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Executive Summary 
This document includes an update of D2.1 and D2.2, incorporating enhancements and additions 
to the previously established Deep Learning (DL) software Verification and Validation (V&V) 
strategy (deliverable D2.1) and the development of a safety concept for a railway case study. 
This safety concept aims to assess the previously defined strategies and specific solutions for 
implementing safety patterns in safety-critical software systems that incorporate Artificial 
Intelligence (AI) components (previously included in deliverable D2.2). The architectural solutions 
proposed in the railway case study seek to identify potential inconsistencies in the approach, 
address any contradictions with the requirements of the Bases of Assessment, and evaluate the 
feasibility of applying the approach within the given context.  

https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2022/11/D2.2-DL-safety-architectural-patterns-and-platform.pdf
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1. Introduction 
This document compiles the results from all tasks developed in Work Package (WP) 2: T2.1, T2.2, 
T2.3, T2.4, and T2.5. The objective of these tasks is to define and evaluate functionalities based on 
DL components that are safety-related or whose use may have implications for safety functions.  

Specifically, this deliverable establishes a safety concept for the railway use case, following the 
lifecycle developed in the SAFEXPLAIN project (T2.1, deliverable D2.1) and including relevant safety 
architectural design patterns for different DL usage levels (T2.3, deliverable D2.2). This safety 
concept serves as a foundation for validation by a certification authority, supporting future 
industrialization. Additionally, this deliverable expands the previously defined V&V strategy (task 
T2.2, deliverable D2.1). The results will be used to validate the railway case study approach, which 
is a key task within WP2. Instead of partially sharing the content of T2.4, we reserve part of it for 
deliverable D2.5, where the final progress on this task will be presented. 

Since this deliverable updates and completes the content previously introduced in deliverable D2.1 
and deliverable D2.2, we aimed to minimize redundancy across deliverables by avoiding repeating 
information whenever possible. Therefore, we refer the reader to those deliverables for 
background concepts and foundational aspects in case of any doubts. 

This document is organized as follows: 

• Section 0 introduces the railway case study and outlines the activities undertaken to analyze 
the feasibility of applying the proposed strategies and specific solutions for implementing 
safety patterns tailored to the railway domain. These efforts aim to assess their alignment 
with safety certification requirements through the development of a safety concept. Finally, 
this section presents the methodology followed for the safety assessment and the results 
obtained. 

• Section 3 extend the V&V strategy previously introduced in deliverable D2.1 at vehicle and 
element level. To that end, at vehicle level this section defines a set of example scenarios 
related to the three use cases employed in SAFEXPLAIN project: railway (led by IKERLAN), 
automotive (led by EXIDA) and aerospace (Led by AIKO). Additionally, at element level this 
section analyses the triggering conditions derived through System-Theoretic Process 
Analysis (STPA), still for the three use cases. Finally, it includes examples of V&V strategy 
application in the three use cases defined in SAFEXPLAIN project. 

  

https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2022/11/D2.2-DL-safety-architectural-patterns-and-platform.pdf
https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2022/11/D2.2-DL-safety-architectural-patterns-and-platform.pdf
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2. Safety Concept 
The main result of this document is the definition of the Safety Concept for railway case-study 
based on the SAFEXPLAIN contribution, and the documentation of the feedback provided by the 
certification authority.  

The definition of the Safety Concept will serve to illustrate a practical application of the lifecycle 
procedure developed around the use of AI in safety domains. As outputs of the work regarding 
SAFEXPLAIN:  

• The Railway Safety Concept is included in Annex A and is structured into three parts. The first 
part provides an informative introduction outlining the SAFEXPLAIN project and its main 
topics. The second part describes the reference safety architecture and safety patterns 
submitted for review by TÜV Rheinland, adapted and extended from deliverable D2.2. 
Finally, the third part defines the system concept specification of a railway domain object 
detector controller. This section follows an incremental strategy, progressing from the 
lowest DL usage level (Usage Level D / EASA Level 1) to the highest one (DL Usage Level A1 / 
EASA Level 3). It presents a set of safety patterns, proposing specific system architectures, 
safety techniques, and their application on the project's target platform (NVIDIA Orin). 

• The presentation and the main open issues and comments discussed during the review 
meeting with TÜV Rheinland certification authority is provided in the Annex B. Additionally, 
the methodology followed in the assessment, as well as a summary of the main points 
discussed during the meeting, are reported. 

2.1. Safe technical assessment and expert certification review 
This subsection is related to Task T2.5, which is scheduled to run from month 13 to month 36. This 
task consists of two key activities: one focused on the AI-FSM and the other on the railway safety 
concept definition. The former was covered in deliverable 2.1, while the latter is addressed in this 
subsection. We have maintained the same methodology as explained in the deliverable D2.1, 
which is summarized in the Figure 1. 

 
Figure 1. Safety concept review steps 

We have included in the “Annex A: Railway Safety Concept” the same documentation sent to TÜV 
Rheinland and in the “Annex B: Review meeting presentation” we have included the review 
meeting presentation in which we discussed the main open issues and comments received from 
the first TÜV Rheinland assessment. The review meeting focused on information exchange and 
experience sharing related to these topics. At the time of writing of this deliverable, the TÜV 
Rheinland assessment have not been received yet. However, we can share the general impression, 
and the main points discussed during the review meeting and, once the final assessment is 
received, we will include its conclusions in deliverable D2.5. 
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One of the points discussed was related to AI risk factors and the complexity of identifying certain 
systematic faults during the design and V&V processes. In fact, we agreed that, due to the 
extremely high number of parameter variations in an AI model, these faults may not be easily 
detectable. However, they should not be considered random, but rather as systematic errors 
arising from those pseudorandom distributions that are difficult to detect. 

We discussed the importance of the decision function, which brings together the redundant 
channels and therefore it shall have more stringent requirement than those posed over the AI 
based SW components it gets the input from. They requested to be more specific about the 
explainability techniques that can be implemented in the supervision vision.  

We discussed how the properties we identified for AI technology align with the clauses of ISO/IEC 
TR 5469. In this context, they proposed including clause 8.4.3, “Issues Related to Learning from 
the Environment,” and explicitly mentioning the other relevant clauses. 

From the system description, TÜV Rheinland expressed concerns about relying solely on cameras 
instead of incorporating diverse sensor technologies such as LIDAR or infrared cameras. We 
explained that this railway safety concept initially focuses on camera-based AI; however, our 
approach can be extended to include additional input technologies in future development phases. 

Finally, as general impression, they conclude that we have provided a reasonable approach for an 
architectural solution tailored to a railway case study. In the same way, they conclude that our 
work outlines key strategies and tailored solutions for implementing safety patterns in safety-
critical software systems that incorporate AI components.  

Additionally, since from some AI-based parts the maximum Safety Integrity Level (SIL) is 3 or 4, 
they remarked that all hardware and software for this AI components shall fulfil the requirements 
imposed by traditional functional safety standards for the corresponding SIL. With a small joke, 
they were confident that IKERLAN would take it into account, given that we had considered the 
EASA documentation, where a system consists of a traditional system based on functional safety 
and another containing the AI component. 

Additionally, we presented safeYOLO, a statically allocated memory adaptation of YOLOv41. This 
implementation focuses on adapting the inference phase of YOLOv4 to comply with MISRA C, a 
widely used coding guideline. We discussed that this serves as a strong starting point for aligning 
the software implementation of AI-based systems with traditional functional safety standards. 
However, TÜV emphasized the need to also address insufficiencies related to the model itself, 
particularly those stemming from the training phase.  

 

1 https://github.com/AlexeyAB/darknet  

https://github.com/AlexeyAB/darknet
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3. DL Safety Lifecycle for DL-software V&V 
Figure 2, depicts the V&V strategy followed for each of the three use cases in the automotive, 
railway and aerospace domains deployed within the SAFEXPLAIN project. 

 
Figure 2. V&V Strategy. 

The adopted V&V strategy and the associated methods for the ML/DL-V&V extends the traditional 
FuSa approach by addressing also “hazards resulting from functional insufficiencies” as it was 
explained in the deliverable D2.1. Our V&V strategy incorporates testing techniques based on 
those provided in ISO 26262 [1] standard and ISO 21448:2022[2], aiming to stablish a valid method 
for verifying the intended functionalities at vehicle level (scenario-based) and at component level 
(triggering condition-based). 

Since this deliverable is an extension of deliverable D2.1, and to facilitate the reader's 
understanding, we have included relevant content from that document regarding the test 
methods used in the V&V strategy related to both ISO 26262 and ISO 21448: 

• ISO 21448 (testing activities are focused on the scenarios):  

• Analysis of environmental conditions and operational use cases (ISO 26262-4 Table 3 
method 1h; ISO 21448 Table 6 Method H)  

• Analysis of triggering conditions (Method N, Table 6)  

• ISO 26262 (testing activities are focused on proving the safety requirements implementation 
and performance of safety mechanism):  

• Requirements-based test (Method 1a - ISO 26262-4 table 13) Fault injection test 
(Method 1b - ISO 26262-4 table 13; Method 1d - ISO 26262-4 table 14) 

• Fault injection test for triggering condition-based testing (ISO 26262-4 Table 4 method 
1b; ISO 21448 Table 6 Method N) 

• Long-term test (Method 1c - ISO 26262-4 table 13; Method 1b - ISO 26262-4 table 14; 
Method 1d - ISO 26262-4 table 16)  

• Performance test (Method 1a - ISO 26262-4 table 14) 

https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
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The main goal of the Verification & Validation (V&V) strategy is to: 

• Find the hazardous scenarios related to the design 

• Provide the evidence (e.g., test reports, …) to prove the following: 

• the Sense-Plan-Act elements (sensors and processing/decision algorithm) provide their 
proper functionality correctly 

• the robustness of the system or functionality against the triggering condition 

• the absence of unreasonable risk due to hazardous behaviour of the intended 
functionality 

• the achievement of an acceptable risk level.  

V&V strategy is applied both at vehicle level and component level: 

• At vehicle level, a list of scenarios (Scenario Catalogue) has been defined which describes the 
intended functionality in real-life situations for each use case domain. From the catalogue of 
the scenarios the related test cases were derived to demonstrate, by following the steps 
defined in the test cases, that the intended functionality is behaving as specified and the 
residual risk meets the acceptance criteria (criteria which represent the absence of an 
unreasonable level of risk). 

• A test matrix is derived from test specifications which will be executed, guided by the test 
matrix, to validated and ensures that the functionality works as expected. This test matrix 
will delineate the constraints and every value that should be set for each test step (e.g. ego 
vehicle, target vehicle, environment...). The test matrix also facilitates the documentation of 
the outcomes of each test conducted, to generate a descriptive report at the conclusion of 
the test activity. 

• At element level, we have analysed the design through System-Theoretic Process Analysis 
(STPA) to: 

• Identify the most critical triggering condition related to the elements design.  

• Identify the missing safety mechanism (if any) to cover the triggering condition and bring 
the harm to an acceptable level implementing the needed functional modifications, or 

• Define the test cases to test the safety mechanisms already implemented. 

By following the steps defined in the test cases, the effectiveness of the implemented safety 
mechanisms is proved in identifying the system's weaknesses. Additionally, it is demonstrated that 
the intended functionality behaves as specified. 

3.1. Scenario catalogue and related test matrix 
The purpose of the scenario catalogue is to define the set of scenarios to describe how the 
intended functionality works when a specific relevant situation occurs. The scenario catalogue has 
been defined for each of the SAFEXPLAIN project use case domains: Automotive, Railway and 
Aerospace. 

In every scenario, to enable the simulation for the testing activities, the following relevant 
conditions and constraints are specified: 

• Conditions and/or constraints related to the ego vehicle (e.g., ego vehicle speed, ego vehicle 
acceleration, offset w.r.t. the target, initial distance from the target, ego vehicle status…). 

• Conditions and/or constraints related to the vehicle identified as target (e.g., target vehicle 
speed, target vehicle acceleration, vehicle status…). 

• Conditions/Constrains related to environment (e.g., luminosity, temperature…) 
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• Vehicles and Scenarios Pre-conditions (e.g., ego vehicles speed, ego vehicles path, override 
conditions, ….). 

Depending on the use case different conditions and/or constrains have been reported, for 
example: 

• For automotive:  

• Steering, as well as yaw rate, could have a critical impact if not regulated, given their 
relevant exposure; therefore, thresholds were specified. Since steering and yaw are not 
applicable in railway and aerospace domains, thresholds for these domains were not 
specified. 

• Road surface condition could have critical impact (unlike railway/aerospace), therefore 
the road surface condition is needed to be defined as the most common street in a good 
condition (asphalt and concrete). 

• For Railway: 

• Speed limit, when the train goes in/out the train station and when goes outside the train 
stations. 

• Environmental condition: 

 Unlike the automotive use case, this domain considers not only sunny days but also 
cloudy and rainy days, in accordance with the safety concept. 

 In the automotive, scenarios in the night were also considered, but here the 
scenarios created are just in the daytime, since the night was excluded in the safety 
concept of the use case. 

• For Aerospace: 

• Since in the space no object can be stationary, we consider the target as reference 
frame, and we defined just the relative speed of the ego vehicle w.r.t. the target vehicle 

• In the environmental conditions, since we are not in the earth: 

 There is a different gravity acceleration which was assumed. 

 The orbits where the ego vehicle flies are also specified (LEO/GEO). 

 Since concepts of “day and night” is not applicable in the space, luminosity is 
defined not as a range of “intensity of pixels in the image”. 

 Since we are in space, weather conditions are not applicable, so excluded. 

Each scenario created is based on our everyday life experiences (if applicable) and the Operational 
Design Domain (ODD) where the constrains/conditions (by design) related to the functionality are 
defined.  

The criteria to choose a scenario, is based on what the related test and analyses could reveal or 
confirm, as well the frequency with which the specific scenario could occur. A scenario that is rare 
is not worth analysing. 

Indeed, only for the automotive domain, to quantify the probability of occurrence of a scenario 
(e.g., every 800 h…), we based on the VDA-702[1, 3], published by the German Association of the 
Automotive Industry, which describes every specific relevant situation and their exposure 
parameters (based on frequency and duration). Basically, it gives some “marks” to each situation 
and basing on these marks and the constrains derived from it (defined in the document itself) we 
defined the probability of occurrence. 

In order to verify whether the intended functionality works as expected, every defined scenario 
must be validated through related testing activities which is regulated by related test case 
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specification which describes the test activity to be performed step by step, with 
constrains/conditions related to the specific step described.  

These tests are necessary to analyse the functionality behaviour in that specific scenario and in 
those specific conditions. At the end of each testing activity, the outputs shall be evaluated to 
determine whether the acceptance criteria are met. 

In order to manage and facilitate every testing activity, a test matrix derived from the test cases 
specification has been defined.  

As it was previously outlined, the test matrix is a useful tool that maps every test case and let the 
tester to be guided in the testing activities. Its purpose focuses on: 

• Indicate visually and in an easily comprehensible manner the constraints and conditions of 
the ego vehicle, as well as those of the environment, target vehicle and every value to be set 
in every test case. 

• Describe how many repetitions of the tests shall be performed. 

• Collect and assess the test result ensure a comprehensive report of the testing activity. 

3.2. Focus STPA (triggering condition) and related test matrix 
In order to identify potential specification insufficiencies, potential performance insufficiencies 
and potential triggering conditions leading to a hazardous behaviour a SOTIF analysis has been 
conducted by using STPA method.  

STPA is an analysis of the hazards that could occur in a system, starting from the assumption that 
hazardous behaviour can also be caused even when no component may have failed.  STPA is very 
useful to optimize the hazard/risk analysis techniques to guarantee that the intended 
functionality, also if the system is very complex, works correctly. 

STPA analysis is developed in 4 steps: 

1. Defining the purpose and scope of the analysis: Here is necessary to identify the losses to 
be prevented by analysing the design, which are vehicle-level states or conditions, with 
particular other conditions, will lead to a loss (harm). From the design safety critical hazard 
must be also derived and condition/constraints as well. 

2. Modelling of the control structure: Here all the specifications are analysed to identify a list 
of control actions (CAs) of the system, which are how the intended functionality is expected 
to control that hazardous event. 

3. Identification of unsafe control actions: Here we identify the Unsafe Control Actions 
(UCAs), which are actions (associated to the Hazard Analysis and Risk Assessment (HARA)) 
that, in a particular context and worst-case environment, will lead to a vehicle-level hazard. 
To ensure the UCAs are prevented, controller safety constraints (SCs) can be defined, 
specifying assertions on the controller behaviours that need to be satisfied to prevent UCAs 
from occurring. 

