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• CRTES are systems with critical functionalities that 
must guarantee the completion within a deadline
and deliver correct results

• Timely execution is as important as functional 
correctness

• Producing a correct output after the specified 
deadline could lead to a potentially fatal 
accident (e.g., the ABS of a car)

• CRTES must undergo a rigorous process before being 
deployed to ensure meeting safety standards

Critical Real-Time Embedded Systems (CRTES)
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• Vehicles capable of making all driving decisions

• Mostly based on Deep Learning algorithms

• Stochastic process involving some randomness and uncertainty

• Provide fault tolerance 
• Perception Module: detect the objects surrounding the vehicle

• You Only Look Once (YOLO): efficient real-time Camera-Based Object 
Detector (CBOD)

• YOLOv4 is a CNN made with 162 layers and can detect 80 classes of 
objects

• We build on top of the Darknet framework (open source) which 
implements image and video processing

Autonomous Driving

Camera-based object 
detection (YOLO)
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• Redundant execution often used for fault detection 

• Fault tolerance for Common Cause Failures (CCFs)
• CCFs  a single fault affects redundant copies analogously
• Diverse redundancy needed

• Different outcomes, potentially erroneous, under the 
same common fault

• CBOD needs to generate a new object list every 40ms at a rate of 25 
FPS

• Such intensive computations entail large energy and bandwidth 
costs which are a key factor in resource-constrained environments

• Classic fault tolerance models (e.g., lockstep redundancy) are very 
power-hungry

• We propose an approach to provide energy-efficient diverse 
redundancy in the context of autonomous driving

Motivation for Energy-Efficient Diverse Redundancy
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• Our proposal:

• Accelerator with data type B
• Lower power
• Less accurate

• Outputs A and B are not equivalent at bit-level

• The Heuristic compares the outputs in terms of semantic differences (objects detected)

Diverse and Redundant Accelerators
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• We have considered FP16 as the baseline data type A
• FP16 produces almost identical semantic results than FP32
• FP8 produces unacceptable results in this case

• We have considered FP13 as the data type B
• FP13 is implemented by dropping the 3 lowermost mantissa bits of FP16
• The mantissa is the critical path of the floating-point operations
• Using smaller mantissas brings several benefits

• Shorter critical path: Fewer bits are operated
• Lower energy consumption: Lower power gates can be used to fit the shorter critical path
• Lower area requirements

Data Types
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• We show how many objects are detected within each 
confidence range for the COCO dataset 

• Differences between fp32 and fp16 are tiny. However, this 
is not the case for fp13 

• Objects identified with high confidence have values close 
to 1, but strictly below 1

• The highest value strictly below 1 (HVSB1) is farther away 
from 1 for lower precision arithmetic

• HVSB1_fp16 = 0.9995, HVSB1_fp13 = 0.996
• HVSB1_fp1620 = 0.990, HVSB1_fp1320 = 0.926

• The usual case is that Conffp16 > Conffp13

Confidence Values of FP13
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• SoftFloat library to emulate FP16 and FP13 at the software level
• Errors injected in the sign or exponent of the result of multiplication and 

addition operations based on a given probability (set to 10-10)

• The impact of faults in the mantissa is often completely negligible, making 
the fault injection campaign highly ineffective 

• We have analysed two cases
• Same frame: Errors in the same frame on both accelerators (in random 

operation and in the same operation)
• Independent Faults: Errors in different frames

Error Injection Emulation
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• We have used the Intersection over Union (IoU) to assess the accuracy 
impact

• IoU ≥ t (t = 0.5)
• Predictions are classified as

• True Positives (TP)
• False Negatives (FN)
• False Positives (FP)

Accuracy Metric
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• Real driving videos
• ↑ Real data for autonomous driving
• ↑ Average the detections of consecutive frames
• ↓ FP16 is used as the reference model but it is not always 

correct
• ↓ Need to perform visual inspection to check for true errors

• Three sets of videos of 6 videos each
• SET1train: to test and fine-tune our scheme
• SET1eval: to evaluate our scheme using the same videos but 

forwarded enough to grant independence
• SET2eval: to evaluate our scheme with different videos that 

grant further independence

Dataset
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• Averaging the confidence across 3 frames

• The average confidence does not correspond to the direct 
average of the three confidences

