
This project has received funding from the European Union's Horizon
Europe programme under grant agreement number 101069595.

Safe and explainable critical embedded systems based on AI
Jaume Abella1, Jon Perez2, Cristofer Englund3, Bahram Zonooz4, Gabriele Giordana5, Carlo Donzella6, Francisco J. Cazorla1,

Enrico Mezzetti1, Isabel Serra1, Axel Brando1, Irune Agirre2, Fernando Eizaguirre2, Thanh Hai Bui3, Elahe Arani4, Fahad Sarfraz4,
Ajay Balasubramaniam4, Ahmed Badar4, Ilaria Bloise5, Lorenzo Feruglio5, Ilaria Cinelli5, Davide Brighenti7, Davide Cunial7

1 Barcelona
Supercomputing

Center, Spain

2 Ikerlan Technology Research
Centre, Basque Research and

Technology Alliance (BRTA), Spain

3 RISE Research
Institutes of Sweden,

Sweden

4 Navinfo Europe,
The Netherlands

5 AIKO s.r.l.,
Italy

6 Exida Development s.r.l.
7 Exida Engineering s.r.l.,

Italy

2

• The scene
• Critical Embedded Systems (CES) increasingly rely on Artificial

Intelligence (AI): automotive, space, railway, avionics, etc.
• CES must undergo certification/qualification
• AI at odds with functional safety certification/qualification

processes (lack of explainability, lack of traceability, data-
dependent software, stochastic nature)

• SAFEXPLAIN ambition: architecting DL solutions enabling
certification/qualification

• Making them explainable and traceable
• Preserving high performance
• Tailoring solutions to varying safety requirements by means of

different safety patterns

In a nutshell

Berlin – 11/07/2023

BARCELONA SUPERCOMPUTING
CENTER (BSC)
https://www.bsc.es/

IKERLAN, S. Coop (IKR)
https://www.ikerlan.es/

AIKO SRL (AIKO)
https://www.aikospace.com/

RISE RESEARCH INSTITUTES OF
SWEDEN AB (RISE)
https://www.ri.se/

NAVINFO EUROPE BV (NAV)
https://www.navinfo.eu/

EXIDA DEVELOPMENT SRL (EXI)
https://www.exida-eu.com/

Jaume Abella
Project Coordinator

OCT 2022 – SEP 2025

https://www.bsc.es/
https://www.ikerlan.es/
https://www.aikospace.com/
https://www.ri.se/
https://www.navinfo.eu/
https://www.exida-eu.com/

3

• Failure or malfunction may result severe harm (e.g., casualties)

• Exhaustive Verification and Validation (V&V) process, and safety measures deployed to
guarantee the safety goals are met

• Each domain has it’s own guidelines and regulations for SW and HW

• ISO 26262 and ISO 21448 (SOTIF) for automotive

CES

Berlin – 11/07/2023

ISO26262 EN50126/8ECSS

4

CES and AI
• The number of mechanical subsystems enhanced or completely

replaced by electronic components is increasing

• Advanced software functions are becoming ubiquitous to control all
aspects of CES, including safety related systems

• AI techniques are at the very heart of the realization of advanced
software functions such as computer vision for object detection and
tracking, path planning, driver-monitoring systems,…

• E.g., You Only Look Once (YOLO) camera-based object detection system
builds upon a Neural Network

• Autonomous operation
• epitome of safety-related applications of AI in CES,
• exemplifies the need for increasingly high computing performance

whilst making AI solutions to comply with FUSA requirements

Berlin – 11/07/2023

5

• When software/hardware implements safety-related
functionality they inherit safety requirements

• Safety Integrity Level (SIL) decomposition
• E.g., Automotive SIL (ASIL) from D (highest) to A (lowest), and

then QM (no safety)

• AI used in fail-safe systems (i.e. systems with a safe state)
• E.g., Advanced Driving Assistance Systems (ADAS) can notify

misbehavior and transfer control to the driver

• With autonomous systems (e.g., autonomous cars) this is
not yet solved

• If no safe state available(*), or non-AI safe monitor is
possible, hence AI components inherit safety requirements

AI in Safety-critical systems so far and in the future
ASIL D

ASIL D QM

ADAS functionality

Non-AI safe
monitor

AI non-safe
function

ASIL D

ASIL D ASIL D

AD functionality

Non-AI safe
monitor

AI safe function
(it can be further decomposed
into lower ASIL, but never QM)Berlin – 11/07/2023

(*) The safe state must not use AI, otherwise we would
recursively make AI-based components be fail-operational