4. Identification of causal scenarios: the final core step of STPA identifies the functional 
insufficiencies and triggering condition. The former refers to the limitation of the 
functionality caused by the triggering condition, while triggering conditions are the factors 
that initiate a subsequent system reaction leading to hazards. A triggering condition can be 
anything that causes a limitation of the functionality, such as camera of the sensor blinded 
by newspaper or signal corrupted by electromagnetic interference.  
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The purpose of this analysis is to identify the improvements that need to be implemented to fulfil 
the safety constraints identified in the STPA. The triggering condition identified via STPA analysis 
shall be validated through dedicated test cases, which shall: 

• Include an ID 

• Include a brief description to describe the aim of the test itself 

• Report step by step all the pertinent conditions and constraints to provide a comprehensive 
guide for the tester. 

The validation of the triggering condition and the STPA analysis is contingent upon the successful 
outcome of each test case, with a test case being deemed successful if every step in it is 
successfully executed. 

3.3. Example of V&V strategy application 
This subsection presents the implementation of our proposed V&V strategy for the three use cases 
addressed in the SAFEXPLAIN project: automotive (led by NAVINFO), railway (IKERLAN), and 
aerospace (AIKO). To do so, this subsection follows the structure below for each of the previously 
mentioned use cases: 

1. A description of scenarios extracted from the scenario catalogue (adapted to the three use 
cases), including their conditions/constraints. 

2. A description of test cases at vehicle level and the expected behaviour at vehicle, sense, 
plan and actuator levels.  

3. An example of triggering conditions derived from the previously identified hazards at 
vehicle level, including the associated control action, functional insufficiency and control 
action failure mode2. 

4. An example of the related test case will be provided to validate the corresponding 
triggering condition (each triggering condition shall be validated by a related test case). 

  

 

2 This document presents a reduced version of the complete set of triggering conditions and 
related test cases development by EXIDA. The whole information has not been fully shared 
because of EXIDA’s intellectually property restriction.  
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3.3.1. Automotive Use Case 

This subsection focuses on the automotive use case developed by NAVINFO. It shall be noted that 
the content related to the scenario catalogue and the vehicle level test case in the automotive use 
case was previously reported in the D2.1 deliverable; however, it has been included again for 
completeness, ensuring that examples for all SAFEXPLAIN applicable use cases are collected in one 
place. 

3.3.1.1. Example of Scenario from the scenario catalogue  

The scenario provided in this deliverable represents a vehicle driving following a target vehicle on 
highway, as depicted in Figure 3 (previously included in deliverable D5.1) . When the distance with 
the target vehicle decreases so that the driver is in dangerous zone (possible collision) the intended 
functionality shall warn the driver and, if no driver reaction occurs and the collision is imminent, 
shall decelerate the vehicle. 

 
Figure 3. Visual representation of the scenario example 

The scenario conditions/constraints are the followings: 

• The Ego vehicle (depicted in red in the Figure 3) drives with a longitudinal acceleration lower 
than 2 m/s2 towards a moving target vehicle (depicted in blue in the Figure 3) and is at a 
distance corresponding to a Time To Collision (TTC) of at least 4 s.  

• The Ego vehicle speed range is [50 km/h, 130 km/h] 

• The target vehicle drives at 80 km/h 

• The following environmental conditions shall be present: 

• Dry and daylight with minimum 1000 lux and Sun angle >15° to horizon 

• Dry and night with maximum 10 lux 

• Road surface is asphalt or concrete. 

• The following pre-conditions shall be respected: 

• Both vehicles shall keep steady speed and path. 

• Steering angle shall be lower than the override threshold.  

• Yaw rate shall be lower than the override threshold. 

• The probability of exposure (duration) of these scenario conditions is E2, considering the 

following combinations: 

• Driving behind other vehicle with normal distance – E4 (>10 % of average operating 
time): E.g., 10% of 8000h = 800 h 

• Driving with normal longitudinal acceleration (<2m/s2) – E4 (>10 % of average operating 
time): E.g., 10% of 8000h = 800 h 

• Driving in Highway– E4 (>10 % of average operating time): E.g., 10% of 8000h = 800 h  

https://safexplain.eu/wp-content/uploads/2025/02/SAFEXPLAIN_D2.1_31_03_24.pdf
https://safexplain.eu/wp-content/uploads/2022/11/D5.1-Case-study-stubbing-and-early-assessment-of.pdf
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3.3.1.2. Example of Vehicle level test case 

The following intended functionality capabilities shall be demonstrated:  

3.3.1.2.1. Step 1. Track the red target vehicle and evaluate it as no-collision relevant. 

 
Figure 4. Vehicle level test case Step 1 

Pass/Fail criteria: 

• Vehicle level: 

• Warning = It is not expected the provision of any warning to the driver. 

• Braking = It is not expected the provision of braking intervention. 

• Sense level: 

• It is expected that the object is being detected and classified as a Car.  

• Logic level: 

• It is expected that the Object, considering the safety distance between the ego-vehicle 
and the target vehicle, is being evaluated as “no-collision” relevant. 

• Actuator level: 

• Warning = It is not expected the provision of any warning to the driver. 

• Braking = It is not expected the provision of braking intervention. 
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3.3.1.2.2. Step 2. When the distance, between the ego vehicle and the red target vehicle, is equal 
to the Time To Warning (TTW), the intended functionality shall evaluate the red target 
vehicle as collision relevant and provide at least 0,8 s before the start of the emergency 
braking the visual and audible warning to the driver (UN Regulation N° 152 clause 
5.2.1.1, 5.5.1). 

 
Figure 5. Vehicle level test case Step 2 

Pass/Fail criteria: 

• Vehicle level: 

• Warning = It is expected the provision, at least 0,8 s before the start of the emergency 
braking according to UN Regulation N° 152 [13], of audible and visual warning to the 
driver. 

• Braking = It is not expected the provision of braking intervention. 

• Sense level: 

• It is expected that the object is being detected and classified as a Car.  

• Logic level: 

• It is expected that the Object, considering that the safety distance between the ego-
vehicle and the target vehicle is equal to TTW, is being evaluated as “collision” relevant. 

• Actuator level: 

• Warning = It is expected the provision, at least 0,8 s before the start of the emergency 
braking according to UN Regulation N° 152 [13], of audible and visual warning to the 
driver. 

• Braking = For this step it is not expected the provision of braking intervention. 

Note: UN Regulation N° 152 [13] is the Regulation applicable for the approval of vehicles of 
Category M1 and N1 with regard to an on-board system to:  

 Avoid or mitigate the severity of a rear-end in lane collision with a passenger car, 

 Avoid or mitigate the severity of an impact with a pedestrian. 
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3.3.1.2.3. Step 3. When the distance, between the ego vehicle and the red target vehicle, is equal 
to the Time To Collision AEB (TTC AEB), the intended functionality shall, if no driver 
reaction occurs, shall decelerate the vehicle providing at least 5.0 m/s2 (UN Regulation 
N° 152 clause 5.2.1.2).  

 
Figure 6. Vehicle level test case Step 3 

Pass/Fail criteria: 

• Vehicle level: 

• Warning = It is expected the provision, at least 0,8 s before the start of the emergency 
braking according to UN Regulation N° 152 [13], of audible and visual warning to the 
driver. 

• Braking = It is expected a deceleration of at least 5 m/s2, according to UN Regulation 
N° 152 [13].  

• Sense level: 

• It is expected that the object is being detected and classified as a Car.  

• Logic level: 

• It is expected that the Object, considering that the safety distance between the ego-
vehicle and the target vehicle is equal to TTC AEB, is being evaluated as “collision” 
relevant. 

• Actuator level: 

• It is expected the provision, at least 0,8 s before the start of the emergency braking 
according to UN Regulation N° 152 [13], of audible and visual warning to the driver. 

• It is expected a deceleration of at least 5 m/s2, according to UN Regulation N° 152 [13]. 
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3.3.1.3. From Hazard Vehicle Level to Triggering condition 

• Hazard Vehicle Level:  

• AEB provides emergency braking when not needed 

• Control Action: 

• Perform emergency braking  

• Control Action Failure Mode: 

• Emergency braking is performed when the collision is not imminent 

• Functional Insufficiency: 

• The AEB reject an abortion request 

• Triggering Condition: 

• Abortion rejected by inaccurate throttle signal due to low communication buses 
performances (e.g. busy buses, inadequate message priority or arbitration or EMI) 

• Abortion rejected by inaccurate steering signal due to low communication buses 
performances (e.g. busy buses, inadequate message priority or arbitration or EMI) 

• Abortion rejected by wrong algorithm elaboration (wrongly evaluates the brake pedal 
status, the speed reduction reached by the vehicle, lateral acceleration value, yaw rate). 

3.3.1.4. Example test case related to the triggering condition 

• Test ID: TCTC-01 

• Tested Triggering Condition ID: TC2-0016 

• Test Description: The test aims to verify whether the AEB is deactivated against a corrupted 

throttle signal due to low communication buses performance event. 

• Test Steps: 

• Step 1: 

o Initial state: 

▪ Kl.15 = on 
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 

▪ Throttle Sensor System 
▪ CAN Bus Simulator 
▪ AEB ECU 

o Operating: 

▪ Sent valid throttle signal in time 
o Expected Result: 

▪ No warning message provided 
▪ Intended functionality state: active  

• Step 2: 

o Initial state: 

▪ Kl.15 = on 
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 

▪ Throttle Sensor System 
▪ CAN Bus Simulator 
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▪ AEB ECU 
o Operating: 

▪ Sent valid throttle signal in time 
▪ Injected Emergency Braking Request 

o Expected Result: 

▪ Emergency Braking warning provided in time according to intended functionality 
requirement 

▪ Emergency Braking Request provided in time according to intended functionality 
requirement 

▪ Intended functionality state: active intervening 

• Step 3: 

o Initial state: 

▪ Kl.15 = on 
▪ Emergency Braking warning provided 
▪ Emergency Braking Request provided 
▪ Intended functionality state: active intervening 

o Operating Element: 

▪ Throttle Sensor System 
▪ CAN Bus Simulator 
▪ AEB ECU 

o Operating: 

▪ After x ms it shall be sent a delayed throttle signal 
o Expected Result: 

▪ Intervention of dedicated CAN communication safety mechanism detecting the 
delay of throttle signal causing the deactivation of the functionality within x ms. 

▪ Intended functionality state: deactivated.  
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3.3.2. Railway Use Case 

This subsection implements the V&V strategy on an use case in the railway domain. 

3.3.2.1.  Example of Scenario from the scenario catalogue 

In this subsection is reported an example of one of the scenarios included in the scenario catalogue 
adapted to the Railway use case developed by IKERLAN. It represents a train that travels towards 
a static pedestrian on the tracks, as depicted in Figure 7. 

 

Figure 7. Visual representation of the scenario example 

When the distance with the pedestrian decreases so that the collision is possible, the intended 
functionality shall react as follow:  

• If the distance with the pedestrian is equal to Time To Warning (TTCW) [1001 m, 1500 m], the 
intended functionality shall warn the driver about the upcoming collision. 

• If the distance with the pedestrian is equal to Time To Deceleration (TTCD) [701 m, 1000 m], 
the intended functionality shall reduce the train speed through service brake intervention. 

• If the distance with the pedestrian is lower to Time To Brake (TTCB)  [700 m], the driver 
shall stop the train through emergency brake intervention.  

The scenario conditions/constraints are the following: 

• The train drives with a longitudinal acceleration lower than 1m/s2 towards a pedestrian in 
the track and is at a distance of [0 m, 1500 m] 

• The Train speed range is [0 km/h, 90 km/h] 

• The speed limit in case the train goes in the station or out from the station shall be 30 km/h 

• The speed limit in case the train is travelling outside the station shall be 90 km/h 

• The pedestrian is stationary on the track 

• The initial longitudinal offset is: 2000 m 

• The maximum deceleration is: 0,8 m/s2 

• The following environmental conditions shall be present: 

• Dry and daylight with 1500 lx as minimum luminosity range and Sun angle >15° to 
horizon 

• Rainy day with [0,1 mm/h, 7,6 mm/h] as rain intensity threshold and with [1000 lx, 1499 
lx] as luminosity range 

• Cloudy day with [1000 lx, 1499 lx] as luminosity range 

• The following Pre-conditions shall be respected: 

• Train shall keep steady speed 

• no internal failure shall be present 
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3.3.2.2. Example of Vehicle level test case 

The following intended functionality capabilities shall be demonstrated: 

3.3.2.2.1. Step 1. The train runs at constant speed on the track in the direction of the pedestrian. 

 
Figure 8. Vehicle level test case Step 1 

Pass/Fail criteria: 

• TCS_1 - Step 1 – Train 

• Expected result: 
o Warning = Not present 
o Deceleration = Not present 
o Braking = Not present 

• TCS_1 – Step 1 – Sense 

• Expected result: 

o No object detected 

• TCS_1 – Step 1 – Logic 

• Expected result: 
o No object detected (distance > TTCW) 

• TCS_1 – Step 1 – Actuator 

• Expected result: 
o No warning triggered 
o No deceleration actuated 
o No braking actuated 
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3.3.2.2.2. Step 2. When the distance between the train and pedestrian is equal to the TTCW, the 
intended functionality shall evaluate the detected object (pedestrian), calculating its 
distance and collision probability and warn the driver about the pedestrian on the 
train path. 

 
Figure 9. Vehicle level test case Step 2 

Pass/Fail criteria: 

• TCS_1 - Step 2 – Train 

• Expected result: 
o Warning = Present 
o Deceleration = Not present 
o Braking = Not present 

• TCS_1 – Step 2 – Sense 

• Expected result: 
o Object detected 
o Object classified as “pedestrian” 

▪ Evaluate outputs of sensors to evaluate the expected results (e.g. detected 
objects, object classification) 

• TCS_1 – Step 2 – Logic 

• Expected result: 
o Object evaluated as “collision” relevant (distance > TTCD > TTCB) 
o Evaluate outputs of Logic to evaluate the expected results (e.g. request to the 

actuator) 

• TCS_1 – Step 2 – Actuator 

• Expected result: 
o Warning triggered 
o No deceleration actuated 
o No braking actuated 
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3.3.2.2.3. Step 3. When the distance between the train and pedestrian is equal to the TTCD, the 
pedestrian is evaluated as critical and the intended functionality shall decelerate the 
train. 

 
Figure 10. Vehicle level test case Step 3 

Pass/Fail criteria: 

• TCS_1 - Step 3 – Train 

• Expected result: 
o Warning = Present 
o Deceleration = Present 
o Braking = Not present 

• TCS_1 – Step 3 – Sense 

• Expected result: 

• Object detected 

• Object classified as “pedestrian” 
o Evaluate outputs of sensors to evaluate the expected results (e.g. detected 

objects, object classification) 

• TCS_1 – Step 3 – Logic 

• Expected result: 

• Object evaluated as “collision” relevant (distance = TTCD) 
o Evaluate outputs of Logic to evaluate the expected results (e.g. request to the 

actuator) 

• TCS_1 – Step 3 – Actuator 

• Expected result: 
o Warning triggered 
o Deceleration actuated 
o No braking actuated 
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3.3.2.2.4.  Step 4. When the distance between the train and pedestrian is equal to the TTCB, the 
driver shall brake the train. 

 
Figure 11. Vehicle level test case Step 4 

Pass/Fail criteria: 

• TCS_1 - Step 4 – Train 

• Expected result: 
o Warning = Present 
o Deceleration = Present 
o Braking = Present 

• TCS_1 – Step 4 – Sense 

• Expected result: 
o Object detected 
o Object classified as “pedestrian” 

▪ Evaluate outputs of sensors to evaluate the expected results (e.g. detected 
objects, object classification) 

• TCS_1 – Step 4 – Logic 

• Expected result: 
o Object evaluated as “collision” relevant (distance = TTCB) 

▪ Evaluate outputs of Logic to evaluate the expected results (e.g. brake request 
to the driver) 

• TCS_1 – Step 4 – Actuator 

• Expected result: 
o Warning triggered 
o Deceleration actuated 
o No braking actuated  

  



   
 

24 

 

3.3.2.3. From Hazard Vehicle Level to Triggering condition 

• Hazard Vehicle Level:  

• The ATO fails to warn the driver when required.  

