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• The scene
• Critical Embedded Systems (CES) increasingly rely on Artificial 

Intelligence (AI): automotive, space, railway, avionics, etc.
• CES must undergo certification/qualification
• AI at odds with functional safety certification/qualification 

processes (lack of explainability, lack of traceability, data-
dependent software, stochastic nature)

• SAFEXPLAIN ambition: architecting DL solutions enabling 
certification/qualification

• Making them explainable and traceable
• Preserving high performance
• Tailoring solutions to varying safety requirements by means of 

different safety patterns

In a nutshell
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• Failure or malfunction may result severe harm (e.g., casualties)

• Exhaustive Verification and Validation (V&V) process, and safety measures deployed to 
guarantee the safety goals are met

• Each domain has it’s own guidelines and regulations for SW and HW

• ISO 26262 and ISO 21448 (SOTIF) for automotive

CES

Berlin – 11/07/2023
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CES and AI
• The number of mechanical subsystems enhanced or completely 

replaced by electronic components is increasing

• Advanced software functions are becoming ubiquitous to control all 
aspects of CES, including safety related systems

• AI techniques are at the very heart of the realization of advanced 
software functions such as computer vision for object detection and 
tracking, path planning, driver-monitoring systems,…

• E.g., You Only Look Once (YOLO) camera-based object detection system 
builds upon a Neural Network 

• Autonomous operation 
• epitome of safety-related applications of AI in CES, 
• exemplifies the need for increasingly high computing performance 

whilst making AI solutions to comply with FUSA requirements

Berlin – 11/07/2023
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• When software/hardware implements safety-related 
functionality they inherit safety requirements

• Safety Integrity Level (SIL) decomposition
• E.g., Automotive SIL (ASIL) from D (highest) to A (lowest), and 

then QM (no safety)

• AI used in fail-safe systems (i.e. systems with a safe state)
• E.g., Advanced Driving Assistance Systems (ADAS) can notify 

misbehavior and transfer control to the driver

• With autonomous systems (e.g., autonomous cars) this is 
not yet solved

• If no safe state available(*), or non-AI safe monitor is 
possible, hence AI components inherit safety requirements

AI in Safety-critical systems so far and in the future
ASIL D

ASIL D QM

ADAS functionality

Non-AI safe 
monitor

AI non-safe 
function

ASIL D

ASIL D ASIL D

AD functionality

Non-AI safe 
monitor

AI safe function
(it can be further decomposed 
into lower ASIL, but never QM)Berlin – 11/07/2023

(*) The safe state must not use AI, otherwise we would 
recursively make AI-based components be fail-operational
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• Software implements complex AI algorithms that manage huge amounts of data

• This carries huge computing performance requirements

• Hardware in safety-critical systems: from simple micro-controller to heterogeneous 
MPSoC with specific accelerators

• Complex MPSoC complicates established software timing V&V

AI impact on the computing platform

Berlin – 11/07/2023
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• ISO 26262 software V-model

Safety-related Systems Development Process

Berlin – 11/07/2023

Safety goals 
specification

Safety reqs
specification

Architectural 
design

Unit design 
+ implem. Unit testing

Integration 
and testing

Requirements 
testing

Full system 
testing

Precise and unambiguous requirements

• HW: admits failure rates due to random faults
• SW (algorithm): deterministic. Systematic errors 

management

Control SW: 
• Data is abstracted (name, source, but not its values)
• Algorithm is “data-independent” (defined 

independently of how the data looks like)
Code (SW) designed based on 
human expert knowledge and 

physical laws/operational rules

Data used only for testing 
purposes: PASS/FAIL tests, 

diagnostics, quality assessment

NO DATA USED TO 
DESIGN THE SYSTEM

DATA USED ONLY 
FOR TESTING

But data does not 
determine the design of 

the system
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• AI-related challenges

Safety-related Systems Development Process

Berlin – 11/07/2023

Safety goals 
specification

Safety reqs
specification

Architectural 
design

Unit design 
+ implem. Unit testing

Integration 
and testing

Requirements 
testing

Full system 
testing

Precise and unambiguous 
requirements

• HW: admits failure rates due to random faults
• SW (algorithm): Not always deterministic 

and limited predictability/explainability

Data-defined SW: 
• Algorithm behavior is determined by 

actual data (e.g., weights of a DNN)
• Algorithm is fully “data-dependent”

Challenges to define relevant data 
for testing:
• Cannot be exhaustive
• Equivalence classes
• Operation modes cannot be 

enumerated deterministically
• Etc.