6

• Software implements complex AI algorithms that manage huge amounts of data

• This carries huge computing performance requirements

• Hardware in safety-critical systems: from simple micro-controller to heterogeneous
MPSoC with specific accelerators

• Complex MPSoC complicates established software timing V&V

AI impact on the computing platform

Berlin – 11/07/2023

e.g. NVIDIA Orin
Source: NVIDIA

7

• ISO 26262 software V-model

Safety-related Systems Development Process

Berlin – 11/07/2023

Safety goals
specification

Safety reqs
specification

Architectural
design

Unit design
+ implem. Unit testing

Integration
and testing

Requirements
testing

Full system
testing

Precise and unambiguous requirements

• HW: admits failure rates due to random faults
• SW (algorithm): deterministic. Systematic errors

management

Control SW:
• Data is abstracted (name, source, but not its values)
• Algorithm is “data-independent” (defined

independently of how the data looks like)
Code (SW) designed based on
human expert knowledge and

physical laws/operational rules

Data used only for testing
purposes: PASS/FAIL tests,

diagnostics, quality assessment

NO DATA USED TO
DESIGN THE SYSTEM

DATA USED ONLY
FOR TESTING

But data does not
determine the design of

the system

8

• AI-related challenges

Safety-related Systems Development Process

Berlin – 11/07/2023

Safety goals
specification

Safety reqs
specification

Architectural
design

Unit design
+ implem. Unit testing

Integration
and testing

Requirements
testing

Full system
testing

Precise and unambiguous
requirements

• HW: admits failure rates due to random faults
• SW (algorithm): Not always deterministic

and limited predictability/explainability

Data-defined SW:
• Algorithm behavior is determined by

actual data (e.g., weights of a DNN)
• Algorithm is fully “data-dependent”

Challenges to define relevant data
for testing:
• Cannot be exhaustive
• Equivalence classes
• Operation modes cannot be

enumerated deterministically
• Etc.

Moreover, independence
between training and test

data must be proven

Software functionality
parametrized with data-

dependent weights can deliver
erroneous predictions

DATA DETERMINES SYSTEM DESIGN

9

• Current practice in DL frontally clashes with Functional Safety (FUSA)-related processes since:
• DL software is built as a combination of

• control (model configuration such as what layers to use, in which order, etc.) and
• data (algorithm parameters are obtained from training with specific datasets)

• stochastic nature
• data-dependent nature

• There is a lack of sufficient explainability and traceability
• Why each layer is used and what it does (semantics)
• Why they are deployed in a specific order (composed semantics)
• How safety requirements can be traced end-to-end
• What the scope of application is (e.g. valid input data range)
• What confidence can be reached on the predictions obtained (e.g. by detecting occlusions)

• Prediction accuracy is stochastic, and test campaigns deliver, in the best case, success rates linked to
specific testing datasets, therefore exposing to dataset-dependent test conclusions in many cases

AI (and DL) Specific Challenges

Berlin – 11/07/2023

10

• Ambition: architecting DL solutions enabling
certification/qualification

• Making them explainable and traceable
• Preserving high and predictable

performance
• Tailoring solutions to varying safety

requirements by means of different safety
patterns

Ambition/objectives

Berlin – 11/07/2023

Functional Safety
Certification

Deep Learning
Solutions

Platform and
toolset-level support

Industrial case
studies

Auto Space

Railway

Safety G
uidelines

Explainability
Traceability
Robustness
Security

Observability
Controllability
Timing analysis
Automated tests

Domain-specific
requirements

Camera-based object
detection (YOLO)

11

• Devise new DL components providing explainability and traceability by design
• Functionally speaking (e.g., a convolution), software can be developed following the usual process for

automotive systems (i.e., in line with ISO 26262 part 6)
• Software architecture (what layers, what shape), input data for training, training process, and the

validation test campaign are the real challenge

SAFEXPLAIN Goal 1

Berlin – 11/07/2023

12

• A number of challenges, but some hints on potential approaches to follow

• DL software has “failure rates”
• This is not compatible with ISO 26262 for software
• But it is acceptable for hardware due to random hardware faults
• Can we extend hardware concept to software?
• Already foreseen for software timing. We may extend it to software results for

DL

• DL software could be assimilated to physical devices
• Non ASIL-compliant sensors can be used to build some ASIL with proper

validation, if their physical principles are diverse(*)

• Can we build something similar with diverse and redundant DNNs? Where do
we have to inject diversity? (training, random inputs, architecture,…)

• Those are questions to be answered as part of SAFEXPLAIN

SAFEXPLAIN Goal 1 (ctn’d)

Berlin – 11/07/2023

I. Agirre, F.J. Cazorla, J. Abella, C.
Hernandez, E. Mezzetti, M. Azkarate-
Askasua, T. Vardanega, "Fitting Software
Execution-Time Exceedance into a
Residual Random Fault in ISO-26262," in
IEEE Transactions on Reliability, vol. 67,
no. 3, pp. 1314-1327, Sept. 2018, doi:
10.1109/TR.2018.2828222.

