

Safe and explainable critical embedded systems based on AI

Francisco J. Cazorla

Barcelona Supercomputing Center (BSC)

This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101069595.

MCS: International Workshop on Mixed Critical Systems – Safe and Secure Intelligent CPS and the development cycle

HiPEAC 2023

Workshop Ø Diamant (Level 1) ③ 10:00 - 17:00

In a nutshell

xida

NAVINFO

ikerlan

RI. SF

Safe and Explainable Critical Embedded Systems based on Al

The scene

- Critical Embedded Systems (CES) increasingly rely on Artificial Intelligence (AI): automotive, space, railway, avionics, etc.
- CES must undergo certification/qualification
- AI at odds with functional safety certification/qualification processes (lack of explainability, lack of traceability, datadependent software, stochastic nature)
- SAFEXPLAIN ambition: architecting DL solutions enabling certification/qualification
 - Making them **explainable** and **traceable**
 - Preserving high performance
 - Tailoring solutions to varying safety requirements by means of different safety patterns

BARCELONA SUPERCOMPUTING CENTER (BSC) https://www.bsc.es/

IKERLAN, S. Coop (IKR) <u>https://www.ikerlan.es/</u>

AIKO SRL (AIKO) https://www.aikospace.com/

RISE RESEARCH INSTITUTES OF SWEDEN AB (RISE) https://www.ri.se/

NAVINFO EUROPE BV (NAV) https://www.navinfo.eu/

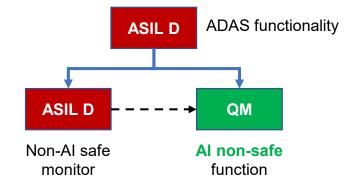
EXIDA DEVELOPMENT SRL (EXI) <u>https://www.exida-eu.com/</u>

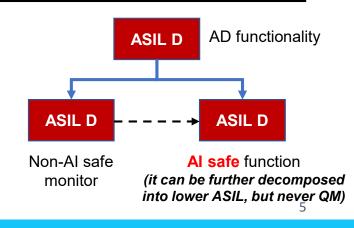
Jaume Abella Project Coordinator

- Failure or malfunction may result **severe harm** (casualties, economical loss)
- Exhaustive Verification and Validation (V&V) process, and safety measures deployed to guarantee the safety goals are met
- Each domain has it's own guidelines and regulations for SW and HW

CES and AI

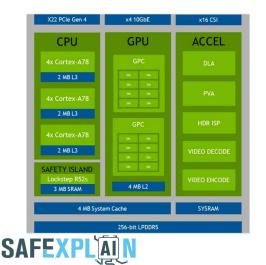
- The number of mechanical subsystems enhanced or completely replaced by electronic components is increasing
- Advanced software functions are becoming ubiquitous to control all aspects of CES, including safety related systems
- AI techniques, and Deep Learning (DL) in particular, are at the very heart of the realization of advanced software functions such as computer vision for object detection and tracking, path planning, driver-monitoring systems,...
- Autonomous operation
 - epitome of safety-related applications of AI in CES,
 - exemplifies the need for increasingly high computing performance whilst making AI solutions to comply with FUSA requirements





Al in Safety-critical systems so far and in the future

- When software/hardware implements safety-related functionality they inherit safety requirements
- Safety Integrity Level (SIL) decomposition
 - E.g., Automotive SIL (ASIL) from D (highest) to A (lowest), and then QM (no safety)
- Al used in fail-safe systems (i.e. systems with a safe state)
 - E.g., Advanced Driving Assistance Systems (ADAS) can notify misbehavior and transfer control to the driver

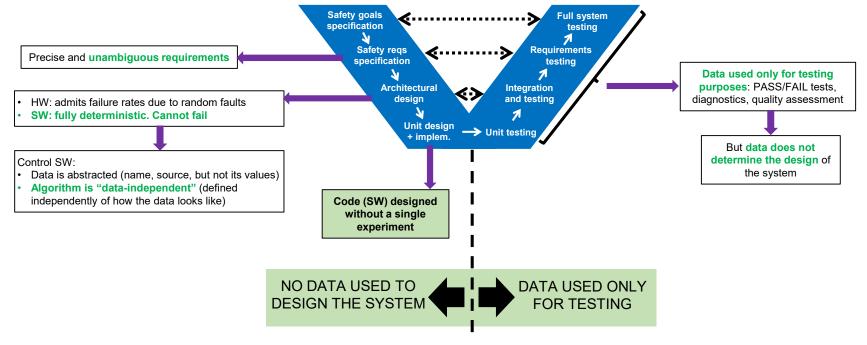

- With autonomous systems (cars, planes, satellites,...) this is no longer doable
 - No safe state available, hence AI components inherit safety requirements

Toulouse - 16/01/2023

Al impact on the computing platform

- Software implements complex AI algorithms that manage huge amounts of data
- This carries huge computing performance requirements
- Hardware in safety-critical systems: from simple micro-controller to heterogeneous MPSoC with specific accelerators
- Complex MPSoC complicates established software timing V&V