• Control Action: 

• Warn the driver when a potential collision is imminent.  

• Control Action Failure Mode: 

• Warning not provided in a critical scenario. 

• Functional Insufficiency: 

• The ATO does not provide the warning. 

• Triggering Condition: 

• Warning is not provided to HMI ECU due to low buses communication. 

• Missing object detection due to wrong camera position/camera calibration (e.g. The 
sensor is mounted in a wrong position/orientation leading to a missing object detection)  

• Missing object detection due to camera low performances (e.g. damaged lens or 
undetected offline sensor)  

• The logic responsible to elaborate the input data is stuck due to low computational 
power (e.g. low resources available). 

3.3.2.4. Example test case related to the triggering condition 

• Test ID: TCTC-01 

• Tested Triggering Condition ID: TC3-001 

• Test Description: The test aims to verify whether the ATO is deactivated against a failure in 

the camera. 

• Test Steps: 

• Step 1: 

o Initial state: 
▪ Kl.15 = on 
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 
▪ Camera Sensors 
▪ CAN Bus Simulator 
▪ ATO ECU 

o Operating: 
▪ Sent camera status signal to ATO ECU reporting that no failure is present 

o Expected Result: 
▪ No warning message provided 
▪ Intended functionality state: active 

• Step 2: 

o Initial state: 
▪ Kl.15 = on 
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 
▪ Camera Sensors 
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▪ CAN Bus Simulator 
▪ ATO ECU 

o Operating: 
▪ After x ms sent camera status signal to ATO ECU reporting that a failure is present 

o Expected Result: 
▪ Intervention of dedicated camera failure safety mechanism detecting the failure 

present in the camera causing the deactivation of the functionality within x ms. 
o Intended functionality state: deactivated 
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3.3.3. Aerospace Use Case 

The following subsection focuses on implementing the V&V strategy in the aerospace use case.  

3.3.3.1. Example of Scenario from the scenario catalogue 

This subsection reports an example of one of the scenarios included in the scenario catalogue 
adapted to the aerospace use case developed by AIKO. It represents an Agent flies near a docking 
target and a black image is acquired due to a camera malfunction, as depicted in Figure 12. 

 
Figure 12. Visual representation of the scenario example. 

Description of the expect behaviour: 

• When the agent flies in the Earth Orbit (LEO/GEO) close to a docking target, the acquired 
image is black (null image) due to a camera malfunction. 

• As soon as a camera malfunction, which can lead to an incorrect execution of the 
functionality, is detected, the intended functionality shall provide a warning to the driver, 
and the functionality shall be deactivated. 

The scenario conditions/constraints are the following: 

• The agent flies towards a docking target and is at a distance corresponding to a Time To 
Collision (TTC) of at least 200 s.  

• The agent relative speed range is [0 cm/s, 10 cm/s] 

• Initial distance from the docking target: 15 m 

• Camera is not working, and null image is acquired 

• The following environmental conditions shall be present: 

• Luminosity range: [1-30] (intensity of pixels in the image)   

• Microgravity: ag = 8,8 m/s2 

• LEO (Low Earth Orbit) 

• GEO (Geostationary Earth Orbit) 

• The following Pre-conditions shall be respected: 

• Camera acquires null image (black image) due to a camera malfunction. 
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3.3.3.2. Example of Vehicle level test case 

The following intended functionality capabilities shall be demonstrated: 

3.3.3.2.1. Step 1. As the agent flies along its own path, it approaches the target. 

 
Figure 13. Vehicle level test case Step 1 

Pass/Fail criteria: 

• TCS_2 - Step 1 – Agent 

• Expected result: 
o Target: Not detected 
o Docking site: Not detected 
o Docking operation relevant information: Not provided 

• TCS_2 – Step 1 – Sense 

• Expected result: 
o No object detected 

• TCS_2 – Step 1 – Logic 

• Expected result: 
o No object detected (distance > TTC) 

• TCS_2 – Step 1 – Human-Machine Interface (HMI) 

• Expected result: 
o Warning: Not triggered 
o Docking operation relevant information: Not provided 
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3.3.3.2.2. Step 2. When the distance between the agent and the target is equal to TTC, the 
intended functionality is not able to detect the target, since the acquired image is null 
(black) image due to a camera malfunction; the intended functionality shall provide a 
warning to the driver, and it shall be deactivated. 

 
Figure 14. Vehicle level test case Step 2 

Pass/Fail criteria: 

• TCS_2 - Step 2 – Agent 

• Expected result: 
o Warning: Provided 

• TCS_2 – Step 2 – Sense 

• Expected result: 
o No object detected 
o Null image acquired 

• TCS_2 – Step 2 – Logic 

• Expected result: 
o Detection of malfunction in the camera  

• TCS_2 – Step 2 – HMI 

• Expected result: 
o Warning: Provided   
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3.3.3.3. From Hazard Vehicle Level to Triggering condition 

• Hazard Vehicle Level:  

• The GNC System wrongly provide information related to the docking operation.  

• Control Action: 

• Information needed to docking operation are provided to the driver.  

• Control Action Failure Mode: 

• Wrong information related to the docking operation are provided to the driver. 

• Functional Insufficiency: 

• The GNC algorithm wrongly elaborate the received data. 

• Triggering Condition: 

• The decision algorithm wrongly elaborates the received signal, due to unknown signal. 

• Missing detection of wrong input via plausibility check leads to incorrect agent position 
calculation. 

• Wrong agent parameter estimation due to wrong camera position/camera calibration 
(e.g. the sensor is mounted in a wrong position/orientation). 

• Agent parameters are wrongly estimated due to low computational power (e.g. overload). 

3.3.3.4. Example test case related to the triggering condition 

• Test ID: TCTC-01 

• Tested Triggering Condition ID: TC1-001 

• Test Description: The test aims to verify whether the GNC System is deactivated against a 

received signal with an unknown value. 

• Test Steps: 

• Step 1: 

o Initial state: 
▪ Kl.15 = on  
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 
▪ Camera Sensors 
▪ CAN Bus Simulator 
▪ GNC System ECU 

o Operating: 
▪ Sent camera signal to GNC System ECU with a valid value 

o Expected Result: 
▪ No warning message provided 
▪ Intended functionality state: active 

• Step 2: 

o Initial state: 
▪ Kl.15 = on 
▪ No warning message available 
▪ Intended functionality state: active 

o Operating Element: 
▪ Camera Sensors 
▪ CAN Bus Simulator 
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▪ GNC System ECU 
o Operating: 

▪ After x ms sent camera signal to GNC System ECU with unknown value 
o Expected Result: 

▪ Intervention of dedicated CAN communication safety mechanism detecting the 
unknown value of camera signal causing the deactivation of the functionality within 
x ms. 

▪ Intended functionality state: deactivated 
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4. Acronyms and Abbreviations 
Below is a list of acronyms and abbreviations employed in this document: 

- AEB – Autonomous Emergency Braking 
- AI – Artificial Intelligence 
- ASPICE – Automotive SPICE 
- DL – Deep Learning 
- EASA – European Aviation Safety Agency  
- Ego vehicle - vehicle fitted with functionality that is being analyzed for the SOTIF 
- FSM – Functional Safety Management 
- FuSa – Functional Safety  
- GEO – Geostationary Earth Orbit 
- HARA – Hazard Analysis and Risk Assessment 
- II – Information Items 
- ISO – International organization for standardization  
- LEO – Low Earth Orbit 
- ML – Machine Learning 
- MLE – Machine Learning Engineering 
- NN – Neural Network 
- ODD – Operational Design Domain 
- PAM – Process Assessment Model 
- PRM – Process Reference Model 
- QM – Quality Management  
- QMS – Quality Management System 
- SIL – Safety Integrity Level 
- SOTIF – Safety Of the Intended Functionalities 
- SPICE – Systems Process Improvement and Capability dEtermination 
- SWE – Software Engineering 
- TTC – Time To Collision 
- TTW – Time To Warning 
- VDA – Verband Der Automobil industrie 
- V&V – Verification and Validation 
- WP – Work Product 
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6. Annexes 
This section collects the annexes attached together with the deliverable D2.3. 

Annex A: Railway Safety Concept 
This annex includes the document sent to the TÜV Rheinland certification entity to be reviewed.  

Annex B: Review meeting presentation 
This annex collects the power point shared with TÜV Rheinland during the assessment of the 
Railway Safety Concept presented in the Annex A. In that presentation, the main set of review 
comments received from the TÜV Rheinland entity are included. 
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Executive Summary 
Deep Learning (DL) techniques are at the heart of most future advanced software functions in 
Critical Autonomous AI-based Systems (CAIS), where they also represent a major competitive 
factor. Hence, the economic success of CAIS industries (e.g., automotive, space, railway) depends 
on their ability to design, implement, qualify, and certify DL-based software products under 
bounded effort/cost. However, there is a fundamental gap between Functional Safety (FUSA) 
requirements on CAIS and the nature of DL solutions. This gap stems from the development 
process of DL libraries and affects high-level safety concepts such as (1) explainability and 
traceability, (2) suitability for varying safety requirements, (3) FUSA-compliant implementations, 
and (4) real-time constraints. As a matter of fact, the data-dependent and stochastic nature of DL 
algorithms clashes with current FUSA practice, which instead builds on deterministic, verifiable, 
and pass/fail test-based software. 

The SAFEXPLAIN project tackles these challenges and targets by providing a flexible approach to 
allow the certification – hence adoption – of DL-based solutions in CAIS building on: (1) DL solutions 
that provide end-to-end traceability, with specific approaches to explain whether predictions can 
be trusted and strategies to reach (and prove) correct operation, in accordance to certification 
standards; (2) alternative and increasingly sophisticated design safety patterns for DL with varying 
criticality and fault tolerance requirements; (3) DL library implementations that adhere to safety 
requirements; and (4) computing platform configurations, to regain determinism, and probabilistic 
timing analyses, to handle the remaining nondeterminism. 

This document provides strategies and specific solutions to realize safety patterns for safety-
relevant software systems that include Artificial Intelligence (AI) software components. Moreover, 
the proposed architectural solution is tailored to a railway case study for its assessment with 
respect to safety certification by means of a safety concept. 

Future exploitation of the main SAFEXPLAIN concepts, architecture and solutions could be at stake 
if no clear route for certification is identified, which can accompany industrial interest. 
Additionally, to ensure that relevant certification bodies with authority in the targeted domains 
are aware of the SAFEXPLAIN approach is also a key interest of the project. 

This self-contained document is submitted to TÜV Rheinland, a relevant certification body in the 
industrial domain, with the following goals: 

• The third-party authoritative review report on the suitability of the research concepts of 
SAFEXPLAIN, identifying possible implausibilities of the approach or possible contradictions 
with requirements of the Bases of Assessment and evaluating the use of the approach in the 
context mentioned. 

• The dissemination of SAFEXPLAIN contribution to TÜV Rheinland. 
• The gathering of detailed feedback from TÜV Rheinland. 
• The definition of an action plan based on the received feedback (if needed). 
• The suggestion of updates to the current standards or certification processes (where 

needed). 
  



 

6 

Annex A: Railway Safety Concept 
Version 1.0 

Structure of the document 
This document is organized in three main parts: 

• Part I – Introduction (informative): This part serves solely introductory purposes and hence, 
it is not intended for review. Section 1 provides a basic background on the SAFEXPLAIN 
project and certification standards, focusing on the main topic of the project: Artificial 
Intelligence (AI) based systems, NVIDIA Jetson AGX Orin (target HW platform) as well as 
standards and technical reports. 

• Part II – System architecture (to be reviewed): This part describes the reference safety 
architecture and safety patterns to be reviewed by TÜV Rheinland: 
o Section 2 reviews the relevant sources of risk for AI-based solutions in safety-critical 

systems, including AI-related factors and traditional ones. Then, section 2.2 reviews the 
different usage and automation levels for DL solutions, and how they are tackled 
incrementally in the project, and also in this document. 

o Section 3 provides the general structure of the safety patterns, as well as the techniques 
considered for diverse redundancy, diagnostics, monitoring, and supervision in the 
different safety patters. 

• Part III – Railway case study (to be reviewed): This part tailors the reference safety 
architectural pattern to a railway case study. 
o Section 4 presents the railway case study, which consists of a railway domain object 

detector controller for an Automatic Train Operation (ATO) system. Aiming an 
incremental adoption of AI in the system, several situations have been considered, 
where the AI system plays different roles within the ATO system. 

o Section 5 instantiates the general pattern for specific usage and automation levels, 
reviews the relevant techniques to be used for diverse redundancy, diagnostics, 
monitoring, and supervision for each of the patterns, and provides guidance on how to 
map those solutions to the target platform of the project (NVIDIA Orin). 
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1. Introduction 
Systems with safety requirements follow a development process that leads to architectures that 
allow satisfying those requirements. Those architectures have a large set of commonalities across 
different systems with comparable safety requirements, and hence, a number of safety patterns 
have been developed in each application domain as a way to generate specific architectures 
reusing previous efforts to reduce costs and risks. One such example of safety pattern is the E-gas 
Concept (EGAS Workgroup, 2013) used in the automotive domain, which is the basis for the 
architecture of many automotive systems with limited integrity levels (e.g., ASIL-A or ASIL-B 
according to ISO 26262 (International Standardization Organization, 2018)). 

However, AI-based software has a number of characteristics that clash with those expected for 
safety-relevant software, such as a pseudo stochastic behaviour with non-guaranteed correct 
outputs, and a data-based software design rather than being a purely control algorithm. Hence, 
traditional safety patterns cannot be applied as they are, and new ones need to be devised. 

In this section, we provide some context and scope to the problem of developing AI-based 
software architectures with safety requirements and provide some background on the relevant 
safety regulations and the target platform where those software architectures have to be 
deployed. 

1.1. Background 
This section provides background on the main concepts used in this report: nomenclature on AI-
based systems, the main features of NVIDIA Jetson AGX Orin platform where the safety patterns 
will be applied, and a recall of the safety standards used as reference. 

1.1.1. AI-based systems 

When referring to AI-based safety systems, this report considers the definitions of the European 
Aviation Safety Agency (EASA) concept paper for Machine Learning (ML) application [1], which 
makes the decomposition shown in Figure 1. 

Based on this decomposition, the EASA concept paper makes the following definitions: 
• AI-based system: systems encompassing traditional subsystem(s) and incorporating at least 

one AI-based subsystem. 
• AI-based subsystem: subsystem that involves one or more AI/ML constituents. 
• AI/ML constituent: It is a combination of software and hardware items that include at least 

one specialized hardware or software item containing at least one ML model. 
• AI/ML item: specialized hardware or software item that builds the ML model(s). In particular, 

we focus on Deep Learning (DL) models, a subfield of ML. 
• Traditional subsystem: subsystem that does not include any ML model. 
• Traditional SW/HW item: hardware or software items that do not include ML model(s). 

This safety concept focuses on AI/ML constituents with the following features: 
• Deep Learning (DL) algorithms based on supervised learning for visual perception 

classification tasks. 
• Applications based on offline learning processes in which the model remains fixed at 

approval time, while excluding online learning processes. 
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Figure 1: Artificial Intelligence (AI)-based system decomposition based on EASA concept paper [1] 

1.1.2. NVIDIA Jetson AGX Orin 

The target MPSoC platform in SAFEXPLAIN belongs to the NVIDIA Jetson AGX Orin family. In 
SAFEXPLAIN, the AGX Orin Dev Kit has been selected. The Orin comprises 3 clusters of 4 Arm 
Cortex-A78AE CPUs, a dual core Sensor Processing Engine (SPE), which can be configured in 
lockstep mode, a NVIDIA Ampere GPU, ad-hoc AI-oriented accelerators, and a video encoder / 
decoder. 

Clusters based on Arm cores provide general purpose computing capabilities suitable for control 
software and software components around AI-based software, but without needing AI-specific 
support or massively parallel hardware components. Each of the three clusters includes four cores 
that can be used as either 4 independent cores, or as 2 pairs of lockstep cores. Cores include local 
(L1 and L2) caches. There is a L3 cache shared across all cores in the cluster, but it includes 
partitioning support. We refer to the set of 3 core clusters as CCPLEX for short. 

Computing devices like the GPU and the AI-oriented accelerators have a complementary nature to 
the core clusters and are suitable for AI software and other embarrassingly parallel software. In 
particular, the GPU has a number of Stream Multiprocessors (SMs) sharing a L2 cache, which, 
apparently, cannot be partitioned. 