A. Brando, E. Mezzetti, I. Serra, F.J.
Cazorla, J. Perez, J. Abella, "On Neural
Networks Redundancy and Diversity for
Their Use in Safety-Critical Systems" in
IEEE Computer (special Issue on
Trustworthy AI), vol. 56, no. 6, pp.41-50,
May 2023, doi: 10.1109/MC.2023.3236523

(*) Further details on this example can be found here: https://doi.org/10.1109/EDCC.2010.34

https://doi.org/10.1109/EDCC.2010.34

13

• Adapt software safety lifecycle steps and the architecture of solutions based on DL components
so that certification is viable

• E.g., add additional lifecycle steps to contemplate model training, and adapt requirement specification,
data management and testing approaches

SAFEXPLAIN Goal 2

Berlin – 11/07/2023

14

• Provide complementary safety patterns with different safety, cost, and reliability tradeoffs
• E.g., architecture is different for ASIL-A or ASIL-D, for fail-safe or fail-operational
• Perhaps a practical example comparable to the “E-gas monitoring concept” would be convenient

SAFEXPLAIN Goal 3

Berlin – 11/07/2023

15

• Tailor DL architectures to achieve sufficient performance on relevant high-performance
platforms

• Be careful with “performance insufficiencies” in line with SOTIF

SAFEXPLAIN Goal 4

Berlin – 11/07/2023

16

• Demonstrate the long-term viability of the SAFEXPLAIN approach
• Automotive is the largest target market of the project

SAFEXPLAIN Goal 5

Berlin – 11/07/2023

17

• On the FUSA side
• Identify patterns meaningful for AI-based functions
• Focus on patterns with varying requirements (e.g., ASIL-A or ASIL-D, fail-safe or fail-operational, etc.) on

AI-based functions
• Identify FUSA relevant properties for DL components and ensembles (e.g., failure rates, diverse

redundancy, etc.)

• On the DL side
• Investigate DL organizations that make explainability and traceability emerge by construction while

preserving accuracy
• Investigate combinations (ensembles) of DL models that provide FUSA-relevant properties (e.g., diverse

redundancy)

Putting it all together \1

Berlin – 11/07/2023

18

• On the platform/tooling side
• Consider DL solution deployments providing sufficiently high and stable performance
• Iterate with FUSA and DL people to find FUSA patterns and DL solutions that can be run efficiently
• Devise ways to (automatically or semi-automatically) provide FUSA-relevant evidence based on DL-

based results using appropriate tools

• On the case study side
• Consider varying FUSA requirements for different AI-based components

• Within a single use case
• Across different use cases

• Consider heterogeneous requirements across use cases (e.g., varying degrees of performance,
accuracy, etc.)

Putting it all together \2

Berlin – 11/07/2023

19

• AI needed to realize autonomous systems

• But AI challenges common practice for FUSA-related software
• Failure rates, data used for software design, etc.

• SAFEXPLAIN goals
• Make DL components explainable and traceable by design

• DL components built with FUSA in mind

• Adapt FUSA standards to allow certifying DL software
• Make standards amenable to intrinsic DL characteristics (e.g., failure rates, data used for design)

• Preserve sufficiently high levels of performance to meet safety goals (e.g., 25 FPS)

• Do not consider each part on its own, but keep a continuous dialogue among DL, FUSA and
platform experts, along with end users to make all pieces fit together

Conclusions

Berlin – 11/07/2023

Focus on SAFEXPLAIN Platform

21

• Support SAFEXPLAIN FUSA & DL patterns
• Deploy necessary HW/SW support to map identified FUSA

patterns to concrete platform

• Guarantee DL performance requirements
• At the same time exploit computational power of

selected target platform

• Tailor an industrial-quality validation toolset
• Support monitoring and test reproducibility/automation

• Provide timing characterization of DL functions
• Profiling of execution time and relevant metrics
• Deploy statistical methods for timing predictions

SAFEXPLAIN Platform drivers

Berlin – 11/07/2023

SAFEXPLAIN
Platform-level

Support

Validation Toolset
supporting
FUSA & DL

Requirements

Support
FUSA & DL

Architectural
Patterns

HW Configuration
to meet

DL Performance
Requirements

Application
Profiling

Time & Metrics

23

• Deep reusable SW stack
• Inheriting Ubuntu and JetPack libraries
• Selected ROS-2 as standardized layer

