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Soft Real-Time Requirements in Modern MPSoCs

* Multi-Processor Systems on Chips (MPSoCs) are becoming more complex
e Timing Analysis (TA) is difficult due to complex software and hardware

* Measurement-Based Probabilistic Timing Analysis (MBPTA) provides solid TA

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

@



Soft Real-Time Requirements in Modern MPSoCs

* Multi-Processor Systems on Chips (MPSoCs) are becoming more complex

e Timing Analysis (TA) is difficult due to complex software and hardware

* Measurement-Based Probabilistic Timing Analysis (MBPTA) provides solid TA
* Risk tolerance shall be assessed against practicality

* More precise estimations for timing are in proportion to the time and effort
required to apply MBPTA techniques
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Soft Real-Time Requirements in Modern MPSoCs

* Multi-Processor Systems on Chips (MPSoCs) are becoming more complex

e Timing Analysis (TA) is difficult due to complex software and hardware

* Measurement-Based Probabilistic Timing Analysis (MBPTA) provides solid TA
* Risk tolerance shall be assessed against practicality

* More precise estimations for timing are in proportion to the time and effort
required to apply MBPTA techniques

* In MBPTA this is directly related to the number of test/runs (sample size)
* Costs: increasing number of tests may be too costly (e.g. on-the-road testing)
* Benefits: timing can range from quality, to economic loss or causalities

* However, low sample sizes can produce high uncertainty
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Probabilistic Timing Analysis /1

Measurement-Based Probabilistic
Timing Analysis
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Probabilistic Timing Analysis /1

Measurement-Based Probabilistic
Timing Analysis

Based directly on the test/runs on the hardware and
application

The goal is to derive a probabilistic upperbound on the
probabilistic Worst-Case Execution Time (pWCET)

We aim at low sample sizes (N = 100)

The CCDF denotes the probability of exceeding a certain
value (e.g. ET)
The pWCET required properties
X Optimistic:
X Pbound < Prear
X e.tbound< et
v’ Conservative:

v pbound = preal
v oet,, .= et

real

real
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Probabilistic Timing Analysis /1

Measurement-Based Probabilistic
Timing Analysis G
: bound
* Based directly on the test/runs on the hardware and
application 1 ~—— :
* The goal is to derive a probabilistic upperbound on the C
probabilistic Worst-Case Execution Time (pWCET) . real
* We aim at low sample sizes (N = 100) 8
* The CCDF denotes the probability of exceeding a certain O
value (e.g. ET)
* The pWCET required properties Q
X Optimistic:
X pbound< Prear
X e.tbound< etreal
v’ Conservative: 0
v Pbound = Preal
v etbound = etreal
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Measurement-Based Probabilistic
Timing Analysis

C
. Bascla_d directly on the test/runs on the hardware and %
application
* The goal is to derive a probabilistic upperbound on the C
probabilistic Worst-Case Execution Time (pWCET) real

* We aim at low sample sizes (N = 100)

* The CCDF denotes the probability of exceeding a certain
value (e.g. ET)

/\ CCDF
3 =

* The pWCET required properties
X Optimistic:
X Pbound < Prear
X e.tbound< etreal
v’ Conservative: 0

v pbound = preal
v oet,, .= et

real .

* Exceedingly pessimistic pWCET are not useful tightness (p) — elpound (p)
* pWCET estimates should be tight to the real distribution €treal (p)
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Probabilistic Timing Analysis /2

* Two main frameworks to derive pWCET are used in this work

* Extreme Value Theory: based on the asymptotic distribution of the highest quantiles. Estimating the
extreme value index § is crucial.
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Probabilistic Timing Analysis /2

* Two main frameworks to derive pWCET are used in this work

* Extreme Value Theory: based on the asymptotic distribution of the highest quantiles. Estimating the
extreme value index § is crucial.

