainability
Traceability
Robustness
Security

Observability
Controllability
Timing analysis
Automated tests

Domain-specific 
requirements
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• GOAL 1: Devise new DL components providing explainability and traceability by design

SAFEXPLAIN Goals
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• GOAL 2: Adapt software safety life cycle steps and the architecture of solutions based on DL 
components so that certification is viable

SAFEXPLAIN Goals
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• GOAL 3: Provide complementary safety patterns with different safety, cost, and reliability tradeoffs

SAFEXPLAIN Goals
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• GOAL 4: Tailor DL architectures to achieve sufficient performance on relevant high-performance 
platforms

SAFEXPLAIN Goals
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• GOAL 5: Demonstrate the long-term viability of the SAFEXPLAIN approach

SAFEXPLAIN Goals
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• On the FUSA side
• We must identify patterns (much preferably relevant cross-domains) meaningful for AI-based functions
• Focus on patterns with varying requirements on AI-based functions
• Identify FUSA relevant properties for DL components and ensembles

• On the DL side
• Investigate DL organizations that make explainability and traceability emerge by construction while 

preserving accuracy
• Investigate combinations (ensembles) of DL models that provide FUSA-relevant properties (e.g., diverse 

redundancy)

Putting it all together \1

Toulouse – 16/01/2023
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• On the platform/tooling side
• Consider DL solution deployments providing sufficiently high and stable performance
• Iterate with FUSA and DL people to find FUSA patterns and DL solutions that can be run efficiently
• Devise ways to (automatically or semi-automatically) provide FUSA-relevant evidence based on DL-

based results using appropriate tools

• On the case study side
• Consider varying FUSA requirements for different AI-based components 

• Within a single use case
• Across different use cases

• Consider heterogeneous requirements across use cases (e.g., varying degrees of performance, 
accuracy, etc.)

Putting it all together \2
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www.safexplain.eu
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