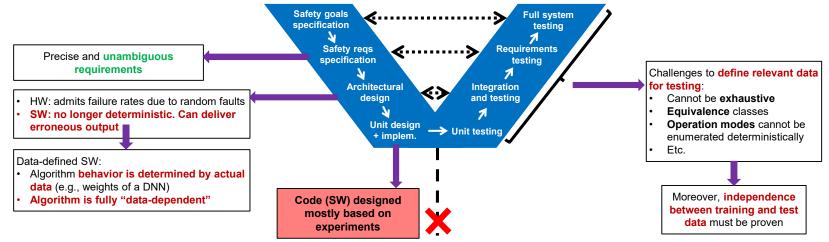
Contex- A78 Grina Grina Lini Lino 256 Kalut	Cortex- A78 64x8 64x80 111 120 216 KB12	Contex- A78 E4X8 54X8 L11 L18 256 KBL2	Cortex- A78 6413 6413 L11 L10 256 KBL2
	200	313	
	OU C	lutter	
Cortex-	Cortex-	Cortex-	Cortex-
64 KB 64 KB 111 110 256 KB 12	HINE HINE LTI LTD 254 KBL2	HISE HISE LII LIP 254 KBLZ	64 KB 64 KB L11 L10 256 KBL2
296 88 62	294 KBL2 2W		196 KB L1
Cortex- 478 6418 6418 L11 L10 256 65L2	Contex- A78 64X8 64X8 UI UIP 256 KB-L1	Contex- 478 61X8 64X8 101 U 9 256 45 12	Cortex- A78 erits erits UII LID 256 HBL2
	2/4	10	



e.g. NVIDIA Orin Source: NVIDIA

Toulouse - 16/01/2023

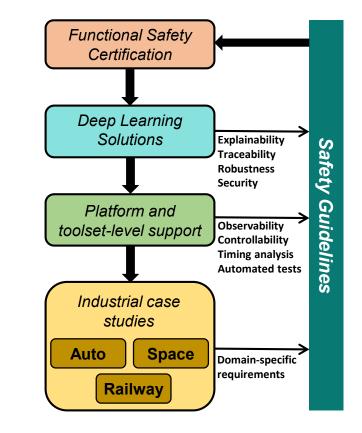
Safety-related Systems Development Process


Usual V-model

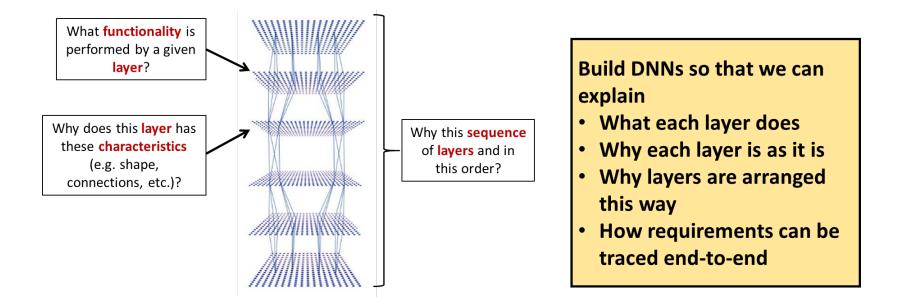
Safety-related Systems Development Process

AI-related challenges

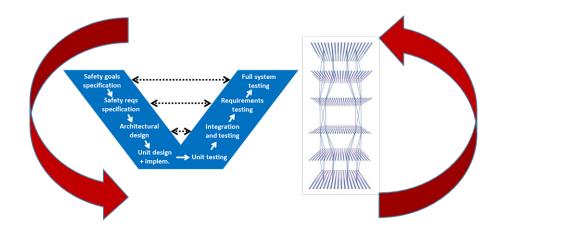
DATA DETERMINES SYSTEM DESIGN


AI (and DL) Specific Challenges

- Current practice in DL frontally clashes with Functional Safety (FUSA)-related processes since:
 - DL software is built as a combination of
 - control (model configuration such as what layers to use, in which order, etc.) and
 - **data** (algorithm parameters are obtained from training with specific datasets)
 - stochastic nature
 - data-dependent nature
 - There is a lack of sufficient explainability and traceability
 - Why each layer is used and what it does (semantics)
 - Why they are deployed in a specific order (composed semantics)
 - How safety requirements can be traced end-to-end
 - What the scope of application is (e.g. valid input data range)
 - What confidence can be reached on the predictions obtained (e.g. by detecting occlusions)
 - **Prediction accuracy is stochastic**, and test campaigns deliver, in the best case, success rates linked to specific testing datasets, therefore exposing to **dataset-dependent test conclusions** in many cases