Moreover, independence 
between training and test 

data must be proven

Software functionality 
parametrized with data-

dependent weights can deliver 
erroneous predictions

DATA DETERMINES SYSTEM DESIGN
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• Current practice in DL frontally clashes with Functional Safety (FUSA)-related processes since:
• DL software is built as a combination of 

• control (model configuration such as what layers to use, in which order, etc.) and 
• data (algorithm parameters are obtained from training with specific datasets) 

• stochastic nature
• data-dependent nature

• There is a lack of sufficient explainability and traceability
• Why each layer is used and what it does (semantics)
• Why they are deployed in a specific order (composed semantics) 
• How safety requirements can be traced end-to-end
• What the scope of application is (e.g. valid input data range)
• What confidence can be reached on the predictions obtained (e.g. by detecting occlusions)

• Prediction accuracy is stochastic, and test campaigns deliver, in the best case, success rates linked to 
specific testing datasets, therefore exposing to dataset-dependent test conclusions in many cases

AI (and DL) Specific Challenges

Berlin – 11/07/2023
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• Ambition: architecting DL solutions enabling 
certification/qualification

• Making them explainable and traceable
• Preserving high and predictable 

performance
• Tailoring solutions to varying safety 

requirements by means of different safety 
patterns

Ambition/objectives

Berlin – 11/07/2023

Functional Safety 
Certification

Deep Learning 
Solutions

Platform and  
toolset-level support

Industrial case
studies

Auto Space

Railway

Safety G
uidelines

Explainability
Traceability
Robustness
Security

Observability
Controllability
Timing analysis
Automated tests

Domain-specific 
requirements

Camera-based object 
detection (YOLO)
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• Devise new DL components providing explainability and traceability by design
• Functionally speaking (e.g., a convolution), software can be developed following the usual process for 

automotive systems (i.e., in line with ISO 26262 part 6)
• Software architecture (what layers, what shape), input data for training, training process, and the 

validation test campaign are the real challenge

SAFEXPLAIN Goal 1

Berlin – 11/07/2023
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• A number of challenges, but some hints on potential approaches to follow

• DL software has “failure rates”
• This is not compatible with ISO 26262 for software
• But it is acceptable for hardware due to random hardware faults
• Can we extend hardware concept to software?
• Already foreseen for software timing. We may extend it to software results for 

DL

• DL software could be assimilated to physical devices
• Non ASIL-compliant sensors can be used to build some ASIL with proper 

validation, if their physical principles are diverse(*)

• Can we build something similar with diverse and redundant DNNs? Where do 
we have to inject diversity? (training, random inputs, architecture,…)

• Those are questions to be answered as part of SAFEXPLAIN

SAFEXPLAIN Goal 1 (ctn’d)

Berlin – 11/07/2023

I. Agirre, F.J. Cazorla, J. Abella, C. 
Hernandez, E. Mezzetti, M. Azkarate-
Askasua, T. Vardanega, "Fitting Software 
Execution-Time Exceedance into a 
Residual Random Fault in ISO-26262," in 
IEEE Transactions on Reliability, vol. 67, 
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10.1109/TR.2018.2828222.