Core clusters and the GPU share a L4 cache that, so far, cannot be partitioned, and hence, both 
cores and the GPU share it. However, we note that, due to its limited size, does not seem to be 
intended for providing increased cache space for the L3 caches of the core clusters or the L2 cache 
of the GPU. 

1.1.3. Standards and technical reports 

Although this safety concept is focused on a railway domain case study, the outcomes of this 
project are meant to be cross-domains, therefore, the following domain independent standards 
are taken as basis: 

• IEC 61508:2010 - Functional safety of electrical/electronic/programmable electronic 
safety-related systems [2]: Traditional FUSA architectural safety patterns from this standard 
are used as starting point for the definition of reference architecture of Section 3 in this 
report. 
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• ISO/IEC TR 5469:2024 - Artificial intelligence — Functional safety and AI systems [3]: 
Section 2.2 explains the definition of the different DL usage levels according to ISO/IEC TR 
5469 which is used as the basis for the incremental strategy of this report and the 
architectural safety patterns for AI presented in Section 5. 

In addition to these domain independent standards, technical reports from different domains are 
also taken as reference: 

• CAST-32A and AMC-20-193 from the avionics domain for multicore processors [4]: these 
two technical reports from the avionics domain provide guidance on the adoption of 
multicore processors for critical systems. Many of the principles described there are also 
applicable to HPEC platforms that integrate multicore processors together with additional 
accelerators and diverse computing resources. 

• E-Gas architecture concept from the automotive domain [5]: The E-Gas architecture 
concept, defined by the German Association of the Automotive Industry (VDA), has the aim 
to standardize the safety architecture for engine control systems. The defined architecture 
is in compliance with ISO 26262 and it can be applied as a well-trusted design principle. The 
E-Gas defines a 3-level monitoring concept that has been used as reference in this report 
(Section 3.2), adapting it to AI systems particularities and to ISO/IEC TR 5469. 
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Part II – Reference safety 
architecture 
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2. Sources of Risk and Incremental Strategy 
In order to define the safety architecture patterns, first main problems arising from the use of AI 
in safety critical systems and their root causes are analysed and then an incremental strategy to 
deal with them is defined. 

2.1. AI Risk factors 
As for traditional safety related systems, the main risk factors related to AI-based systems can be 
originated either in its development or at operation. Figure 2 depicts this classification criteria 
together with information sources used in this section to identify the different risk factors. During 
the development, there are several stages at which systematic faults can originate, like incomplete 
specifications, biased training data or wrong design decisions affecting the ML model. In order to 
reduce the probability of systematic faults in the AI-based subsystem, safety considerations shall 
be taken in the AI lifecycle. In SAFEXPLAIN this has been addressed by the AI-FSM [6] and hence, 
this report does not focus on the risk factors originated in the AI lifecycle but on the AI Operation 
instead. However, the high complexity of AI systems makes it very difficult to mitigate all 
systematic faults through design and verification and validation processes, and it is assumed that 
residual systematic faults will manifest at operation and should be covered by the runtime 
mechanisms in the safety architecture too, as done for random faults. 

 
Figure 2: AI Risk factor classification and sources of information 

At operation time, residual systematic faults and random faults can impact different elements of 
the AI-subsystem, this determines the architectural measures required for runtime error detection 
and monitoring. Based on ISO/IEC TR 5469 we classify these AI technology elements in the 5 groups 
shown in Figure 2: 

• Application Independent: The lowest levels of the AI technology elements can be considered 
as application independent: 
o Computational Hardware: refers to the hardware platform and its processing units (e.g., 

CPU, GPU, Accelerators). 
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o OS / middleware: This component is not included in ISO/IEC TR 5469, but many faults 
could also originate on this layer. 

o Libraries: ML components often require specific libraries for their inference (e.g., 
cuDNN). These libraries can also be implemented in different programming languages 
such as CUDA, C, C++, python… 

• Application dependent: Higher levels of the AI technology elements are usually platform 
dependent: 
o ML framework: many different frameworks can be used depending on the application 

that is being implemented (e.g., TensorFlow, Pytorch, Keras). 

o ML model: the ML model will depend on the specific application and the design decisions 
taken for it (architecture, hyperparameters, number of layers, etc). 

The analysed sources for identifying relevant risk factors on AI operation cover different AI 
technology elements as explained in next subsections. 

2.1.1. Functional Safety Standards 

Functional safety standards such as IEC 61508, ISO 26262 or EN 5012x only address the application 
independent technology elements from Figure 2 (computational hardware and software) as they 
do not address AI-specific topics. According to ISO / IEC TR 5469 these technology elements can 
be addressed through existing functional safety concepts following IEC 61508-2 for hardware and 
IEC 61508-3 for software. However, for elements containing AI technology (ML model and related 
tools) a set of new properties, listed in Section 2.1.3, are defined. 

Traditional functional safety standards classify failures based on their origin as systematic or 
random: 

• Systematic failure: “failure, related in a deterministic way to a certain cause, which can only 
be eliminated by a modification of the design or of the manufacturing process, operational 
procedures, documentation or other relevant factors” from IEC 61508-4. 

• Random hardware failure: “failure, occurring at a random time, which results from one or 
more of the possible degradation mechanisms in the hardware” from IEC 61508-4. 

Concerning systematic faults affecting AI SW development (lifecycle) it is an open research topic 
that has been explored by several research papers. Humbatova et al. [7] introduce a large 
taxonomy of faults in DL systems’ development using several frameworks. Moreover, Schnitzer et 
al. [8] propose a framework for the systematic management of risks associated with AI. This 
framework builds upon an AI hazard list from a SoA analysis. 

2.1.2. Technical reports on multicore integration (CAST-32A / AMC-20-
193) 

CAST-32A / AMC-20-193 focus on multicore processors and therefore mostly on the hardware 
computing element and allocation of resources to deal with interferences. The following main risk 
factors are considered: 

• Contention for resources and interference between software applications or tasks even if 
there is no explicit data sharing among concurrent tasks, low level resources are shared 
(cache or interconnects) coupling exists on the platform level, which can cause interference 
between them. 
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• Interference caused by the arbitration of shared resources. 
• Verification of the use of shared resources: demonstrate that the hosted software 

applications function correctly and have sufficient time to execute in the presence of the 
interference that occurs when all the hosted software is executing on a multicore. The WCET 
of a software component or task may increase significantly when other software 
components or tasks are executing in parallel on the other cores. 

• Exceedance of resource capabilities by software applications. 
• Hardware dynamic features that can alter system behaviour (energy saving features, clock 

enable / gating, frequency adaptations, deactivating one or more cores, or dynamic control 
of peripheral access). 

• Configuration settings: active cores, execution frequencies, priorities and allocation of 
shared resources (memory, cache, interconnect). 

2.1.3. AI and FUSA Technical Reports (ISO/IEC TR 5469) 

As previously stated, ISO/IEC TR 5469 refers to traditional functional safety standards for 
application independent AI technology elements, and defines the following 6 properties for AI 
application dependent ones: 

• Degree of automation and control 
• Degree of decision transparency and explainability 
• Environmental complexity and vagueness of specifications 

o Operational Design Domain (ODD) complexity 
o ODD specification 
o Environmental changes: Data drift (training data does not match runtime domain), 

Concept drift (statistical properties of data change over time) 
• Adversarial inputs 
• AI Hardware issues 
• Technological maturity 

2.1.4. Safety of The Intended Functionality (SOTIF) (ISO/DIS 21448) 

With the increase of advanced functionalities and automation, ISO/DIS 21448 acknowledges that 
many hazards are not covered by functional safety standards and defines the concept of functional 
insufficiencies, which can happen even when the system is free from systematic and random faults 
addressed in functional safety standards. Functional insufficiencies, which could be considered as 
a type of systematic faults, are defined as one of the following: 

• Insufficiency of specification: This mainly affects to the AI lifecycle as it is defined as 
“specification, possibly incomplete, contributing to either a hazardous behaviour or an 
inability to prevent or detect and mitigate a reasonably foreseeable indirect misuse”. 

• Performance insufficiency: “limitation of the technical capability contributing to a hazardous 
behaviour or inability to prevent or detect and mitigate reasonably foreseeable indirect 
misuse”. 

2.1.5. Summary of risk factors 

Table 1 summarises the risk factors described within Section 2.1 mapping them to the affected AI-
technology elements the source of information. 

https://www.iso.org/obp/ui/ru/#iso:std:iso:21448:ed-1:v1:en:term:3.17
https://www.iso.org/obp/ui/ru/#iso:std:iso:21448:ed-1:v1:en:term:3.17
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Table 1: Summary of risk factors 

Risk factor AI technology element Source 

Traditional FUSA risk 
factors (systematic / 
random) 

All AI technology elements (i.e., computational 
hardware, OS / middleware, libraries, ML 
framework and ML model). 

IEC 61508 and derived 
FUSA standards (ISO 
26262, EN 5012x, …) 

HPEC platform 
integration risk factors 

Computational hardware and lower-level SW 
(i.e., OS / middleware). 

CAST-32A / AMC-20-193 

ISO 26262 part 11 

AI performance 
insufficiency 

ML model or framework. ISO/DIS 21448 (SOTIF) 

AI & FUSA risk factors 
(low/medium integrity 
level) 

All AI technology elements (i.e., computational 
hardware, OS / middleware, libraries, ML 
framework and ML model). 

AI and FUSA Technical 
Reports (ISO/IEC TR 5469) 

2.2. Incremental strategy 
ISO / IEC TR 5469 describes different DL usage levels: 

• DL usage Level A1: AI technology is used and it is possible to make automated decision of 
the system function using AI technology. 

• DL usage Level A2: AI technology is used but it is not possible to make automated decision 
of the system function using AI technology (e.g., AI technology is present in the system for 
diagnostics). 

• DL usage Level C: AI technology is not part of a safety function but can have an impact on it. 
• DL usage Level D: AI technology is not part of a safety function and does not have an impact 

on it due to sufficient segregation and behaviour control. 

Similarly, the EASA concept paper classifies AI systems based on the level of automation / 
assistance to the user: 

• EASA Level 1: AI used for assistance to human (human augmentation or cognitive assistance 
in decision and action selection). 

• EASA Level 2: Human-machine teaming (cooperation or collaboration). 
• EASA Level 3: Autonomous AI-based decisions and actions. 

Based on these classifications, in SAFEXPLAIN we have defined the incremental strategy shown in 
Figure 3 for AI adoption in safety critical systems, which incrementally addresses the risk factors 
of Section 2.1. This strategi defines first a reference safety architecture (described in Section 3), 
which is tailored to the railway case-study and instantiated to three safety patterns in order to 
address the different DL usage levels: 

• Safety Pattern 1 (SP1) (described in Section 5.1) aims to address up to a DL usage level D or 
EASA Level 1. The AI/ML constituent is not part of the safety function, therefore, we set the 
focus on safety techniques and measures to detect and mitigate errors associated with 
traditional FUSA and HPEC platform integration risk factors. 

• Safety Pattern 2 (SP2) (described in Section 5.2) aims to address up to a DL usage level C or 
EASA Level 2. The AI/ML constituent is not part of the safety function although it collaborates 
on the decision and can therefore have an impact on it, so we assume that the AI/ML 
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constituent has a low/medium SIL. This SP considers the techniques and measures of SP1 
and sets the focus on solutions to detect and mitigate errors associated with AI performance 
insufficiencies as well as AI and FUSA risk factors on the ML framework and DL model. 

• Safety Pattern 3 (SP3) (described in Section 5.3) aims to address up to a DL usage level A1 or 
EASA Level 3, where the AI/ML constituent is part of the safety function. The AI/ML 
constituent provides autonomous AI-based decisions and actions, so it has a high SIL. SP3 
considers the techniques and measures from previous SPs and sets the focus on achieving 
higher integrity level.
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Figure 3: Incremental strategy for AI adoption in safety critical systems 
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3. Reference architecture pattern 
Figure 4 depicts a reference safety architecture pattern and its main safety elements, illustrated 
by means of enumerated rhombus symbols. These elements constitute the main building blocks 
to later define the specific safety architectural patterns for each DL usage level. 

The goal of the reference safety architecture pattern is to show the main elements proposed in 
this report and an example on how they can be integrated together to build a safety critical system. 
This reference architecture shall be later tailored and adapted to each use case, as it is done in 
Section 5 with the adoption of the safety patterns to the railway case-study. Hence, the reference 
architecture is meant to be used as a baseline to define different variants according to particular 
needs on case-studies. 

 
Figure 4: Reference safety architecture pattern for safe AI-based systems 

In summary, the reference architecture pattern of Figure 4 integrates the following four safety 
mechanisms on it: 

1. Diverse redundancy within the AI/ML constituent (Subsection 3.1). Note that redundancy and 
diversity are commonly also applied to traditional systems, however we consider such part 
out of the scope of this document, and we just focus on its application to the DL component. 

2. Diagnostic and monitoring mechanisms (Subsection 3.2). A hierarchical diagnostic and 
monitoring concept consisting of three levels is defined. 

3. Supervision function (Subsection 3.3). Its main goal is to check the appropriateness of the 
environment and to supervise the output of the ML constituent to identify unsafe situations 
and stablish the limits for safe operation, providing a safe envelope. 

All in all, the reference safety architecture pattern shown in Figure 4, consists of two main 
subsystems: 

• AI-based subsystem. Comprises all the AI-related elements in the architecture. 
o AI/ML constituent. Consists of the ML model as well as the corresponding data pre-

processing and post-processing components. 



 

19 

Annex A: Railway Safety Concept 
Version 1.0 

o Decision Function. The AI/ML constituent implements a diverse redundancy scheme 
(see Section 3.1) to enhance the performance of the DL model and increase the ration 
of AI subsystem errors that can be detected and controlled. Within this diverse 
redundancy scheme, the Decision Function, takes the output from all the redundant 
nodes and provides a single prediction. Then, according to the DL usage level, the 
Decision Function might provide a suggestion (e.g., warning message, status 
information) and / or decision (e.g., command on the actuators) to the user and / or 
safety control. 

o Supervision components. Consists of the L1 diagnostic and monitoring (L1DM) 
mechanisms as well as the supervision function. 

The former, comprises the lower-level diagnostics and monitoring in the platform, which 
complements the DL model diverse redundancy for detecting runtime errors or model 
insufficiencies and anomalies on the AI/ML constituent (see Section 3.2.1). To this end, 
the L1DM mechanisms gathers information from the AI/ML constituent (i.e., inputs, pre-
processing, DL model, post-processing, decision function) and provides information on 
the detected errors to the decision function and L2 diagnostics and monitoring (L2DM) 
mechanism. 

The latter, bounds the AI/ML constituent operations to work within a predefined safety 
envelope (see Section 3.3). To this end, it collects information from the inputs/outputs 
of the AI/ML constituent and provides a set of constraints or limits to the decision 
function. 

• Traditional subsystem. Comprises the components usually present in a traditional (non-AI 
based) system (see Section 3.4). 
o Non-AI subsystem. Depending on the DL usage level, the non-AI subsystem can have 

different usage, it can either be the main safety element, or a fallback element that is 
activated whenever the supervisor identifies an unsafe operation of the AI-based 
subsystem. 

o L2 diagnostic and monitoring mechanisms. Comprises platform-level diagnostic and 
monitoring following traditional functional safety techniques (see Section 3.2.2). To this 
end, it gathers information from all the components within the traditional subsystem 
(i.e., inputs, non-AI subsystem, safety control) as well as the L1DM mechanism (i.e., L1 
– Error detection) and provides information on the detected errors (L2 – Error detection) 
to the safety control and L3 diagnostics and monitoring (L3DM) mechanism. Considering 
the error information from lower-level diagnostic and monitoring mechanisms (i.e., L0 
and L1), the L2DM is responsible of triggering the required reaction for error handling 
(e.g., take the system to a safe state). 

o Safety control. Collects the output information from the AI/ML constituent and the non-
AI subsystem as well as safety related information from the diagnostic and monitoring 
components (i.e., L1DM, L2DM) and the supervision function (i.e., safe limits) to 
implement the system control and actuation logic (i.e., command system output(s) or 
take the system to a safe state). For instance, if the non-AI subsystem implements a 
fallback function for the ML constituent, in the event that a functional safety problem is 
detected in the AI-subsystem, the safety control might decide to discard the 
suggestion/decision from the decision function and operate according to the fallback 
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function. The safety control might also limit the output(s) to meet with the safe limits 
defined in the supervision function or even take the system to a safe state. 