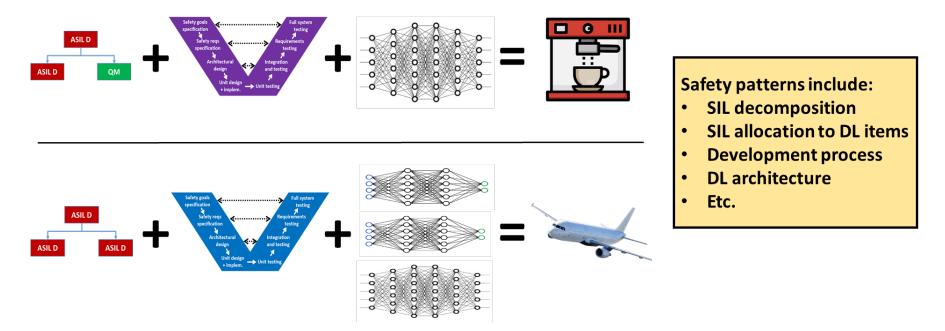

Ambition/objectives

- Ambition: architecting DL solutions enabling certification/qualification
 - Making them explainable and traceable
 - Preserving high and predictable performance
 - Tailoring solutions to varying safety requirements by means of different safety patterns



• GOAL 1: Devise new DL components providing explainability and traceability by design

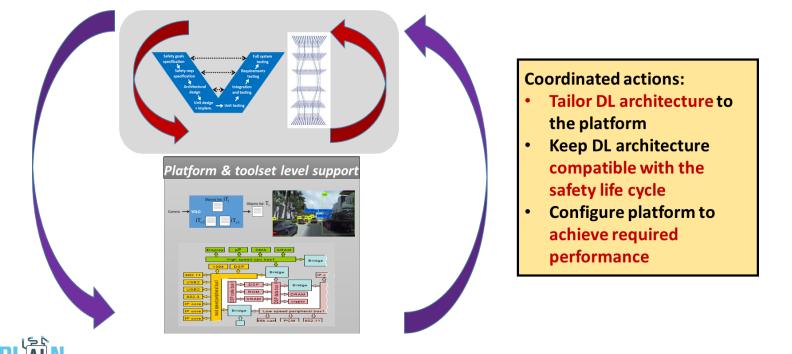
• **GOAL 2**: Adapt software safety life cycle steps and the architecture of solutions based on DL components so that certification is viable

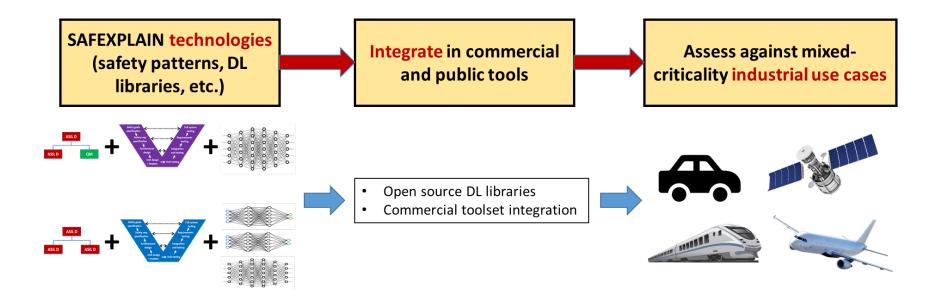


Tailor safety life cycle to enable DNN certification

Tailor DNNs to match properties needed by functional safety standards

• **GOAL 3**: Provide complementary safety patterns with different safety, cost, and reliability tradeoffs




Toulouse - 16/01/2023

SAFE

• **GOAL 4**: Tailor DL architectures to achieve sufficient performance on relevant high-performance platforms

• **GOAL 5**: Demonstrate the long-term viability of the SAFEXPLAIN approach

Putting it all together \1

- On the FUSA side
 - We must **identify patterns** (much preferably relevant cross-domains) meaningful for AI-based functions
 - Focus on **patterns with varying requirements** on AI-based functions
 - Identify **FUSA relevant properties** for DL components and ensembles
- On the DL side
 - Investigate DL organizations that make explainability and traceability emerge by construction while preserving accuracy
 - Investigate **combinations (ensembles) of DL models** that provide FUSA-relevant properties (e.g., diverse redundancy)

Putting it all together \2

- On the platform/tooling side
 - Consider DL solution deployments providing sufficiently high and stable performance
 - Iterate with FUSA and DL people to find FUSA patterns and DL solutions that can be run efficiently
 - Devise ways to (automatically or semi-automatically) provide FUSA-relevant evidence based on DLbased results using appropriate tools
- On the case study side
 - Consider varying FUSA requirements for different AI-based components
 - Within a single use case
 - Across different use cases
 - Consider heterogeneous requirements across use cases (e.g., varying degrees of performance, accuracy, etc.)

Safe and Explainable Critical Embedded Systems based on Al

Follow us on social media:

www.safexplain.eu

This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101069595.

Safe and explainable critical embedded systems based on AI

Francisco J. Cazorla

Barcelona Supercomputing Center (BSC)

This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101069595.