A. Brando, E. Mezzetti, I. Serra, F.J. 
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Networks Redundancy and Diversity for 
Their Use in Safety-Critical Systems" in 
IEEE Computer (special Issue on 
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(*) Further details on this example can be found here: https://doi.org/10.1109/EDCC.2010.34

https://doi.org/10.1109/EDCC.2010.34
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• Adapt software safety lifecycle steps and the architecture of solutions based on DL components 
so that certification is viable

• E.g., add additional lifecycle steps to contemplate model training, and adapt requirement specification, 
data management and testing approaches

SAFEXPLAIN Goal 2

Berlin – 11/07/2023
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• Provide complementary safety patterns with different safety, cost, and reliability tradeoffs
• E.g., architecture is different for ASIL-A or ASIL-D, for fail-safe or fail-operational
• Perhaps a practical example comparable to the “E-gas monitoring concept” would be convenient

SAFEXPLAIN Goal 3

Berlin – 11/07/2023
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• Tailor DL architectures to achieve sufficient performance on relevant high-performance 
platforms

• Be careful with “performance insufficiencies” in line with SOTIF

SAFEXPLAIN Goal 4

Berlin – 11/07/2023
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• Demonstrate the long-term viability of the SAFEXPLAIN approach
• Automotive is the largest target market of the project

SAFEXPLAIN Goal 5

Berlin – 11/07/2023
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• On the FUSA side
• Identify patterns meaningful for AI-based functions
• Focus on patterns with varying requirements (e.g., ASIL-A or ASIL-D, fail-safe or fail-operational, etc.) on 

AI-based functions
• Identify FUSA relevant properties for DL components and ensembles (e.g., failure rates, diverse 

redundancy, etc.)

• On the DL side
• Investigate DL organizations that make explainability and traceability emerge by construction while 

preserving accuracy
• Investigate combinations (ensembles) of DL models that provide FUSA-relevant properties (e.g., diverse 

redundancy)

Putting it all together \1

Berlin – 11/07/2023
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• On the platform/tooling side
• Consider DL solution deployments providing sufficiently high and stable performance
• Iterate with FUSA and DL people to find FUSA patterns and DL solutions that can be run efficiently
• Devise ways to (automatically or semi-automatically) provide FUSA-relevant evidence based on DL-

based results using appropriate tools

• On the case study side
• Consider varying FUSA requirements for different AI-based components 

• Within a single use case
• Across different use cases

• Consider heterogeneous requirements across use cases (e.g., varying degrees of performance, 
accuracy, etc.)

Putting it all together \2

Berlin – 11/07/2023
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• AI needed to realize autonomous systems

• But AI challenges common practice for FUSA-related software
• Failure rates, data used for software design, etc.

• SAFEXPLAIN goals
• Make DL components explainable and traceable by design

• DL components built with FUSA in mind

• Adapt FUSA standards to allow certifying DL software
• Make standards amenable to intrinsic DL characteristics (e.g., failure rates, data used for design)

• Preserve sufficiently high levels of performance to meet safety goals (e.g., 25 FPS)

• Do not consider each part on its own, but keep a continuous dialogue among DL, FUSA and 
platform experts, along with end users to make all pieces fit together

Conclusions

Berlin – 11/07/2023
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• Support SAFEXPLAIN FUSA & DL patterns
• Deploy necessary HW/SW support to map identified FUSA 

patterns to concrete platform

• Guarantee DL performance requirements
• At the same time exploit computational power of 

selected target platform

• Tailor an industrial-quality validation toolset
• Support monitoring and test reproducibility/automation

• Provide timing characterization of DL functions
• Profiling of execution time and relevant metrics
• Deploy statistical methods for timing predictions

SAFEXPLAIN Platform drivers

Berlin – 11/07/2023

SAFEXPLAIN 
Platform-level

Support

Validation Toolset
supporting
FUSA & DL

Requirements

Support
FUSA & DL 

Architectural
Patterns

HW Configuration
to meet

DL Performance
Requirements

Application 
Profiling

Time & Metrics
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• Deep reusable SW stack
• Inheriting Ubuntu and JetPack libraries 
• Selected  ROS-2 as standardized layer 

• Middleware, libraries, communication
• Client interface for users’ application
• Users define nodes and data flow