• L3 Diagnostic and monitoring mechanisms (L3DM). Following traditional functional safety 
practices some diagnostic may be implemented on an external device such as an external 
watchdog or microcontroller. Considering the error information from the L2DM mechanisms 
(i.e., L2 – Error detection), the L3DM mechanism is responsible of triggering the required 
reaction for error handling (e.g., take the system to a safe state). 

Elements with no colouring in the reference safety architecture pattern (Figure 4) are out of the 
scope of the project, since they are not directly related to safety techniques and measures for the 
AI execution and may vary depending on the system application area. 

3.1. Diverse redundancy 
The goal of redundancy and diversity on the DL model is to enhance the performance and to 
increase the portion of AI subsystem errors that can be detected and controlled. In addition, 
redundancy can also improve system availability, by maintaining system operation even when one 
instance of the redundant architecture is failing. Redundancy shall be complemented with diversity 
in order to deal with systematic faults and model insufficiencies. When used for improved 
diagnostics, diverse redundancy can be considered as a particular technique of the AI subsystem 
diagnostic mechanisms of Subsection 3.2.1. 

We base on the following three types of diverse redundancy that can be combined to build the 
Diverse Redundancy Schemes (DRS) proposed in Table 2 with varying degrees of diagnostic 
coverage: 

• Inference Platform diversity (identified as “I” in Table 2) – different platform resources for 
running the inference. Inference Platform diversity can be applied to different platform 
elements. These are some example approaches: 
o Inputs (e.g., diverse cameras, sensors, input image flips…) 
o Processing resources (accelerators, CPUs…) 
o Temporal (e.g., different time instants) 
o Data precision (e.g., float vs double, short vs int vs long int) 
o Data rounding (e.g., for floating point data) 
o Sources for potential random parameters 

• DL model Development diversity (identified as “D” in Table 2): different techniques or 
elements for developing the DL model. DL model development diversity can be applied to 
different development phases and elements. These are some example approaches: 
o Model Architecture 
o Execution framework (e.g., TF lite, pytorch, darknet…) 
o Hyperparameters 
o Prediction criteria (e.g., confidence threshold, bounding box overlapping threshold, 

single vs multi class prediction…) 
o Training datasets 
o Training process (including convergence thresholds, weighting predictions…) 
o Training platform 
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• Concept diversity (identified as “C” in Table 2): different problem formulation with same final 
goal. The problem formulation may vary depending on the application are. These are some 
example approaches: 
o Object detection vs object part detection 
o Object detection vs obstacle free path detection 

More specific application examples of each DRS are later proposed for each of the safety patterns 
(refer to Sections5.1, 5.2, and5.3). 

Table 2: Diverse Redundancy Schemes 

ID 
Type of Diverse redundancy: 

Concept – Development – Inference 

Diagnostic 
Coverage 

Description 

DRS_1 

 

Low 

Single DL model development, replicated in the 
inference platform without diversity (each 
replica uses same SW stack and processing 
elements (e.g., GPU)). Allows addressing 
traditional FUSA risk factors. 

DRS_2 

 

Low to 
medium 

Single DL model development, replicated in the 
inference platform with diversity (each replica 
uses different resources (different inputs, 
processing elements (e.g., GPU and CPU), 
etc.)). Allows addressing traditional FUSA risk 
factors. 

DRS_3 

 

Low to 
medium 

Development of two different DL models based 
on same concept (e.g., object detection) with 
diversity in the model development (training 
process, training data, model architecture, AI 
framework, etc.). Inference without diversity 
(each replica uses same SW stack and 
processing elements (e.g., GPU)). Allows 
addressing AI & traditional FUSA risk factors as 
well as AI performance insufficiencies. 

DRS_4 

 

Medium to 
high 

Combination of DRS_2 and DRS_3 with DL 
model Development diversity and Inference 
Platform diversity. Allows addressing AI & 
traditional FUSA risk factors as well as AI 
performance insufficiencies. 

DRS_5 

 

Medium to 
high 

Development of two different DL models based 
on different concepts (e.g., one for object 
detection and the other for obstacle free path 
detection). This requires DL model 
Development diversity. Inference without 
diversity (each replica uses same SW stack and 
processing elements (e.g., GPU)). Allows 
addressing AI & traditional FUSA risk factors as 
well as AI performance insufficiencies. 
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ID 
Type of Diverse redundancy: 

Concept – Development – Inference 

Diagnostic 
Coverage 

Description 

DRS_6 

 

High 

Combination of DRS_4 and DRS_5 with concept 
diversity, DL model Development diversity and 
Inference Platform diversity. Allows addressing 
AI & traditional FUSA risk factors as well as AI 
performance insufficiencies. 

 

Note that, differently to usual control algorithms where diverse redundancy is applied preserving 
bit-level precision (e.g., dual-core lockstep), some diversity schemes lead naturally only to 
semantic-level precision, meaning that we expect the same result in semantic terms1 (e.g., same 
object detection in the same location), but results are very likely to be different at bit level (e.g., 
different confidence values, not fully identical bounding boxes, etc.). Therefore, mechanisms to 
produce the final (combined) prediction or report an error are needed, such as voting, averaging, 
and non-maximum suppression (NMS). 

3.2. Diagnostic and Monitoring mechanisms 
The reference safety architecture pattern is based on the hierarchical diagnostics and monitoring 
approach of Figure 5. This strategy seeks to decouple AI specific techniques from traditional 
functional safety approaches and to ease, in this way, the later tailoring to incremental safety 
patterns. 

 
Figure 5: Hierarchical diagnostics and monitoring approach 

 

 

1 Two results are regarded as identical in semantic terms when, despite not being identical at bit level, both of them 
can be considered correct, and the impact of using one or another at system level is negligible or, simply, 
undistinguishable. 
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The proposed approach is based on four diagnostic levels (L0 to L3) to incrementally cover the 
errors on the following subsystems: 

1. AI-based subsystem level diagnostics (L0 – L1): The redundancy and diversity (L0) described in 
previous subsection is complemented by additional diagnostic and monitoring mechanisms 
(L1) with the purpose of detecting runtime errors or model insufficiencies and anomalies on 
the AI subsystem and the elements required for its execution (e.g., accelerators, AI 
frameworks, etc.). Note that L1 diagnostics and monitoring mechanisms may, in turn, include 
AI components (e.g., to assess suitability of the data used for inference, or monitoring 
abnormal results from specific DNN layers). 

2. Platform level diagnostics (L2): This includes L0 – L1 diagnostics and additional L2 diagnostics 
to detect runtime errors on additional platform HW and SW components following traditional 
functional safety practices and diagnostics techniques (e.g., memory self-tests, freedom from 
interference at platform level…). 

3. External diagnostics (L3): Following traditional functional safety practices some diagnostic 
may be implemented on an external device such as an external watchdog or microcontroller. 

Each of these diagnostic and monitoring levels is further described in next subsections, except L0 
that has been already described in Subsection 3.1. 

3.2.1. L1DM mechanisms – AI subsystem 

As stated above, L1 diagnostic and monitoring mechanisms aim to diagnose the AI subsystem, and 
the platform resources required for its execution. All in all, the L1 mechanisms have the following 
purpose: 

• Diagnose the AI model to detect runtime errors or model insufficiencies and anomalies. 
• Diagnose the elements that participate in AI inference: complex HW and SW stack, black / 

grey box diagnostics. 
• Monitor the use of resources at the AI subsystem level to guarantee freedom from 

interference at platform level (L2) 

These mechanisms can be applied on different elements of the AI-subsystem. Bellow we present 
different L1 diagnostic mechanisms that may be applied to the different AI-subsystem elements. 

• Inputs: diagnostic mechanisms for input correctness, data quality, data redundancy, 
temporal consistency… 
o Anomaly detectors 
o Input image comparison (e.g., consecutive input frames, input from redundant 

cameras). 

• Model: diagnostic and monitoring mechanisms for execution errors, timing, program 
sequence, neuron activation patterns… 
o Generation of execution signatures. 

• Outputs: diagnostic mechanisms for outputs, plausibility checks, input-output correlation, 
temporal consistency… 
o Output trajectory prediction 

• Resource usage: monitoring mechanisms for resource usage (e.g., CPU/GPU usage, memory 
usage) 
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The following subsections provide further details on the implementation of the techniques for L1 
diagnostic and monitoring. 

3.2.2. L2DM mechanisms – Traditional subsystem 

L2 diagnostic and monitoring mechanisms aim to detect runtime errors on additional platform 
hardware and software components following traditional functional safety practices and 
diagnostics techniques required by standards (see Section 3.2.2.1). However, these standards do 
not reflect the increasing complexity of emerging systems, therefore, L2DM mechanisms shall 
integrate advanced diagnostic approaches for high-performance platforms as well as the for the 
software applications that run on them (covered in Section 3.2.2.2). 

3.2.2.1. Traditional functional safety diagnostics 

Traditional functional safety standards such as IEC 61508, ISO 26262 and EN 5012x define the faults 
or failures that shall be considered to reach different degrees of Diagnostic Coverage (DC) (i.e., 
Low (60%), Medium (90%) or High (99%)) for the different system components and proposes the 
applicable diagnostic techniques for each: electromechanical devices, discrete hardware, bus, 
CPU, memories, clock, communications, sensors, final elements, etc.. The defined diagnostic 
strategy will comprise among others, startup diagnostics, periodic diagnostics, as well as forced 
checks of the safety function. On the software side, functional safety standards propose 
techniques and measures to prevent systematic failures on the different stages of the 
development life cycle (e.g., requirements specification, design and development, testing and 
integration…). For each technique or measure, the standard gives a recommendation (highly 
recommended (HR), recommended (R), not recommended (NR)) according to the target safety 
integrity level. Additionally, when the software implements safety functions of different safety 
integrity levels, it shall be demonstrated either that independence of execution is achieved both 
in the spatial and temporal domains, or that any violation of independence is controlled. These 
techniques have been widely applied over the years and are considered state-of-the-art so this 
report, and the SAFEXPLAIN project, do not focus on their application. 

However, these standards do not reflect the increasing complexity of emerging systems, neither 
at hardware architectural design, nor for the software applications that run on them. Except for 
ISO 26262 that included a new part 11 with the topic of multicore processors in its second edition, 
the mechanisms described in functional safety standards focus on single-core architectures, with 
buses (no complex interconnects), simple memory hierarchies and no accelerators as those 
required to achieve the required performance in ML inference. For instance, the mechanisms 
defined in standards to achieve temporal independence do not generally contemplate the 
concurrent access to shared resources as they were not originally defined for high-performance 
embedded architectures with parallel access to such resources. Therefore, L2 diagnostics shall 
integrate traditional functional safety diagnostic mechanisms (out of the scope of this document) 
together with advanced diagnostic approaches for high-performance platforms explained in next 
subsections. 

3.2.2.2. Techniques for multicore / high-performance platforms 

Most HPEC platforms integrate multicore processors together with accelerators for ML inference, 
as it is the case of the NVIDIA Jetson Orin platform introduced in Section 1.1.2. ISO 26262-11 
section dedicated to multicores, warns about the fact that multicores are subject to timing faults 
and it highlights the importance of independence of execution by dedicated analyses and 
countermeasures such as, the specification of timing constraints and detection of timing 
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requirement violations, doing an upper estimation of resources, evaluating the influence of 
hardware and software interactions and evaluating timing and execution failure modes. Similarly, 
the Certification Authorities Software Team (CAST), an international group of certification and 
regulatory authority representatives from the Federal Aviation Administration (FAA), provide 
guidance for ensuring safe implementation of multicore processing in the avionics domain [4] [9]. 
Next table summarizes the objectives of CAST-32A and AMC 20-193: 

Table 3: Summary of CAST-32A and AMC 20-193 Objectives [9] 

 ID Description 

So
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e 
P
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n

n
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PL_1 Include MCP specific planning details in the SW plan doc. Specific processor, 
number of active cores, software architecture, dynamic software features, 
whether it hosts an IMA-like system (with applications from different systems) or 
not, Robust Partitioning supported or not, methods and tools for development and 
verification. 

P
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n
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RU_1 Determine configuration settings that enable to satisfy the functional, 
performance and timing requirements. 

RU_2 Critical configuration settings shall be static and protected against unintended 
modifications. 

PL_2 Include a high-level description of shared resource usage and active dynamic 
hardware features in the hardware and software planning documents. Intended 
shared resource allocation and verification to prevent resource capabilities from 
being exceeded. 

In
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RU_3 Identify interference channels and verify the chosen means of mitigation. 
Interferences caused by shared memory, shared cache, interconnect, shared I/O 
or any other shared resource. 

RU_4 Identify available resources in the intended final configuration, allocate them to 
the applications and verify that the demands do not exceed the available 
resources (under worst-case scenarios). 

So
ft

w
ar

e 
V

er
if

ic
at

io
n

 

SWV_1 Verify that all software components function correctly and have sufficient time 
when all the software is executing in the intended final configuration. Depends 
on the platform classification: 

1. Platforms with Robust Partitioning: SW verification and WCET analysis can be 
done separately for each SW app. 

2. All Other Platforms: If interference is mitigated for any software component or 
set of requirements, the verification of such components can be done separately. 
Otherwise, verification and WCET analysis shall be done with all software 
components executing together. 

The objectives in Table 3 can be summarized into the following four high level principles: 
1. Determining the final configuration. The designer shall determine which is the intended 

_final configuration that will enable to satisfy system requirements (PL_1, RU 1) and this 
configuration shall be protected against modification at runtime (RU 2). 
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2. Managing interference channels. It is required to identify interference channels in the 
intended final configuration and to define the means to either avoid interference by design 
or upper-bound it so that timing deadlines are not exceeded (RU 3). Upper-bounding 
interference involves analysing the use of shared resources and designing the means to 
control contention (PL 2). 

3. Verifying the use of shared resources. Resource usage and data and control flows among 
cores shall be verified by guaranteeing that the software does not exceed the use of 
available resources even in worst-case scenarios (RU 4, SWV 1 and SWV 2). 

4. Error Management. The system shall include features for multicore specific error detection 
and handling. 

In order to achieve these four principles, techniques and measures shall be defined to ensure 
freedom from interference at platform level, with the support of the following L2 diagnostic and 
monitoring (L2DM) mechanisms: 

• L2DM Configuration check: The configuration shall be defined and verified during system 
development process. Then, at runtime, L2DM checks that this configuration is kept (e.g., by 
a CRC check). Besides performance and functional correctness, also Freedom from 
interference can be highly dependent on this configuration: 
o Regarding spatial independence, most platforms usually provide memory management 

support allowing to set memory regions with specific permissions, as well as hardware 
support, such as Memory Management Units (MMUs) allowing to enforce those 
permissions. Therefore, appropriate operating system support will allow realizing spatial 
partitioning. 

o Regarding temporal independence, the platform could also provide explicit support to 
realize it. In particular, we aim at bounding the maximum interference that a software 
component might cause on the execution of another, building on the existing platform 
support, which provides both, means to achieve some degree of partitioning (e.g., cache 
partitioning), as well as means to measure interference whenever partitioning is not 
enough. When robust partitioning cannot be achieved by the configuration, interference 
channels and shared resources shall be managed as required by CAST-32A / AMC 20-
193. This is covered in next point. 

• L2DM Interference mitigation and control: This L2DM mechanism addresses both “managing 
interference channels” and “verifying use of shared resources” principles from CAST-32A / 
AMC 20-193. L2DM is the responsible to check that all critical platform SW components meet 
with their deadline and if this is the case, it refreshes an external watchdog (L3). In this way, 
if any critical software component violates a timing deadline or if the platform is not able to 
run L2 diagnostics, the L3 external device will be able to detect it. To this end, it is required 
that L2 knows the deadline of each critical software component, which shall be determined 
at design time by WCET analysis. The timing analysis strategy adopted in SAFEXPLAIN, has 
specific implications on L2DM. Two main scenarios have been considered: 
o The WCET of each component takes into account worst possible interference for a given 

platform configuration. If at design time it is verified that under worst-case interference 
the WCET of the critical software component is below its deadline, then at runtime the 
L2DM is only checking that this condition is always preserved at runtime. Next Figure 6 
represents this, assuming there is a critical software component ‘A’, at design time the 
WCETA is determined for a given design time configuration (CONFD). Then at runtime, 
L2DM checks that the actual platform configuration (CONFR) is consistent with the 
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design time configuration and that execution time of SW component A (ETA) is always 
below its deadline. This approach applies to all critical components in the platform. If all 
of them meet the deadline and all other traditional functional safety diagnostics of 
L2DM are passed, then L2DM refreshes an external watchdog that can be part of L3DM. 