• Example:
• Expected Average = (0 + 0,97 + 0,98)/3 = 0,65
• Actual Average = 0,44

• The confidence is calculated as 
• Confidence = ObjProb × ClassProb

• The ClassProb and ObjProb are the ones being averaged 
rather than the resulting confidence

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑂𝑂𝑂𝑂𝑖𝑖−2 · 
𝑂𝑂𝑂𝑂𝑖𝑖−1 · 

𝑂𝑂𝑂𝑂𝑖𝑖
3

 · 𝐶𝐶𝑂𝑂𝑖𝑖−2 · 
𝐶𝐶𝑂𝑂𝑖𝑖−1 · 

𝐶𝐶𝑂𝑂𝑖𝑖
3

• The impact of a fault is up to quadratic on the average 
confidence

Frame Average Calculation
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• We note that the confidence 
difference between fp16 and fp13 
remain mostly stable across frames
in fault-free cases

• We compare the confidence 
difference between both 
accelerators for the three frames

• We regard a detection as faulty if 
one of the differences is 
significantly larger than the other 
two

Example of a Faulty Detection
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• Trust the maximum 
confidence for the 
faulty frame 

Heuristics to Correct Faults: TRUST
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• TRUST with independent faults (SET1train)

• TRUST is highly insensitive to the value of 
Th

• We use Th = 0.1 since it gives slightly 
better results

• Analogous results with the other sets of 
videos and configurations

TRUST Heuristic
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• Most faults are corrected (between 76.9% and 78.3%) when they affect a single accelerator

• It reaches 94% if we focus on objects with confidence values above 60%

• This occurs mostly removing FNs, and the vast majority of FPs are true objects whose 
confidence was slightly under the threshold

• Whenever faults are injected synchronously, results are naturally slightly worse

Effectiveness of TRUST
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• We provide results breaking down accumulated FPs+FNs into
• Small changes (SM): Objects moving from 40%-50% confidence to 50%-60% or vice versa
• Large changes (LG): Objects with larger confidence range change

• Most LG errors are fixed when TRUST is applied

• Whenever faults are injected synchronously, results are naturally slightly worse

Breakdown Across Small and Large Confidence Range Change
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• We analyse how many FPs and FNs escape in total across different confidence ranges

• Three configurations
• Baseline: non-redundant accelerator with faults
• Baseline_TRUST: redundant accelerator with all faults injected in fp16
• TRUST_Indep: half of the faults injected in each of the accelerators

• TRUST corrects most of the errors with a high confidence

• These results are analogous on the other configurations/datasets

Uncorrected Errors per Confidence Range
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• A simple solution – yet costly – would be to simply replicate the primary accelerator

• TRUST, whose cost is lower, causes:
• 34 FPs and 13 FNs (SET1train), 19 FPs and 38 FNs (SET1eval), and 21 FPs and 35 FNs (SET2eval)

• The baseline fp16 implementation may also cause FPs and FNs since we lack labelled datasets 
for the videos

• We have performed visual inspection and found out the following

• TRUST performs slightly better than DCLS with SET1train (16 vs 31 errors)

• TRUST performs slightly worse than DCLS with SET1eval and SET2eval (40 vs 17 errors, and 39 
vs 17 errors) (0.29-0.46% misdetection increase)

Accuracy Comparison Against DCLS-like Solutions
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• TRUST provides a 14% OP energy reduction

• 3% total energy reduction

• Bandwidth optimizations (e.g., weight clustering) should be applied to obtain higher total 
energy savings

Energy Comparison Against DCLS-like Solutions
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• Efficient diverse redundancy becomes mandatory for DNNs, which are the most 
power-hungry computing kernel of object detection in AD

• Full duplication of accelerators brings significant costs in terms of power

• We present TRUST, a scheme to build diverse redundant accelerators based on the 
use of lower precision arithmetic to reduce costs, while preserving performance and 
reusing data fetched by the primary accelerator

• Our analysis shows that such strategy provides effective error correction, particularly 
for the most significant errors, with 3-6% energy reductions w.r.t. DCLS-like solutions

• Part of our ongoing future work is realising such a scheme in an actual diverse and 
redundant accelerator exploiting the findings in this paper and evaluating TRUST with 
other arithetmics (e.g., integer)

Conclusions and Future Work
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