

Critical Embedded Systems based on Al

Functional Safety on AI-based critical systems

Irune Yarza

ikerlan

AEiC 2024 Enabling the use of AI in Safety-Critical Systems 14 June 2024, Barcelona, Spain

This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101069595.

AI Safety

Which standards should we follow?

Can we make AI explainable?

Can we make AI safe?

NOTE: Images were generated usign Copilot

Sefety Standards & Technical Reports

Al standards for Process Standard for Development and Certification/Approval of safety systems Aeronautical Safety-Related Products Implementing AI ARP6983 Transportatio Railway EN 5010V IEC 62290, IEC 62267 ISO/CD PAS 8800 DO-178C ASTM F3269-21 (ARP6983) **Road Vehicles** Safety and artificial intelligence 190 1201 190 5023 IISO/PAS 21/18 (ISO/AWI PAS ISO/TR 22100-5:2021 8800) Status : Under development Safety of machinery Relationship with ISO 12100 Industria ISO/IEC TR 5469:2024 Part 5: Implications of artificial intelligence machine learning ISO/TR 22100-5 Artificial intelligence Status : Published Functional safety and AI systems ISO 10975, ISO 14897 **ISO TR 5469** (VDE-AR-E2842-61) Ge Status : Published

Jon Perez-Cerrolaza et al, "Artificial Intelligence for Safety-Critical Systems in Industrial and Transportation Domains: a Survey", ACM Computing Surveys, 2023: https://doi.org/10.1145/3626314

2023-06-26

WIP

AI – Usage and Compliance

ISO TR 5469: Usage Level (UL) and Class

	Usage Level (UL)	Class I	Class II	Class III
PRODUCT	A - Implements a safety function	Complies with safety standards	Does not comply	Does not comply
	C - Implements a function that could		with safety	and
	interfere with safety functions		standards but	compensation
	D Implements a function that does not		compensation	measures are not
	D - Implements a function that does not		measures are	sufficient
	Interfere with safety functions		sufficient	
PROCESS	B - Development process of a safety function			

Product: AI-based Safety-Critical System

UL4600 - Safety cases for autonomous systems

•

•

Product: AI-based Safety Critical-System

- AI-based system
- Al component
- Execution platform
- Training and tools

Automatic Systems (closed environment)

- Formal verification
- Safety Bag/Safety Net

Heteronomous/Autonomous Systems (open/semi-open environment)

- (Formal verification)
- (Safety Bag/Safety Net)
- Safety Monitor, Safety Envelope (ODD)...

Product: AI-based Safety-Critical System

- Al-based system
- Al component
- Execution platform
- Training and tools

Product: AI-based Safety-critical System

- AI-based system
- Al component
- Execution platform
- Training and tools

SoA analysis conclusions

- Railway: The safety bag technique is already used to perform safe automated decision-making (A1) for SIL4 railway interlocking.
- Automotive: The latest ADAS systems already use decisionmaking safety functions that require human supervision (A2).
- But still a significant pending effort to:
 - Formalize AI and heteronomous/autonomous <u>safety standards</u>.
 - Define generic AI techniques and processes for developing safetycritical systems: <u>"How things can be done"</u> and <u>"How things</u> <u>should be done"</u>

SAFEXPLAIN contributions

AI-FSM – Context

Functional Safety Management (FSM): encompasses all essential activities throughout the Functional Safety lifecycle phases, as mandated by IEC 61508-1. FSM is designed to **prevent errors during specification, design, development, manufacturing, and commissioning**.

Functional safety lifecycle including AI (AI-FSM)

• IEC 61508 traditional functional safety lifecycle (Software V-model) + AI lifecycle

Functional Safety on Al-based critical systems

SAFEXPLAIN

Safety architecture patterns

Need for <u>runtime</u> safety mechanisms to deal with:

- Random and residual systematic faults
- HW / SW platform complexity: integration problems (e.g., determinism, interferences on mixed-criticality approaches, use of resources...)
- DL model insufficiencies
- Support DL explainability

. . .