 
Figure 6: WCET of each component considers worst possible interference for a given platform configuration. 

Following this approach, the resulting WCET estimates are usually over pessimistic, as 
the worst possible interference in such complex platform architectures can be very high. 
This can be reduced either by optimizing the configuration so that interferences are 
minimized or by the second approach explained below. 

o The WCET of each component depends on applications running concurrently for a given 
platform configuration and is therefore only valid for a specific setup or scenario. This 
WCET estimation assumes an upper bound of the interference that the critical 
component can support when it is being executed. This is depicted in Figure 7. In this 
case, at design time, apart from the design time configuration (CONFD) and the WCET of 
component A with limited interference (WCETA_Bounded), the interference limit of 
contenders used to estimate that WCET shall be determined too (InterferenceLimitA). At 
runtime, L2DM follows the same approach as in the previous case and it additionally 
checks that contenders (e.g., SW component ‘B’ and ‘C’ on the right side of Figure 7) do 
not exceed the defined InterferenceLimitA. To check this at runtime, different strategies 
can be used, depending on the approach used to obtain the WCET estimate at design 
time. For instance, the number of active contenders can be monitored, or the specific 
usage (e.g., RUB and RUC in Figure 7) of given shared resources (e.g., caches, memory, 
interconnects…). 

 
Figure 7: WCET of each component depends on applications running concurrently for a given platform configuration (valid only for 

a specific setup or scenario). 

• L2DM Health Management: L2DM includes an error management module to react to 
different platform level errors. To this end, L2DM collects the results from L0 and L1 
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diagnostic and monitoring mechanisms. Whenever L0, L1 or L2 diagnostics and monitoring 
detects an error in the platform, either by startup diagnostic tests or periodic checks, L2DM 
is the responsible of triggering the required reaction. This will depend on the specific error 
and the application itself. For instance, in a TMR architecture if L0 determines that one of 
the redundant instances is providing incorrect inputs, the system could keep working for a 
limited time in a degraded mode with the other 2 active redundant instances. Similarly, if 
the interference mitigation and control of L2DM determines that a contender is using a 
shared resource more than planned in the design, the action could be to force it to stop so 
that it does not cause uncontrolled interferences to the critical component. In many other 
cases, the reaction could be to move the system to the safe state. In addition, the health 
monitoring in L2DM shall provide an interface with L3DM (e.g., refreshing a watchdog), in 
such a way that if there is a problem in the platform that affects the correct execution of 
L2DM, the external L3DM will be able to detect it. 

3.2.3. L3 mechanisms – External 

L3 diagnostics and monitoring mechanisms comprise traditional external safety mechanisms 
required by functional safety standards IEC 61508 / ISO 26262 / EN 5012x (e.g., external watchdog, 
time and power monitoring, external monitoring unit…). Moreover, the L3 diagnostics and 
monitoring implements error management for the lower-level diagnostic and monitoring 
mechanisms (i.e., L0, L1 and L2 mechanisms). 

The definition and implementation of traditional functional safety mechanisms is out of the scope 
of the project and will therefore not be covered within this safety concept. 

3.3. Supervision function 
The supervision function applies elements of control theory to minimally bound AI operations. All 
in all, it shall control that the AI system works within a predefined safety envelope. To this end, 
the supervisor function shall determine a safe subset of the action space or safe envelope (prior 
to the execution or at runtime) and compute a set of constraints or limits. The supervision function 
comprises techniques such as: 

• A non-AI safety function that computes an acceptable range of outputs for a given input 
and limits the intelligent control output (this approach might not be appropriate for 
systems with dynamics). 

• Defining minimal bounds though control theory methods (e.g., barrier functions 
approaches). 

• Checking functions such as metrological self-check or self-validation. 

In addition, the supervision function implements explainability techniques to provide 
understanding on the DL model operation as well as on the decisions, recommendations, or 
predictions it provides. 

3.4. Traditional subsystem 
By traditional subsystem we refer to a subsystem that does not include any ML model according 
to the system decomposition of Figure 1. In the scope of the reference architecture, this traditional 
subsystem can be either: 
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• Functions complementary to the ML constituent, required to perform the function 
required by it. 

• Fallback subsystem: Following known proper functional safety precautions, a safe back-up 
function to the ML component might be implemented within the non-AI subsystem. This 
back-up decision system will take over the system in the event that a functional safety 
problem is detected, ensuring no harm is done by the AI system. The implementation of 
such a fallback function is use-case dependent and is therefore out of the scope of the 
project. 
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Part III – Railway case study 
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4. System concept specification 
This section presents the railway domain object detector controller. It describes the Automatic 
Train Operation, and its architecture, relevant subsystems for the case-study and safety integrity 
level to achieve. 

4.1. System description 
The railway use-case comprises an Automatic Train Operation (ATO) system that detects obstacles 
in the railway and estimates their distance by the assistance of cameras (i.e., right / left cameras). 
According to the detected obstacle (i.e., critical / non-critical), the distance from it and its location 
(in the track / outside the track), the system responds accordingly (i.e., warn the driver, activate 
service brake, activate emergency brake). All in all, the system implements a safety function(s) to 
minimize the risk of the train running over or damaging persons in the track, colliding with 
obstacles in the track, or damaging passengers on the train itself. 

Following the incremental strategy for the adoption of AI that has been defined in Section 2.2, the 
following situations have been considered, where the AI system plays different roles within the 
ATO system: 

a) The simplest case where the AI system is not part of the safety function (control system). 
The AI system detects an obstacle (another train, person, car…) in the tracks and warns the 
driver of the potential danger. The driver must act safely activating the brakes if necessary. 
He is the only safety responsible (see Figure 8). 

b) The second case is where the AI system participates in the safety chain. But this 
participation has a low safety integrity level. The AI system detects an obstacle in line of 
collision, and it warns the train driver of the potential hazard. Meanwhile, the AI system 
activates the service brake reducing the speed of the train. Service brake corresponds to 
SIL2 safety function. The alerted driver can activate the emergency brake, SIL 4 safety 
integrity level, or temporarily deactivate the service brake (SIL 2) (see Figure 9). 

c) The third case is where the AI system is part of the safety chain. The AI system detects an 
obstacle in line of collision and warns the control centre. The AI system activates the service 
brake (SIL 2) which starts to reduce the speed. Besides, it calculates the braking distance 
with the current braking capacity, activating the emergency brake (SIL 4) when the collision 
distance is below a threshold. That is, avoiding the collision, but only activating it if the 
hazard is not resolved yet (see Figure 10). 

 

 
Figure 8: AI system for warnings 

 
Figure 9: AI system participating 
with a low SIL (e.g. SIL 1 / SIL 2) 

 
Figure 10: AI system being part of 

the safety chain and actuating with 
a high SIL (e.g., SIL 3 / SIL 4). 
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In the table below (see Table 4) the train operation basic functions of the three cases have been 
classified considering their grade of automation, usage level and AI technology class. 

Table 4: GoA levels of the system 

Grades and type of 
automation 

Basic functions of train 
operation 

Use case AI technology 
class & AI 

Application and 
Usage Level 
defined by 

ISO/IEC TR 5469 

Applicable 
SP 

Grades of 
Automation 

Type of train 
operation 

Supervise 
track 

(prevent 
collision) 

Driving 
(control 

acceleration 
and braking) 

Description 

GoA 1 Non 
automated 
train 
operation 
(NTO) 

Driver Driver The IA algorithm is not 
part of the safety 
function. 

Detects an obstacle in 
the tracks and warns the 
driver. 

The driver (safety 
responsible) must act 
safely (activate brakes). 

Class II 

Usage Level D 

SP1 

GoA 2 Semi-
automated 
train 
operation 

Driver Automatic The IA algorithm 
participates in the safety 
chain (at a low-level 
safety integrity). 

Detects an obstacle in 
line of collision and 
warns the driver.  

Activates the service 
brake (SIL 2).  

The alerted driver (safety 
responsible) can activate 
the emergency brake (SIL 
4) or deactivate the 
service brake (SIL 2). 

Class II 

Usage Level C 

SP2 

GoA 3 Driverless 
train 
operation 

Automatic Automatic The IA algorithm is part 
of the safety chain. 

Detects an obstacle in 
line of collision and 
warns the control centre 
(only for GoA 3). 

Activates the service 
brake (SIL 2) and 
calculates the braking 
distance with the current 
braking capacity, 
activating the emergency 
brake (SIL 4) when the 
collision distance is 
below a threshold. 

Class III (Class II if 
explainability 
techniques are 
applied) 

Usage Level A1 

SP3 

GoA 4 Unattended 
train 
operation 
(UTO) 

Automatic Automatic 
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Figure 11 shows the high-level architecture of the ATO system, which consists of the following 
main components: 

• Object Detection: Detects objects2 in the two images given by the left and right cameras and 
identifies the train tracks. 

• Distance Estimation: Using stereo vision, distance is estimated for all the objects detected in 
the two images given by the left and right cameras. 

• Object classification and positioning: classifies the objects detected by the ‘object and track 
detection’ module according to their criticality and their position, discarding non-critical 
objects and objects outside the track. Then, the depth estimated by the ‘distance estimation’ 
module is compared against the defined threshold(s) and according to the grade and type of 
automation of the train, different actions are taken: 
o GoA 1: warn the driver if an obstacle is detected on the tracks. 

o GoA 2: warn the driver if an obstacle is detected on the tracks and activate the service 
brake (SIL 2). 

o GoA 3 and GoA 4: warn the driver if an obstacle is detected on the tracks and activate 
the service brake (SIL 2). Activating the emergency brake (SIL 4) when the collision 
distance is below a predefined threshold. 

 
Figure 11: High-level SW architecture of the system 

Beside the AI-based sub-system, a traditional train control sub-system shall implement the 
algorithm that based on the driver commands controls the train operation (i.e., set train speed, 
activate/deactivate service brake, activate/deactivate emergency brake). In the following 
subsections, this is referred as the train operation control sub-systems. However, given that this is 
a traditional software component, its safety implications are considered to be out of the scope of 
the project.  

 

 

2 The objects to be detected shall be defined in the ODD. 
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5. Safety Patterns 
Following the incremental strategy described in Section2.2, this section presents the mapping of 
the railway use-case (see Figure 11) to the different DL usages levels, based on the grade and type 
of automation of the system (see Table 4). In particular, three Safety Patterns are defined: 

• Safety Pattern 1 (SP1) (for DL usage level D / EASA Level 1). 
• Safety Pattern 2 (SP2) (for DL usage level C / EASA Level 2). 
• Safety Pattern 3 (SP3) (for DL usage level A1 / EASA Level 3). 

The following subsections present, for each Safety Patterns, the proposed system architecture and 
safety techniques, as well as its application on the project target platform (i.e., NVIDIA Orin). The 
description of the Safety Patterns follows an incremental approach; therefore, each Safety Pattern 
comprises also the safety techniques of the previous one. 

5.1. Safety Pattern 1 (SP1) 
On this safety pattern, the AI subsystem aids the driver or person responsible of the safety of the 
system. However, the AI subsystem is not part of the safety function. 

On the following subsections we present the system architecture for SP1 as well as the 
corresponding diagnostic and monitoring mechanisms. 

5.1.1. System Architecture 

Figure 12 shows the mapping of the GoA1 non automated train operation (NTO) railway use-case 
presented in Section 4 to the Safety Pattern 1. This pattern assumes the integration of safety 
related software (i.e., train operation control, safety diagnostics) and non-safety related software 
(i.e., object and track detection, distance estimation, object classification and positioning, 
supervision function) within the same SoC on a High-Performance Computing platform. The main 
components of the reference safety architecture are applied as follows in SP1: 

• Diverse Redundancy: In this safety pattern, the safety function is implemented by the train 
operation control non-AI subsystem, therefore, the AI/ML constituent, running the object 
and tract detection, has no safety implications. Given that, diverse redundancy is not 
required in the AI/ML constituent. 

• Diagnostic and monitoring mechanisms: Even if the AI/ML constituent is not safety related, 
in SP1 the main challenge rests on the integration of both the safety software together with 
the software involved in the inference of the DL model and to guarantee freedom from 
interference among them. Therefore, L1DM is the responsible for monitoring resource usage 
and timing of the AI/ML constituent, and L2DM / L3DM to apply the required diagnostic 
mechanisms on the train operation control safety subsystem and guarantee freedom from 
interference. The application of the diagnostic and monitoring strategy in SP1 is further 
elaborated in Subsection 5.1.2. 

• Supervision function: the supervisor has no safety implications, and its purpose is to improve 
the explainability of the AI-based subsystem. 

• Traditional subsystem: in SP1 the safety function is performed by the train operation control 
traditional SW component. Moreover, the traditional subsystem comprises non-safety 
related components that complement the object and track detection AI component (i.e., 
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distance estimation and object classification and positioning). No fallback subsystem is 
considered. 

 
Figure 12: Non automated train operation (NTO) – Conceptual System Architecture (Safety Pattern 1) 

5.1.2. Diagnostic and monitoring mechanisms 

Next subsections explain the application of the hierarchical diagnostics and monitoring approach 
of Section 3.2 to SP1 on the SAFEXPLAIN platform. 

5.1.2.1. L1DM – SAFEXPLAIN PLATFORM 

As the AI subsystem is not safety related, there are no specific diagnostics for it. However, the L1 
monitoring mechanisms are necessary to guarantee the required freedom from interference at 
platform level. In this particular case, the monitoring of the use of shared resources among the 
safety and non-safety software components (i.e., memory, caches, interconnect) is of special 
interest. In SP1, L1DM will collect such events for the non-safety AI subsystem and provide the 
information to the L2DM. 

5.1.2.2. L2DM  – SAFEXPLAIN PLATFORM 

The L2DM mechanism implements traditional functional safety techniques and measures 
according to the recommendations on functional safety standards. These diagnostics comprise 
start-up as well as periodic checks that can be applied to the different subsystems that participate 
in the execution of the safety function (e.g., sensors, CPU, memories, clock, electromechanical 
devices, etc.). To this end, NVIDIA provides support documentation as well as libraries for the 
implementation of safety diagnostics. 

In addition, L2DM is responsible for checking system configuration and providing the mechanisms 
for interference mitigation and control. As introduced in Section 1.1.2, the NVIDIA Orin platform 
provides a number of diverse processing resources (CCPLEX core clusters, SPE,  PUs…) with 
multiple configuration options. The allocation of such resources to software components and their 
configuration plays a crucial role in the mitigation of interference required by SP1. Figure 13 and 
Table 5 present different resources and configuration options that could be adopted for SP1. 
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Figure 13: SP1 to NVIDIA Orin resource allocation and configuration options 

Table 5: SP1 to NVIDIA Orin resource allocation and configuration options 

SP1 Element Safety / non-
safety 

SP1 - A NVIDIA Orin resources and 
configuration 

SP1 - B NVIDIA Orin resources and 
configuration 

SP1 - C NVIDIA Orin resources 
and configuration 

Object and tract 
detection 

Non-safety AI 
based SW 

CCPLEX CPU Cluster (Cortex A78) 

GPU for AI inference 

Memory controller fabric and traffic 
from CPU cluster to GPU 

MMUs for spatial independence 

SAFEXPLAIN SW Stack 

CCPLEX CPU Cluster (Cortex A78) – different 
CPU cluster for safety SW 

GPU for AI inference 

Memory controller fabric and traffic from 
CPU cluster to GPU 

MMUs for spatial independence 

L4 cache partitioning or disabled 

SAFEXPLAIN SW Stack separated from 
safety SW by hypervisor 

CCPLEX CPU Cluster (Cortex 
A78) – different CPU cluster for 
safety SW 

GPU for AI inference 

Memory controller fabric and 
traffic from CPU cluster to GPU 

MMUs for spatial 
independence 

L4 cache partitioning or 
disabled 

SAFEXPLAIN SW Stack 

Supervision 
components 

Non-safety 
traditional or AI 
based SW 

Distance 
estimation 

Non-safety 
traditional SW 

Object 
classification and 
positioning 

Non-safety 
traditional SW 
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Train operation 
control (safety 
function) 

Safety traditional 
SW 

SPE in lockstep configuration 

No sharing of caches with CCPLEX 

MMUs for spatial independence 

Safe RTOS on top of SPEs 

CCPLEX CPU Cluster (Cortex A78) in lockstep 
– different CPU cluster for safety SW 

MMUs for spatial independence 

L4 cache partitioning or disabled 

Safe RTOS on top of hypervisor 

CCPLEX CPU Cluster (Cortex 
A78) in lockstep – different CPU 
cluster for safety SW 

MMUs for spatial 
independence 

L4 cache partitioning or 
disabled 

SAFEXPLAIN SW Stack 

L2DM Safety traditional 
SW 

Pros Highest independence: different 
processing elements, less shared 
resources, different OS and SW 
stack. 