* Markov’s Inequality: based on a probabilistic upperbound of the moments of a distribution
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EVT Models

* We use three methods to estimate the tail, for EXP and GPD models, with different approaches for
modelling diversity

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

@



EVT Models

* We use three methods to estimate the tail, for EXP and GPD models, with different approaches for
modelling diversity

\/T?(X — ulx > u) Residual Coefficient
CV Plot CVy = — , of Variation
E(X —u|x > u)
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EVT Models

* We use three methods to estimate the tail, for EXP and GPD models, with different approaches for
modelling diversity

\/T}(X — ulx > u) Residual Coefficient
CV Plot CVy = — , of Variation
E(X —u|x > u)

: : 1 & |6b b D
Quantile-Quantile dp(u) = - Z} fz [(1 — pj)sfu — 1] _ Q(pj,Xff) ’ Quantile distance
J= u
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EVT Models

* We use three methods to estimate the tail, for EXP and GPD models, with different approaches for
modelling diversity
5P

CV Pl ~ \/‘}(X —ulx > u) Residual Coefficient
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Uncertainty Analysis of EVT Models

* For the Semi-parametric and the QQ models, we need to assess the uncertainty of the estimator of
the Extreme Value Index:

] N
E?(:rceen:t:c;rul;olrntc;]:x &= le log(1+y;/¢$)  We use this formula to estimate the tail
i=
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Uncertainty Analysis of EVT Models

* For the Semi-parametric and the QQ models, we need to assess the uncertainty of the estimator of
the Extreme Value Index:

Uncertainty for the
Extreme Value Index

N
f = Z log(1+y;/¢) We use this formula to estimate the tail
i=1

1 .
Cramer-Rao Bound var(0) = 1) ; VN[0 - 0] 4 N(0, 5°)
We obtain the estimator with least amount
of variance
9 > 1 = 1 = Z ” d 2
var0) 2 7oy =~ 78 > [WN[E-4 < N0, )
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Uncertainty Analysis of EVT Models

* For the Semi-parametric and the QQ models, we need to assess the uncertainty of the estimator of
the Extreme Value Index:

] N
Elj(:rceen:t:c;rul;olrnt;]:x £ = le log(1+y;/¢) We use this formula to estimate the tail
1=
1 A d
Cramer-Rao Bound var(0) = 1) ; VN[0 - 0] = N(0, )
We obtain the estimator with least amount
of variance
1 1 29 A d 2
Var(9)21(9)=__l = — \/ﬁ[f—f]—%N(O,f)l
_ ¢
, £ =-0.5
Example Uncertainty
Estimation N =100,N; =10
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Uncertainty Analysis of EVT Models

* For the Semi-parametric and the QQ models, we need to assess the uncertainty of the estimator of
the Extreme Value Index:

N
Uncertainty for the s _ _ : : :
&= le log(1+y;/¢$)  We use this formula to estimate the tail
1=
1 .
We obtain the estimator with least amount
of variance
1 1 A -
var(0) > 100) = 5 = — VN[é- ¢ ﬁ1—>N(0,5“2)|
_ &2
= —0.5 =
Example Uncertainty 3 & € [—0.65,—0.34]
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Markov’s Inequality for PTA

k
Markov’s Inequality E(X) . E(X )
Theoretically P(X 2 b) < b ' P(X 2b) < bk
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Markov’s Inequality for PTA

k
Markov’s Inequality E(X) E(X )
> < > > <
Theoretically P(X 2 b) b P(X 2 b) bk
: : 1 SN xk
Markov’s Inequality P(X > b) < — I i R Find the max;, for each p
for Samples bk that does not

underestimate
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Markov’s Inequality for PTA

Markov’s Inequality

E(X) E(x)
< P(X2b) <=

v

Theoretically

Markov’s Inequality
for Samples

Find the max,, for each p
that does not
underestimate

s
<
vV
N
IA
Z |
e
|~z
R

 The main consideration is that, the 1e+-00; \
Ml for pWCET higher the target quantile, the . ‘
higher the k needed for tight g e
estimations O = Gaussian
* Higher k need bigger sample sizes 0 k=1
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Markov’s Inequality Considerations

* The estimations are done with the whole sample size, thus decreasing P(X > b) < TN b
variance
* Markov’s Inequality has been tested for sample sizes of N = 1000, but the
mean scaled moment show similar results for N = 100
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Markov’s Inequality Considerations