• Make ROS-2 transparent to SAFEXPLAIN applications
• Wrapper API for users’ applications 
• The API implements the toolset functionalities with 

minimal configuration overhead

SAFEXPLAIN framework

Berlin – 11/07/2023

NVIDIA Orin AGX DevKit
PMU/DSU QoS 

Ubuntu + JetPack

ROS2

SAFEXPLAIN Framework

API

Application layer
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• The main goals are:
• To build observability channels, facilities for testing and monitoring
• To centralize control of the platform resources
• To bridge the gap between the application layer and the Low Level Platform

• The HLP design is inspired from the AUTOSAR Adaptive standard

SAFEXPLAIN Platform Framework Overview

Berlin – 11/07/2023
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• The LifecycleManager component is responsible for initialization, 
configuration, and termination of platform applications.

Example: Lifecycle Management

Berlin – 11/07/2023

Application (internal) states
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• Offers a possible reaction path to unexpected events.
• Events will be defined as part of the monitoring concept and implemented by the 

HealthManager.

Example: Lifecycle Management

Berlin – 11/07/2023



27

• Observability support
• Collect timing information and relevant HW events

• Cache statistics, HW resource usage, etc.
• CPU Clusters

• Standard support available in A78 cores- PMUv3 (
• Accessible via standard tools or memory mapped PMCs

• Also, Coresight (v3) and Embedded Trace Macrocell (v4.2)
• GPU Cluster

• No open support for monitors
• Wrapping or integrate with NVIDIA proprietary Nsight tools

• SAFEXPLAIN application interface
• Profiling API can be:

• Implicitly attached to a node or 
• Explicitly invoked from within the node 

• Minimal API requirements: 
• init() run() shutdown()
• Each may implicitly call the profiling API

• Extended API for profiling: 
• init_perf() configure_perf() start_perf() stop_perf()

• API will transparently access and configure the right layer
• HW PMU, Linux tools, ROS2 library

• Information is saved to text device and retrieved for offline processing

SAFEXPLAIN HW profiling solution

Berlin – 11/07/2023

NVIDIA Orin AGX DevKit
PMU/DSU QoS

Ubuntu + JetPack

ROS2

SAFEXPLAIN Framework

API

class App : BaseApplication { 
void init() {

... // App initialization directives
init_perf();            
configure_perf(config); 

}    
void run() {

start_perf();
... // Work to be profiled
stop_perf();
... // Other work

}    
void shutdown() { ... }

};
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• Probabilistic Timing Analysis (PTA)
• Increasingly and successfully deployed for deriving 

trustworthy and tight estimates of software timing
• Especially for Measurement-Based variant (MBPTA)

• MBPTA helps dealing with the increased complexity of 
hardware and software in real-time systems

• From micro-controllers to MPSoCs
• From simple control SW to AI-based software

• Increased complexity causes
• Variable timing behavior
• Unobvious dispersion (multi-modal distribution)

Probabilistic Timing Analysis

Berlin – 11/07/2023

Source: Lynx Software

Simple 
hardware

Complex 
hardware

https://www.lynx.com/embedded-systems-learning-center/challenges-building-safe-multicore-mcp-software-systems
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• Produces a probabilistic WCET (pWCET) estimate
• The CCDF denotes the probability of exceeding a

certain execution time value (et)
• The pWCET required properties

Optimistic: 
pbound < preal
etbound < etreal

 Conservative: 
 pbound≥ preal
 etbound≥ etreal

• Exceedingly pessimistic pWCET are not useful
• pWCET estimates should tightly model the real 

distribution 

MBPTA

Berlin – 11/07/2023
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• EVT provides two fundamental theorems for the distribution of extremes (tails)
• The excess random variable is the variable 𝑋𝑋 from a threshold 𝒖𝒖 onward
• The excess distribution function is the distribution from a threshold 𝑢𝑢 onward

• It converges in probability to the Generalised Pareto Distribution (GPD)

• The extreme value index ξ determines the shape of the tail
• Because programs must finish, they are modelled as light tails
• The good model is GPD or other distributions with ξ < 0
• A generally safer but possibly pessimistic model is the exponential (ξ = 0) 

Extreme Value Theory (EVT)

Berlin – 11/07/2023
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