GOAL: To provide reference safety architecture patterns for the adoption of DL in safetycritical systems with varying safety requirements

Safety architecture patterns – Overview

Safety pattern: Generic solutions for commonly recurring design problems with the aim of simplifying and standardizing the design process

Extend and combine common patterns from traditional Functional Safety (FUSA) to address the new challenges brought by DL-based approaches in complex HW/SW platforms

• LO Diverse Redundancy

- Inference Platform diversity
 - o Inputs (diverse cameras, sensors, input image flips...)
 - Processing resources (accelerators, CPUs...)
 - o OS, Execution framework (e.g., TF lite, pytorch, darknet...)
 - **o** ...
- DL model Development diversity
 - o Model Architecture
 - o Hyperparameters
 - o Training datasets
 - o Training process
 - o Training platform
 - **o** ...
- Concept diversity: different problem formulation with same final goal
 - o Object detection vs object part detection
 - o Object detection vs obstacle free path detection
 - o ...

 L0 Diverse Redundancy – Inference platform diversity using diverse redundant frameworks (i.e., Pytorch and Darknet).

• LO Diverse Redundancy – Inference platform diversity using diverse redundant frameworks (i.e., YOLO and SafeYOLO).

SAFEX

MISRA C:2012 Guidelines Summary - Violations by Rule

 L0 Diverse Redundancy – Concept diversity using diverse concepts (i.e., Object Detection and Object Part Detection).

SAFEXPL

Diagnostic and monitoring mechanisms

L0 – Diverse Redundancy

L1 – AI-based subsystem level diagnostics: runtime errors or model insufficiencies and anomalies on the AI subsystem and the elements required for its execution (e.g., accelerators, AI frameworks, etc.)

L2 – Platform level diagnostics: runtime errors on additional platform HW and SW components following traditional functional safety practices and diagnostics techniques (e.g., memory self-tests, freedom from interference at platform level...)

L3 – External diagnostics

Based on the Standardized E-Gas Monitoring concept (Automotive domain)

• Diagnostic and monitoring mechanisms – L1 – AI-based subsystem level diagnostics

- Diagnostic and monitoring mechanisms L1 AI-based subsystem level diagnostics
 - Input temporal consistency

Black frame

Lost frames

- Compute a metric that determines the difference among two consecutive frames
- Define a threshold

- Diagnostic and monitoring mechanisms L1 AI-based subsystem level diagnostics
 - Output temporal consistency

Glitches in railway track detection

Kalman filter

• Incremental strategy for AI adoption in safety critical systems

• SP2 to NVIDIA Orin resource allocation and configuration option

	SP2 Element	Safety / non- safety	SP2 - A NVIDIA Orin resources and configuration
	AI/ML constituent	AI based safety SW	Two instances, each in one separate CCPLEX CPU Cluster (Cortex A78) in lockstep configuration
			GPU for AI inference (depending on the DRS CPU or other computing resources could also be used to improve diversity)
 			Memory controller fabric and traffic from CPU cluster to GPU
1			MMUs for spatial independence
i			SAFEXPLAIN SW Stack
	Supervision components	Traditional or AI based safety SW	Each AI/ML constituent has each own L1DM and optionally each own supervisor function (depends on user application).
r – – – –			Depending on the implementation of the supervision component, it may need GPUs for improved performance (e.g., AI based supervision function).
			The supervision components can share same CCPLEX CPU Cluster (Cortex A78) in lockstep configuration as the AI/ML constituent.
			MMUs for spatial independence
			SAFEXPLAIN SW Stack

• SP2 to NVIDIA Orin resource allocation and configuration option

SP2 Element	Safety / non-	SP2 - A NVIDIA Orin resources and configuration
	safety	
Decision	Safety	These SW components can run on any of the
function	traditional SW	CCPLEX CPU Cluster (Cortex A78) in lockstep
Safety	Safety	configuration used for the AI/ML constituent with
control	traditional SW	the same configuration assuming they have the
L2DM	Safety	same integrity level.
	traditional SW	
Non-Al	Non-safety	CCPLEX CPU Cluster (Cortex A78) or SPE (no need
subsystem	traditional SW	for lockstep configuration).
		NANALIS for suchistic lindow on downoo
		MIMUS for spatial independence
		L4 cache partitioning or disabled
		SAFEXPLAIN SW Stack or different OS on top of
		SPEs or hypervisor