E(X*) 1SN gk
The estimations are done with the whole sample size, thus decreasing P(X > b) < (bk ) _ ~ sz z
variance

Markov’s Inequality has been tested for sample sizes of N = 1000, but the
mean scaled moment show similar results for N = 100

We aim at lower quantiles with probability p = 107, thus smaller k are
needed

Need to estimate the max;line which needs quantile estimation within the |MaXxg (p) = alog(p) +p
sample
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Markov’s Inequality Considerations

~ N
E(Xk) . D 5'37]7

1
* The estimations are done with the whole sample size, thus decreasing P(X > b) < SN o
variance

* Markov’s Inequality has been tested for sample sizes of N = 1000, but the
mean scaled moment show similar results for N = 100

« We aim at lower quantiles with probability p = 107, thus smaller k are
needed

* Need to estimate the max;line which needs quantile estimation within the |Maxyg (p) = alog(p) +p

sample
* We make use of the binomial Lower Confidence Interval to increase
robustness in the quantile estimation o — a0
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Uncertainty Analysis Summary

In low sample size scenarios EVT models are using a very small sample size (N ~10) to estimate the
tail

The least amount of uncertainty that we can estimate (EVI estimation) is already very high

Markov Inequality is less affected by a small sample size if the target probability is not too extreme

The addition of the Binomial Lower Confidence Interval reduces variance

Let us compare EVT models and Markov’s Inequality on pWCET estimations
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Results for Parametric Distributions

* Generated synthetic mixture 1 - (1+§E)_-E if &0,
. . . EXP/GLT G(y;0,¢) = o
distributions 1 - exp(~2) it &=,
* Sample Size: N = 100 E(xk
RESTK P(X >2b) < ( z )
* Reference Runs: N, = 10° b
* Target Probability: p = 107
GM LNM WM
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Results for Hardware Platform

« Platform: NVIDIA AGX Orin - {1_(”@)‘% it £s0
EXP/GLT G(y;0,¢) = f; _
* Sample Size: N = 100 1‘6"1’(‘5) if £=0,
* Reference Runs: N,..r = 106 P(X > b) < E()ik)
b

Target Probability: p = 107°

— — — Orin Matmul Orin Matmul Tiled Orin Space Study
py model
4x (Zo;e:ﬂs 1.3 1 L EXP_CV
4x Cortex-A78 VA (7)) 1. 2 A e EXP—QQ
@ | > EXP_QQB
— C g | | * EXP_SP
2 MB L3 VIDEO DECODE fb 1 1 * [ ] ® GLT_CV
(3| [ ]
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Conclusions

* |n some domains the risk assessment is less strict, and costs could be reduced with few tests
* In others, risks can be more critical but obtaining a great number of runs is too costly or unfeasible

* We perform an analysis of the effect of low sample sizes in current MBPTA techniques
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* |n some domains the risk assessment is less strict, and costs could be reduced with few tests

* In others, risks can be more critical but obtaining a great number of runs is too costly or unfeasible
* We perform an analysis of the effect of low sample sizes in current MBPTA techniques

e EVT techniques use a fraction of the sample for extreme modelling, thus increasing variance

* Markov’s Inequality can use the whole sample, thus reducing variance

e We introduce the use of Binomial Lower Confidence Interval to increase robustness for Markov

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

19



Conclusions

* |n some domains the risk assessment is less strict, and costs could be reduced with few tests

* In others, risks can be more critical but obtaining a great number of runs is too costly or unfeasible
* We perform an analysis of the effect of low sample sizes in current MBPTA techniques

* EVT techniques use a fraction of the sample for extreme modelling, thus increasing variance

* Markov’s Inequality can use the whole sample, thus reducing variance

* We introduce the use of Binomial Lower Confidence Interval to increase robustness for Markov

* EVT techniques can produce tight upperbounds, but the results are less consistent due to increased
variance

* The results show that Markov’s Inequality can keep consistently tight upperbounds for a variety of
scenarios in synthetic and hardware data.
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