
04/04/2025 The 40th ACM/SIGAPP Symposium On Applied Computing 2025 Catania, Sicily, Italy

Probabilistic Timing Estimates 
in Scenarios Under 
Testing Constraints

Sergi Vilardell1, Francesco Rossi2, Gabriele Giordana2, 
Isabel Serra3, Enrico Mezzetti1, Jaume Abella1 , and 
Francisco J. Cazorla1

1Barcelona Supercomputing Center (BSC) 
2Aiko Space S.r.l 
3Universitat Autònoma de Barcelona (UAB)

Email: sergi.vilardell@bsc.es



Agenda

1
• Probabilistic Timing Analysis (PTA): Motivation and Problem Statement

2
• Measurement-Based PTA under Testing Constraints

3
• Uncertainty in Extreme Value Theory (EVT)

4
• Markov’s Inequality for pWCET in Low Sample Scenarios

5
• Results

6
• Conclusions

2



Motivation



Soft Real-Time Requirements in Modern MPSoCs

• Multi-Processor Systems on Chips (MPSoCs) are becoming more complex

• Timing Analysis (TA) is difficult due to complex software and hardware

• Measurement-Based Probabilistic Timing Analysis (MBPTA) provides solid TA
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Soft Real-Time Requirements in Modern MPSoCs

• Multi-Processor Systems on Chips (MPSoCs) are becoming more complex

• Timing Analysis (TA) is difficult due to complex software and hardware

• Measurement-Based Probabilistic Timing Analysis (MBPTA) provides solid TA

• Risk tolerance shall be assessed against practicality

• More precise estimations for timing are in proportion to the time and effort
required to apply MBPTA techniques

• In MBPTA this is directly related to the number of test/runs (sample size)
• Costs: increasing number of tests may be too costly (e.g. on-the-road testing)

• Benefits: timing can range from quality, to economic loss or causalities

• However, low sample sizes can produce high uncertainty
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• Based directly on the test/runs on the hardware and
application

• The goal is to derive a probabilistic upperbound on the
probabilistic Worst-Case Execution Time (pWCET)

• We aim at low sample sizes (N = 100)

• The CCDF denotes the probability of exceeding a certain
value (e.g. ET)

• The pWCET required properties
Optimistic: 

pbound < preal

etbound < etreal

✓ Conservative:
✓ pbound≥ preal

✓ etbound≥ etreal
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• Based directly on the test/runs on the hardware and
application

• The goal is to derive a probabilistic upperbound on the
probabilistic Worst-Case Execution Time (pWCET)

• We aim at low sample sizes (N = 100)

• The CCDF denotes the probability of exceeding a certain
value (e.g. ET)

• The pWCET required properties
Optimistic: 

pbound < preal

etbound < etreal

✓ Conservative:
✓ pbound≥ preal

✓ etbound≥ etreal

• Exceedingly pessimistic pWCET are not useful

• pWCET estimates should be tight to the real distribution



Probabilistic Timing Analysis /2

• Two main frameworks to derive pWCET are used in this work
• Extreme Value Theory: based on the asymptotic distribution of the highest quantiles. Estimating the

extreme value index ξ is crucial.

EVT
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Probabilistic Timing Analysis /2

• Two main frameworks to derive pWCET are used in this work
• Extreme Value Theory: based on the asymptotic distribution of the highest quantiles. Estimating the

extreme value index ξ is crucial.

• Markov’s Inequality: based on a probabilistic upperbound of the moments of a distribution

EVT Markov
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EVT and Uncertainty Estimation



EVT Models

• We use three methods to estimate the tail, for EXP and GPD models, with different approaches for
modelling diversity
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EVT Models

• We use three methods to estimate the tail, for EXP and GPD models, with different approaches for 
modelling diversity

CV Plot

Quantile-Quantile

Semi-Parametric

Residual Coefficient 
of Variation

Quantile distance

Semi-parametric Parametric
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Uncertainty Analysis of EVT Models

• For the Semi-parametric and the QQ models, we need to assess the uncertainty of the estimator of 
the Extreme Value Index:

Uncertainty for the 
Extreme Value Index

We use this formula to estimate the tail
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Markov’s Inequality In Low Sample Scenarios



Markov’s Inequality for PTA

Markov’s Inequality 
Theoretically
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Markov’s Inequality for PTA

Markov’s Inequality 
Theoretically

Markov’s Inequality
for Samples

MI for pWCET
• The main consideration is that, the

higher the target quantile, the
higher the k needed for tight
estimations

• Higher k need bigger sample sizes
to estimate the moments accurately

Find the 𝑚𝑎𝑥𝑘 for each 𝑝
that does not 
underestimate
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Markov’s Inequality Considerations

• The estimations are done with the whole sample size, thus decreasing
variance

• Markov’s Inequality has been tested for sample sizes of N = 1000, but the
mean scaled moment show similar results for N = 100
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Markov’s Inequality Considerations

• The estimations are done with the whole sample size, thus decreasing
variance

• Markov’s Inequality has been tested for sample sizes of N = 1000, but the
mean scaled moment show similar results for N = 100

• We aim at lower quantiles with probability 𝑝 = 10−6, thus smaller 𝑘 are
needed

• Need to estimate the 𝑚𝑎𝑥𝑘line which needs quantile estimation within the
sample

• We make use of the binomial Lower Confidence Interval to increase
robustness in the quantile estimation
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Uncertainty Analysis Summary

• In low sample size scenarios EVT models are using a very small sample size (𝐍 ~𝟏𝟎) to estimate the
tail

• The least amount of uncertainty that we can estimate (EVI estimation) is already very high

• Markov Inequality is less affected by a small sample size if the target probability is not too extreme

• The addition of the Binomial Lower Confidence Interval reduces variance

• Let us compare EVT models and Markov’s Inequality on pWCET estimations
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Results



Results for Parametric Distributions

• Generated synthetic mixture
distributions

• Sample Size: 𝑁 = 100

• Reference Runs: 𝑁𝑟𝑒𝑓 = 106

• Target Probability: 𝑝 = 10−6

EXP/GLT

RESTK
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Results for Hardware Platform

• Platform: NVIDIA AGX Orin

• Sample Size: 𝑁 = 100

• Reference Runs: 𝑁𝑟𝑒𝑓 = 106

• Target Probability: 𝑝 = 10−6

EXP/GLT

RESTK
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Conclusions

• In some domains the risk assessment is less strict, and costs could be reduced with few tests

• In others, risks can be more critical but obtaining a great number of runs is too costly or unfeasible

• We perform an analysis of the effect of low sample sizes in current MBPTA techniques
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Conclusions

• In some domains the risk assessment is less strict, and costs could be reduced with few tests

• In others, risks can be more critical but obtaining a great number of runs is too costly or unfeasible

• We perform an analysis of the effect of low sample sizes in current MBPTA techniques

• EVT techniques use a fraction of the sample for extreme modelling, thus increasing variance

• Markov’s Inequality can use the whole sample, thus reducing variance

• We introduce the use of Binomial Lower Confidence Interval to increase robustness for Markov

• EVT techniques can produce tight upperbounds, but the results are less consistent due to increased
variance

• The results show that Markov’s Inequality can keep consistently tight upperbounds for a variety of
scenarios in synthetic and hardware data.
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