Better performance while preserving 
independence: different CPU clusters with 
partitioning approaches, different OS and 
SW stack. 

Ease of integration, same SW 
stack for all platform elements. 

Cons Limited performance on SPEs. Need of a hypervisor. Less independence, required 
safety guarantees on the 
SAFEXPLAIN SW Stack. 

The three SP1 configuration options rely on mechanisms provided by the platform, which include cache partitioning features in the CCPLEX, as well 
as performance monitoring counters allowing to monitor resource usage in the CCPLEX. So far, the monitoring capabilities of the shared L4 cache 
and the GPU need to be analysed, and freedom from interference in those resources may need to resort to software support such as, for instance, 
task scheduling constraints to avoid interference by construction as much as possible. 

• Independent computing components: The NVIDIA Orin provides abundant computing resources, the safety critical tasks can be allocated 
either to the SPE or to a specific CCPLEX cluster, increasing independence and diversity among safety and non-safety tasks. 

• Spatial independence: As explained before, the NVIDIA Orin platform provides explicit support to enable spatial independence in the form of 
MMUs. Therefore, spatial independence can be achieved by design with usual operating system support. 

• Temporal independence: Safety related tasks needing temporal independence can be executed in the SPE or CCPLEX. The degree of 
independence achieved across tasks running in the same CCPLEX core cluster is relatively high if L3 cache partitioning is used, and even higher 
across tasks running in different core clusters as proposed in SP1 - B and SP1 - C. The remaining interference can be measured with existing 
event monitors so that safety measures can be built at software level if measured interference reaches system or application-specific 
thresholds. 
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• Support for lockstep redundancy: As explained before, core clusters in the CCPLEX and the SPE provide lockstep support. Hence, safety related 

tasks requiring such redundancy can be deployed on the SPE or the CCPLEX by properly configuring the core cluster where they run. 

Following the approach described in Subsection 3.2.2.2, determining the configuration at system design time is crucial to perform the timing analysis 
and interference mitigation and control. Based on the configuration, the timing and interference bounds will be computed and at runtime, L2DM 
will check that the configuration corresponds to that defined at design time (e.g., through a CRC check). 
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5.2. Safety Pattern 2 (SP2) 
In the GoA2 semi-automated train operation case-study, the AI-based subsystem becomes a 
safety-critical component, since the IA object and track detection algorithm participates in the 
safety chain (at a low-level safety integrity). Therefore, in addition to the mechanisms presented 
in SP1 to guarantee the independence among safety and non-safety software components, new 
mechanisms are required to ensure the correct behaviour of the object and track detection AI-
based subsystem. In the semi-automated train operation, if the AI-based subsystem detects an 
obstacle in line of collision it warns the driver and activates the service brake (SIL 2). Therefore, 
the AI-based safety function has a SIL 2 according to IEC 61508. Whereas the train operation 
control will activate the emergency brake (SIL 4) or deactivate the service brake (SIL 2) following 
the driver commands. 

5.2.1. System Architecture 

Figure 14 shows the mapping of the GoA2 semi-automated train operation use-case presented in 
Section 4 to the Safety Pattern 2. This pattern assumes the integration of mixed-criticality 
software, SIL 2 software (i.e., object and track detection, decision function, supervision 
components, distance estimation, object classification and positioning) and SIL 4 software3 (i.e., 
train operation control, L2DM mechanisms) within the same SoC on a High-Performance 
Computing platform. 

 
Figure 14: Semi-automated train operation – Conceptual System Architecture (Safety Pattern 2) 

The specific safety mechanisms that apply and the way of addressing them can vary according to 
the implications of the integrity level of the safety functions. As previously mentioned, on the GoA2 
semi-automated train operation use-case the object and track detection AI-based function 

 

 

3 The safety implications of the traditional SW are considered to be out of the scope of the project. Therefore, this 
safety concept does not analyse how SIL 4 is achieved for the train operation control. However, off-chip redundancy 
would be required to meet with the safety requirements associated to a SIL 4. 
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interacts participates in the control of the service brake, which corresponds to SIL 2 safety 
function. Next Table 6, shows the architectural implications of this integrity level according to IEC 
61508-2: 

Table 6: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements (SP2) 

Pattern HFT 
Safe Failure Fraction (SFF) 

<60% 60% -90% 90% - 99% ≥ 99% 

1oo1(D) 0 Not allowed SIL 1 SIL 2 SIL 3 

2oo2(D) 0 Not allowed SIL 1 SIL 2 SIL 3  

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4 

Therefore, semi-automated train operation requires a high diagnostic coverage (90-99% for SIL 2) 
or increasing the Hardware Fault Tolerance (HFT). However, achieving this HFT > 0 on the same 
chip has several implications on the hardware silicon level (IEC 61508-2 Annex E) which shall be 
guaranteed by the platform manufacturer. As the SAFEXPLAIN platform does not provide such 
guarantees, off-chip redundancy would be required, which is the case of SP3. Whereas the focus 
or SP2 is on HFT = 0 with low to medium diagnostic coverage. 

Taking this into account, the main components of the railway use-case are applied as follows in 
SP2: 

• Diverse Redundancy: On chip redundancy approaches are considered to improve the safe 
failure fraction and diagnostic coverage of the object and track detection function running 
in the AI/ML constituent, further explained in Subsection 5.2.2. 

• Diagnostic and monitoring mechanisms: Same mechanism as in SP1 apply, with additional 
diagnostics for the object and track detection function running in the AI/ML constituent in 
the L1DM further elaborated in Subsection 5.2.3. 

• Supervision function: A supervision function according to the description in the reference 
architecture shall be integrated too. The supervision function does not have any 
particularities for SP2, so the main description in Section 3.3 can be checked. 

• Traditional subsystem: the traditional subsystem comprises the distance estimation and 
object classification and positioning SIL 2 safety functions. Moreover, the train operation 
control SIL 4 is also part of the traditional subsystem. 

5.2.2. Diverse redundancy 

From Table 2, diverse redundancy schemes with low or medium DC can be applied in this safety 
pattern, based on the specific requirements of the application (e.g., DSR_1, DSR_2, DSR_3, DSR_4). 
These techniques have been already explained in Section 3.1. 

For the implementation of diverse redundancy in the SAFEXPLAIN platform, AI tasks often need 
the use of GPUs and/or AI accelerators. Depending on the diverse redundancy scheme, the 
redundant instances can either run redundantly on the GPU or using diverse processing resources 
such as GPU and CPU, or GPU and other AI accelerators (DSR_2). The NVIDIA Orin platform allows 
multiple kernels to run simultaneously. However, the GPU does not provide explicit support for 
diverse redundancy, which needs to be built by external means using the techniques described 
before. Those techniques provide explicit support to manage random hardware faults affecting 
one of the redundant instances. However, faults potentially leading to common cause failures 
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need additional support. If computation can be identical across redundant instances (e.g., some 
results are obtained applying the same operations on identical data), we may need mechanisms 
to enforce the use of separated computing resources and to make those computations not to occur 
simultaneously, as in the case of lockstep cores. We aim at realizing such features, if eventually 
needed, resorting to techniques we already devised in the past and realized in both, NVIDIA and 
Intel GPUs [10] [11]. In any case, we note that, as previous work noted, the GPU in the NVIDIA Orin 
platform includes some unique components, such as the hardware scheduler, which needs to be 
used by redundant tasks. Hence, with the information available of the platform, we have to assume 
that some permanent faults could potentially lead to identical errors for redundant kernels, and 
hence, they could not be directly detected with the solutions described here. In general, such type 
of errors should be managed at system level by, for instance, deploying diverse object detection 
mechanisms (e.g., based on multiple independent cameras, or on other sensors such as radars and 
LIDARs). 

5.2.3. Diagnostic and monitoring mechanisms 

Next subsections explain the application of the hierarchical diagnostics and monitoring approach 
of Section 3.2 to the GoA2 semi-automated train operation system to the SP2 on the SAFEXPLAIN 
platform. 

5.2.3.1. L1DM – SAFEXPLAIN PLATFORM 

L1DM diagnostics mechanisms from Section 3.2.1 can be selected and evaluated to reach the 
required diagnostic coverage for SP2. 

To reduce common cause failures among redundant instances in the AI/ML constituent, their 
independence shall be guaranteed. Therefore, L1DM will monitor the use of resources and other 
relevant events for each instance of the redundant architecture and share the information with 
L2DM for a platform level monitoring of all system components. 

5.2.3.2. L2DM – SAFEXPLAIN PLATFORM 

Following the incremental approach, L2DM platform level diagnostics shall be applied in the same 
way as for SP1. In this case, the NVIDIA Orin platform resources used for the AI/ML constituent 
become safety relevant too, which would require additional diagnostics with respect to SP1 and 
the most suitable platform configurations shall be adapted too. In addition, since the system 
includes application with different integrity levels (i.e., SIL 2 and SIL 3 software), independence of 
execution shall be guaranteed following the same approach as in SP1. Figure 15 presents a 
configuration option that could be adopted for SP2, which could be combined with other solutions 
shown in SP1 (see Figure) as described in Table 7. 
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Figure 15: SP2 to NVIDIA Orin resource allocation and configuration options 

Table 7: SP2 to NVIDIA Orin resource allocation and configuration options 

SP2 Element Safety / non-safety SP2 - A NVIDIA Orin resources and configuration 

Object and track 
detection 

AI based SIL 2 SW 

Two instances, each in one separate CCPLEX CPU Cluster (Cortex A78) 
in lockstep configuration 
GPU for AI inference (depending on the DRS CPU or other computing 
resources could also be used to improve diversity) 
Memory controller fabric and traffic from CPU cluster to GPU 
MMUs for spatial independence 
SAFEXPLAIN SW Stack 

Supervision 
components 

Traditional or AI 
based SIL 2 SW 

Each AI/ML constituent has each own L1DM and optionally each own 
supervisor function (depends on user application). 
Depending on the implementation of the supervision component, it 
may need GPUs for improved performance (e.g., AI based supervision 
function). 
The supervision components can share same CCPLEX CPU Cluster 
(Cortex A78) in lockstep configuration as the AI/ML constituent. 
MMUs for spatial independence 
SAFEXPLAIN SW Stack 

Decision function 

Traditional SIL 2 SW 

These SW components can run on any of the CCPLEX CPU Cluster 
(Cortex A78) in lockstep configuration used for the AI/ML constituent 
with the same configuration, since they have the same integrity level. 

Distance 
estimation 

Object 
classification and 
positioning 

Train operation 
control 

Traditional SIL 4 SW 
CCPLEX CPU Cluster (Cortex A78) or SPE in lockstep configuration. 
MMUs for spatial independence 
L4 cache partitioning or disabled 
SAFEXPLAIN SW Stack or different OS on top of SPEs or hypervisor 

L2DM Traditional SIL 4 SW 
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The following mechanisms are provided by the platform: 

• Independent computing components: In this case, all SIL 2 software can be run in CCPLEX 
CPUs in lockstep mode, using different clusters for the redundant replicas. Other 
accelerators or different computing resources could also be used to improve diversity. 
Moreover, all SIL 3 software can run in an independent computing component such as the 
SPE or an independent CCPEX CPU cluster in in lockstep configuration. 

• Spatial independence: The same support for SP1 addresses the needs of SP2. 
• Temporal independence: The same support for non-AI components on SP1 addresses the 

needs of SP2 to provide temporal independence between components with different 
integrity levels. Regarding AI components, they are expected to use the GPU and/or the AI 
accelerators. Those accelerators have been devised to maximize throughput. However, 
either they do not support concurrency (e.g., AI accelerators) or support it without specific 
temporal independence support (e.g., GPU). Hence, AI tasks needing concurrency will have 
a high degree of temporal isolation if they use different accelerators. If they are deployed on 
the same one (i.e., the GPU) and run simultaneously, timing interference can be arbitrarily 
high making its monitoring and control unfeasible. Therefore, those tasks need to be run 
sequentially if they need the very same accelerator. 

• Support for lockstep redundancy: The same support for non-AI components on SP1 
addresses the needs of SP2. 

5.3. Safety Pattern 3 (SP3) 
Safety pattern 3 follows the same approach as SP2 but it is assumed that the system has a higher 
degree of autonomy and therefore the safety implications of the AI-based subsystem are higher. 
In fact, the GoA 3 driverless train operation and the GoA 4 Unattended Train Operation (UTO) shall 
be mapped to this SP. Therefore, we consider a safety integrity level of SIL 4 according to IEC 61508 
for both, GoA 3 driverless train operation and the GoA 4 UTO applications. 

5.3.1. System Architecture 

In order to achieve higher integrity levels (with respect to SP2), SP3 involves either providing a high 
diagnostic coverage (≥99%) or increasing the  FT as shown in Table 8 according to IEC 61508-2. 

Table 8: Maximum allowable safety integrity level according to IEC-61508-2 for Type B safety related elements (SP3) 

Pattern HFT 
Safe Failure Fraction (SFF) 

<60% 60% -90% 90% - 99% ≥ 99% 

1oo1(D) 0 Not allowed SIL 1 SIL 2 SIL 3 

2oo2(D) 0 Not allowed SIL 1 SIL 2 SIL 3  

1oo2(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

2oo3(D) 1 SIL 1 SIL 2 SIL 3 SIL 4 

1oo3(D) 2 SIL 2 SIL 3 SIL 4 SIL 4 

 owever, achieving a ≥99% DC in complex platforms such as the N IDIA  rin considered in 
SAFEXPLAIN is very challenging and would highly depend on the guarantees provided by the 
platform manufacturer. The complexity of the SW stack and lack of transparency on the platform 
further exacerbate this. Therefore, we assume that for SP3 an HFT > 0 is required. To this end, off-
chip redundancy shall be applied due to the restrictions of IEC 61508-2 Annex E as already 
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mentioned in SP2. Figure 16 shows an example of SP3 implementation based on a TMR 
architecture, depending on the implementation HFT = 1 (2oo3) or HFT = 2 (1oo3) can be achieved. 

 
Figure 16: Driverless train operation and unattended train operation (UTO) – Conceptual System Architecture (Safety Pattern 3) 

If we look at each individual replica of the TRM implementation, each node could be implemented 
following SP2 safety pattern: 

• Diverse Redundancy: In SP3 off-chip redundancy is applied. Therefore, the voter should 
combine the outputs from different computing nodes. Each computing node can have its 
own voter in such a way that if any node detects discrepancies, the safe state could be 
reached (1oo3 – HFT =2). Alternatively, the voting can be done in an external element (e.g., 
external MCU) and apply majority voting, meaning that at least 2 of the 3 redundant nodes 
shall provide the same output (HFT = 1). In order to apply this off-chip redundancy, diverse 
redundancy schemes with medium to high DC can be applied in this safety pattern, based on 
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the specific requirements of the application (e.g., DSR_4, DSR_5, DSR_6). Off-chip 
redundancy can be combined with on chip redundancy approaches to improve the safe 
failure fraction and diagnostic coverage of each redundant node, following the same 
solutions as in SP2. 

• Diagnostic and monitoring mechanisms: In each redundant instance the same solutions as 
for SP2 apply in SP3. L3DM would now monitor the status of all the redundant replicas. 

• Supervision function: Each redundant replica of SP3 can implement a supervisor function 
according to the description in the reference architecture in Section 3.3. 