• Middleware, libraries, communication
• Client interface for users’ application
• Users define nodes and data flow

• Make ROS-2 transparent to SAFEXPLAIN applications
• Wrapper API for users’ applications
• The API implements the toolset functionalities with

minimal configuration overhead

SAFEXPLAIN framework

Berlin – 11/07/2023

NVIDIA Orin AGX DevKit
PMU/DSU QoS

Ubuntu + JetPack

ROS2

SAFEXPLAIN Framework

API

Application layer

24

• The main goals are:
• To build observability channels, facilities for testing and monitoring
• To centralize control of the platform resources
• To bridge the gap between the application layer and the Low Level Platform

• The HLP design is inspired from the AUTOSAR Adaptive standard

SAFEXPLAIN Platform Framework Overview

Berlin – 11/07/2023

25

• The LifecycleManager component is responsible for initialization,
configuration, and termination of platform applications.

Example: Lifecycle Management

Berlin – 11/07/2023

Application (internal) states

26

• Offers a possible reaction path to unexpected events.
• Events will be defined as part of the monitoring concept and implemented by the

HealthManager.

Example: Lifecycle Management

Berlin – 11/07/2023

27

• Observability support
• Collect timing information and relevant HW events

• Cache statistics, HW resource usage, etc.
• CPU Clusters

• Standard support available in A78 cores- PMUv3 (
• Accessible via standard tools or memory mapped PMCs

• Also, Coresight (v3) and Embedded Trace Macrocell (v4.2)
• GPU Cluster

• No open support for monitors
• Wrapping or integrate with NVIDIA proprietary Nsight tools

• SAFEXPLAIN application interface
• Profiling API can be:

• Implicitly attached to a node or
• Explicitly invoked from within the node

• Minimal API requirements:
• init() run() shutdown()
• Each may implicitly call the profiling API

• Extended API for profiling:
• init_perf() configure_perf() start_perf() stop_perf()

• API will transparently access and configure the right layer
• HW PMU, Linux tools, ROS2 library

• Information is saved to text device and retrieved for offline processing

SAFEXPLAIN HW profiling solution

Berlin – 11/07/2023

NVIDIA Orin AGX DevKit
PMU/DSU QoS

Ubuntu + JetPack

ROS2

SAFEXPLAIN Framework

API

class App : BaseApplication {
void init() {

... // App initialization directives
init_perf();
configure_perf(config);

}
void run() {

start_perf();
... // Work to be profiled
stop_perf();
... // Other work

}
void shutdown() { ... }

};

29

• Probabilistic Timing Analysis (PTA)
• Increasingly and successfully deployed for deriving

trustworthy and tight estimates of software timing
• Especially for Measurement-Based variant (MBPTA)

• MBPTA helps dealing with the increased complexity of
hardware and software in real-time systems

• From micro-controllers to MPSoCs
• From simple control SW to AI-based software

• Increased complexity causes
• Variable timing behavior
• Unobvious dispersion (multi-modal distribution)

Probabilistic Timing Analysis

Berlin – 11/07/2023

Source: Lynx Software

Simple
hardware

Complex
hardware

https://www.lynx.com/embedded-systems-learning-center/challenges-building-safe-multicore-mcp-software-systems

30

• Produces a probabilistic WCET (pWCET) estimate
• The CCDF denotes the probability of exceeding a

certain execution time value (et)
• The pWCET required properties

Optimistic:
pbound < preal
etbound < etreal

 Conservative:
 pbound≥ preal
 etbound≥ etreal

• Exceedingly pessimistic pWCET are not useful
• pWCET estimates should tightly model the real

distribution

MBPTA

Berlin – 11/07/2023

31

• EVT provides two fundamental theorems for the distribution of extremes (tails)
• The excess random variable is the variable 𝑋𝑋 from a threshold 𝒖𝒖 onward
• The excess distribution function is the distribution from a threshold 𝑢𝑢 onward

• It converges in probability to the Generalised Pareto Distribution (GPD)

• The extreme value index ξ determines the shape of the tail
• Because programs must finish, they are modelled as light tails
• The good model is GPD or other distributions with ξ < 0
• A generally safer but possibly pessimistic model is the exponential (ξ = 0)

Extreme Value Theory (EVT)

Berlin – 11/07/2023

www.safexplain.eu
Follow us on social media:

This project has received funding from the
European Union's Horizon Europe
programme under grant agreement number
101069595.

http://www.healthycloud-project.eu/
https://twitter.com/SafexplainAI
https://www.linkedin.com/company/safexplain/

	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32