Conclusions

- Open challenges:
 - Formalize AI and heteronomous/autonomous <u>safety standards</u>.
 - Define generic <u>AI techniques and processes</u> for developing safety-critical systems: "How things can be done" and "How things should be done"
- <u>SAFEXPLAIN</u>
 - Safety standards
 - Continuous follow-up of emerging initiatives and standards.
 - Define guidelines and/or adaptations to existing and ongoing standards.
 - Al processes
 - AI-FSM, to ease the development of AI-based systems while preserving safety.
 - Al techniques
 - Ongoing definition of safety architectural patterns and diagnostic mechanisms

Project Consortium

- BARCELONA SUPERCOMPUTING CENTER (BSC)
 - https://www.bsc.es/
- IKERLAN, S. Coop (IKR)
 - <u>https://www.ikerlan.es/</u>
- AIKO SRL (AIKO)
 - <u>https://www.aikospace.com/</u>
- RISE RESEARCH INSTITUTES OF SWEDEN AB (RISE)
 - <u>https://www.ri.se/</u>
- NAVINFO EUROPE BV (NAV)
 - <u>https://www.navinfo.eu/</u>
- EXIDA DEVELOPMENT SRL (EXI)
 - https://www.exida-eu.com/

THANK YOU!

Safe and Explainable Critical Embedded Systems based on Al

Follow us on social media:

www.safexplain.eu

This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101069595.

References

[BRA23] Brando, A., I. Serra, E. Mezzetti, F.J. Cazorla, J. Perez-Cerrolaza, and J. Abella, On Neural Networks Redundancy and Diversity for Their Use in Safety-Critical Systems. Computer, 2023. 56(5): p. 41-50.

[BUI24] Thanh Hai Bui, et al. "D3.1 Specifiability, explainability, traceability, and robustness proof-of-concept and argumentation." (dissemination level PU), April 2024

[CARS24] https://conf.laas.fr/cars/cars2024.html

[CBC] <u>https://www.cbc.ca/news/canada/toronto/smart-traffic-signals-</u> 1.4417573

[DIM23] Dmitriev, K., J. Schumann, I. Bostanov, M. Abdelhamid, and F. Holzapfel, Runway Sign Classifier: A DAL C Certifiable Machine Learning System. 2023. 1-8.

[DISNEY24a] https://news.disney.com/ultimate-list-toy-story-quotes

[DISNEY24b] https://toystory.disney.com/

[HER19] https://www.reporterherald.com/2019/10/31/dinosaur-big-brown-bear-help-children-cross-the-street-at-berthoud-elementary/

[IEC61508] [1] IEC 61508-1: Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 1: General requirements, IEC, 2010

[IET06] Competence Criteria for Safety-Related System Practitioners, IET, 2006

[JEN20] Eric Jenn et al. 2020. Identifying challenges to the certification of machine learning for safety critical systems. In 10th European Congr. on Embedded Real-Time Syst. (ERTS).

[ISO22989] ISO/IEC 22989 - Information technology — Artificial intelligence — Artificial intelligence concepts and terminology

[PER22] Perez-Cerrolaza, J., J. Abella, L. Kosmidis, A.J. Calderon, F.J. Cazorla, and J.L. Flores, GPU Devices for Safety-Critical Systems: A Survey. ACM Comput. Surv., 2022. 55(7): p. 1-37.

[PER23] Perez-Cerrolaza, J., J. Abella, M. Borg, C. Donzella, J. Cerquides, F. Cazorla, C. Englund, M. Tauber, G. Nikolakopoulos, and J.L. Flores, Artificial Intelligence for Safety-Critical Systems in Industrial and Transportation Domains: A Survey. ACM Comput. Surv., 2023.

[SAF24] https://safexplain.eu/

[THO19] Thomas, S. and D. Vandenberg (2019). "Harnessing Uncertainty in Autonomous Vehicle Safety." Journal of System Safety 55(2).