• Traditional subsystem: the traditional subsystem comprises the distance estimation and 
object classification and positioning SIL 4 safety functions. 
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Acronyms and Abbreviations 

AI Artificial Intelligence SP Safety pattern 

ATO Automatic Train Operation SPE Sensor Processing Engine 

CAST Certification Authorities Software 
Team 

TMR Triple Modular Redundancy 

CBOD Camera Based Object Detection UTO Unattended Train Operation 

CPU Central Processing Unit WCET Worst Case Execution Time 

DC Diagnostic Coverage   

DL Deep Learning   

DMR Dual Modular Redundancy   

DNN Deep Neural Network   

DRS Diverse Redundancy Schemes   

EASA European Aviation Safety Agency   

FAA Federal Aviation Administration   

FSM Functional Safety Management   

FUSA Functional Safety   

GPU Graphics Processing Unit   

HFT Hardware Fault Tolerance   

HPEC High-Performance Embedded 
Computing 

  

IoU Intersection over Union   

L1DM L1 Diagnostics and Monitoring   

L2DM L2 Diagnostics and Monitoring   

L3DM L3 Diagnostics and Monitoring   

ML Machine Learning   

MPSoC Multi-Processor System-on-Chip   

NMS non maximum suppression   

ODD Operational Design Domain   

OS Operating System   

SIL Safety Integrity Level   

SM Stream Multiprocessor   

SoC System on Chip   
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TÜV Rheinland collaboration
Reference software development process

Reference safety architecture

Railway case study

• WP0: KoM meeting

• WP1- Activity 1: AI-FSM

• WP2- Activity 2: Railway safety concept

[Quotation]
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Safety architecture patterns

Need for runtime safety mechanisms to deal with:

- Random and residual systematic faults

- HW / SW platform complexity: integration problems 

(e.g., determinism, interferences on mixed-criticality 

approaches, use of resources…)

- DL model insufficiencies

- Support DL explainability

- …

Reference safety architecture patterns for the 

adoption of DL in safety-critical systems with 
varying safety requirements
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Safety pattern: Generic solutions for commonly recurring design problems with the aim of simplifying 
and standardizing the design process

Common examples:

Single channel with diagnostics (1oo1D)                              Dual channel with diagnostics (2oo2D)                  Triple Module Redundancy (TMR) with majority voter (2oo3)

Extend and combine common patterns from traditional Functional Safety (FUSA) to address the new 
challenges brought by DL-based approaches in complex HW/SW platforms

Safety architecture patterns

Reference safety architecture Evaluation on NVIDIA JETSON AGX 

ORIN & SAFEXPLAIN SW Stack

Safety Pattern 1

Safety Pattern 2

Safety Pattern 3
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1. Diverse redundancy

2. Diagnostic and monitoring mechanisms

3. Supervision function

• Reference safety architecture pattern for safe AI-based systems

Reference safety architecture
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• L0 Diverse Redundancy

Reference safety architecture

It looks like the diversity is only covering different AI/ML constituents 
but make use of the same input (sensor) data. Full diversity would mean 
to also cover the sensor or data input side (sometimes also called 
dissimilarity). E.g. to use different camera systems or even camera and 
lidar data inputs for the diverse AI/ML constituents.

Inference Platform diversity
5

Remark: To the Decision function there may be the need to assign the highest 
SIL as it is the point where the diverse redundancy ends. (single point of failure)

Decision Function
6

• Inference Platform diversity
o Inputs (diverse cameras, sensors, input image flips…)

o Processing resources (accelerators, CPUs…)

o …

• DL model Development diversity 
o Model Architecture

o Execution framework (e.g., TF lite, pytorch,
darknet…)

o Hyperparameters

o Training datasets, process or platform

o …

• Concept diversity: different problem 
formulation with same final goal

o Object detection vs object part detection

o Object detection vs obstacle free path detection

o …
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• L0 Diverse Redundancy

Reference safety architecture
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• Diagnostic and monitoring mechanisms

L0 - L1 – AI-based subsystem level diagnostics: runtime errors or model insufficiencies and anomalies on the 
AI subsystem and the elements required for its execution (e.g., accelerators, AI frameworks, etc.)

L2 – Platform level diagnostics: runtime errors on additional platform HW and SW components following 
traditional functional safety practices and diagnostics techniques (e.g., memory self-tests, freedom from 
interference at platform level…)

L3 – External diagnostics: external watchdog or microcontroller

Based on the Standardized E-Gas Monitoring concept (Automotive domain)

Reference safety architecture
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• Diagnostic and monitoring mechanisms​ – L1DM mechanisms – AI subsystem

Reference safety architecture

1. Inputs: diagnostic mechanisms for input 
correctness, data quality, data 
redundancy, temporal consistency…

2. Model: diagnostic and monitoring 
mechanisms for execution errors, timing, 
program sequence, neuron activation 
patterns…

3. Outputs: diagnostic mechanisms for 
outputs, plausibility checks, input-output 
correlation, temporal consistency …

4. Resource usage: monitoring mechanisms 
for resource usage (e.g., CPU/GPU usage, 
memory usage)

Remark: most data Inputs are generated by sensors (cameras, LIDARs 
etc.), so diagnostics on sensor level could also be integrated here.

L1DM - Inputs
8

Monitoring the neuron activation patterns during operation requires 
introspection into the Neural Network layers during operation. That 
may not be possible for all kind of DNN-models without essential 
negative influence on model performance

L1DM - Model
9
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• Diagnostic and monitoring mechanisms​ – L2DM mechanisms – Traditional subsystem

1. Traditional functional safety diagnostics

2. Advanced diagnostic approaches for high-
performance platforms
• L2DM Configuration check – check that the 

configuration defined and verified during 
system development is kept at runtime.

• L2DM Interference mitigation and control –
check that all critical platform SW 
components meet with their deadline and if 
this is the case, it refreshes an external 
watchdog (L3).

• L2DM Health Management – is the 
responsible of triggering the required 
reaction whenever L0, L1 or L2 diagnostics 
and monitoring detects an error

Reference safety architecture

“…verified that the software does not exceed the use of available 
resources even in worst-case scenarios”

Remark: that should be regarded as the sum-up of all worst-case 

conditions for all SW-Elements at the same time.

L2DM – Interference mitigation and control
10
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• Diagnostic and monitoring mechanisms​ – L3 mechanisms – External

1. Traditional external safety mechanisms 
(e.g., external watchdog, time and power 
monitoring, external monitoring unit…). 

2. Error management for the lower-level 
diagnostic and monitoring mechanisms 
(i.e., L0, L1 and L2 mechanisms).

Reference safety architecture
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• Supervision function

Reference safety architecture

1. Check the appropriateness of the 
environment ​

2. Supervise the output of the ML 
constituent to identify unsafe 
situations ​

3. Stablish the limits for safe operation, 
providing a safe envelope​

4. Provide explanations on the DL model​
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• Traditional subsystem

1. Functions complementary to the ML 
constituent.

2. Fallback subsystem – safe back-up function 
to the ML component that takes over the 
system if a functional safety problem is 
detected.

Reference safety architecture
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• AI Risk Factors

Sources of Risk

Risk factor AI technology element Source

Traditional FUSA risk factors
(systematic / random)

All AI technology elements (i.e.,

computational hardware, OS / middleware,
libraries, ML framework and ML model).

IEC 61508 and derived

FUSA standards (ISO
26262, EN 5012x, …)

HPEC platform integration
risk factors

Computational hardware and lower-level
SW (i.e., OS / middleware).

CAST-32A / AMC-20-193

ISO 26262 part 11

AI performance insufficiency ML model or framework. ISO/DIS 21448 (SOTIF)

AI & FUSA risk factors
(low/medium integrity level)

All AI technology elements (i.e.,

computational hardware, OS / middleware,
libraries, ML framework and ML model).

AI and FUSA Technical

Reports (ISO/IEC TR
5469)

It is kind of pseudo stochastic - as 
it's not fully comparable with the real 
stochastic behavior of HW failures.

AI Risk Factors
1

In classical FuSa there are only random faults for HW components. In ML/AI based 
systems effects may occur that seem to be "random" but they are not really random; only 
the number of possible variations of parameters is extremely high and therefore they are 
seen and handled as pseudo randomised distributions. The underlying internal causes of 
faulty behaviour are still systematic - but the systematic is not easily detectable.

AI Risk Factors
2

Why clause 8.4.3 "issues related to learning from environment" 
of ISO/IEC TR 5469 is not explicitly regarded as one of the relevant 
essential application dependent properties?

AI Risk Factors
3
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• Incremental strategy for AI adoption in safety critical systems

Incremental Strategy

AI/ML constituent is not part 
of the safety function

AI/ML constituent collaborates 
on the decision and can have an 

impact on the safety function
AI/ML constituent is part of 

the safety function

What is the meaning of the 
different hatching of areas?

Incremental Strategy
4
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Automatic Train Operation (ATO) system 

• Detect obstacles in the railway and estimates distance by assistance of cameras.
According to the detected obstacle (i.e., critical / non-critical), the distance to it and its
location (in / outside the track), the system responds accordingly (i.e., warn the driver,
activate service brake, activate emergency brake).

           
      

         

         
          
              
        

     

           

             

         
     

         
     

       
                   

                      

         

                         

     
              

     
             

     
       

Question: Only cameras? Why not 
additional Sensor technology: e.g. IR-camera, 
or LIDAR? Most perception systems rely on 
more than just one set of cameras. (except 
for Tesla, but there have been incidents 
based on the lack of different sensors)

ATO System
12

“(i.e., warn the driver, activate service 
brake, activate emergency brake)”. or sound 
the horn in order to warn persons or animals 
in or close to the track

ATO System
13

“objects outside the track”
How far outside of the track? - At least the 

clearance profile of the train on the predicted 
ego Track should be applied here

ATO System
14
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Automatic Train Operation (ATO) system 

• Detect obstacles in the railway and estimates distance by assistance of cameras.
According to the detected obstacle (i.e., critical / non-critical), the distance to it and its
location (in / outside the track), the system responds accordingly (i.e., warn the driver,
activate service brake, activate emergency brake).

GoA 1 – SP1 GoA 2 – SP2 GoA 3 or 4 – SP3

Lower 

speed limitWarn the 

control centre

The AI system detects an
obstacle (another train,
person, car…) in the tracks
and warns the driver of the
potential danger. The driver
must act safely activating the
brakes if necessary.

The AI system detects an obstacle in
line of collision and warns the driver.
The AI system activates the service
brake (SIL2) reducing the speed of the
train. The driver can activate the
emergency brake (SIL4), or temporarily
deactivate the service brake (SIL2).

The AI system detects an obstacle in
line of collision and warns the control
center. The AI system activates the
service brake (SIL2) and calculates the
braking distance, activating the
emergency brake (SIL4) if the collision
distance is below a threshold.
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ATO System (GoA 1)

• Safety Pattern 1 (SP1) – Diagnostic and monitoring mechanisms

L1DM
• No DL specific diagnostics
• L1DM to guarantee freedom from 

interference
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ATO System (GoA 1)

• Safety Pattern 1 (SP1) – Diagnostic and monitoring mechanisms

L2DM
• Traditional functional safety 

techniques and measures 
• Checking system configuration for 

interference mitigation and control
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ATO System (GoA 1)

• SP1 to NVIDIA Orin resource allocation and configuration option A
SP1 Element Safety / non-

safety
SP1 - A NVIDIA Orin resources and configuration

Object and
tract detection

Non-safety AI
based SW

CCPLEX CPU Cluster (Cortex A78)

GPU for AI inference

Memory controller fabric and traffic from CPU
cluster to GPU

MMUs for spatial independence

SAFEXPLAIN SW Stack

Supervision
components

Non-safety
traditional or
AI based SW

Distance
estimation

Non-safety
traditional SW

Object
classification
and positioning

Non-safety
traditional SW

Train operation
control (safety
function)

Safety
traditional SW

SPE in lockstep configuration

No sharing of caches with CCPLEX

MMUs for spatial independence

Safe RTOS on top of SPEs
L2DM Safety

traditional SW
Pros Highest independence: different processing

elements, less shared resources, different OS and
SW stack.

Cons Limited performance on SPEs.
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ATO System (GoA 1)

• SP1 to NVIDIA Orin resource allocation and configuration option B
SP1 Element Safety / non-

safety
SP1 - B NVIDIA Orin resources and configuration

Object and
tract detection

Non-safety AI
based SW

CCPLEX CPU Cluster (Cortex A78) – different CPU
cluster for safety SW

GPU for AI inference

Memory controller fabric and traffic from CPU
cluster to GPU

MMUs for spatial independence

L4 cache partitioning or disabled

SAFEXPLAIN SW Stack separated from safety SW by
hypervisor

Supervision
components

Non-safety
traditional or
AI based SW

Distance
estimation

Non-safety
traditional SW

Object
classification
and positioning

Non-safety
traditional SW

Train operation
control (safety
function)

Safety
traditional SW

CCPLEX CPU Cluster (Cortex A78) in lockstep –
different CPU cluster for safety SW

MMUs for spatial independence

L4 cache partitioning or disabled

Safe RTOS on top of hypervisor

L2DM Safety
traditional SW

Pros Better performance while preserving
independence: different CPU clusters with
partitioning approaches, different OS and SW stack.

Cons Need of a hypervisor.
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ATO System (GoA 1)

• SP1 to NVIDIA Orin resource allocation and configuration option C
SP1 Element Safety / non-

safety
SP1 - C NVIDIA Orin resources and configuration

Object and
tract detection

Non-safety AI
based SW

CCPLEX CPU Cluster (Cortex A78) – different CPU
cluster for safety SW

GPU for AI inference

Memory controller fabric and traffic from CPU
cluster to GPU

MMUs for spatial independence

L4 cache partitioning or disabled

SAFEXPLAIN SW Stack

Supervision
components

Non-safety
traditional or
AI based SW

Distance
estimation

Non-safety
traditional SW

Object
classification
and positioning

Non-safety
traditional SW

Train operation
control (safety
function)

Safety
traditional SW

CCPLEX CPU Cluster (Cortex A78) in lockstep –
different CPU cluster for safety SW

MMUs for spatial independence

L4 cache partitioning or disabled

SAFEXPLAIN SW Stack

L2DM Safety
traditional SW

Pros Ease of integration, same SW stack for all platform
elements.

Cons Less independence, required safety guarantees on
the SAFEXPLAIN SW Stack.

“ equired safety guarantees on the   F XPL     W  tack.”
This may be required for the full Stack (OS, Libs, ROS2, 

MDW & API), as all of it is shared between the non-safety and 
the safety parts

SAFEXPLAIN SW Stack
16
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ATO System (GoA 2)

• Safety Pattern 2 (SP2) – L0 Diverse redundancy

• Diverse redundancy schemes with 
medium or high DC (DRS_4, DRS_5 or 
DRS_6)

• Diverse processing resources 
(GPU and CPU, GPU and other 
AI accelerators) 

• Diverse model development 
(framework, model 
architecture…)

• Concept diversity (object 
detection vs. Object part 
detection

“Whereas the focus or  P2 is on  F  = 0 with low to medium diagnostic coverage.” 
But then only SIL1 can be achieved as maximum according to table 6!! The required 

SIL2 can only be achieved by medium to high DC (>90%)!!

SP2 – L0 Diverse Redundancy
17
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ATO System (GoA 2)

• Safety Pattern 2 (SP2) – Diagnostic and monitoring mechanisms

L1DM
• Select L1DM diagnostics mechanisms 

to reach a high diagnostic coverage
• L1DM to guarantee freedom from 

interference, also in the AI/ML 
constituent
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ATO System (GoA 2)

• Safety Pattern 2 (SP2) – Diagnostic and monitoring mechanisms

L2DM
• Same as SP1 L2DM (traditional 

mechanisms + checking system 
configuration), but also for the AI/ML 
constituent
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ATO System (GoA 2)

• SP2 to NVIDIA Orin resource allocation 
and configuration option

SP2
Element

Safety /
non-safety

SP2 - A NVIDIA Orin resources and configuration

Object and 
track 
detection

AI based SIL 
2 SW

Two instances, each in one separate CCPLEX CPU
Cluster (Cortex A78) in lockstep configuration

GPU for AI inference (depending on the DRS CPU or
other computing resources could also be used to
improve diversity)

Memory controller fabric and traffic from CPU cluster
to GPU

MMUs for spatial independence

SAFEXPLAIN SW Stack

Supervision 
components

Traditional 
or AI based 
SIL 2 SW

Each AI/ML constituent has each own L1DM and
optionally each own supervisor function (depends on
user application).

Depending on the implementation of the supervision
component, it may need GPUs for improved
performance (e.g., AI based supervision function).

The supervision components can share same CCPLEX
CPU Cluster (Cortex A78) in lockstep configuration as
the AI/ML constituent.

MMUs for spatial independence

SAFEXPLAIN SW Stack
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ATO System (GoA 2)

• SP2 to NVIDIA Orin resource allocation 
and configuration option

SP2 Element Safety /
non-safety

SP2 - A NVIDIA Orin resources and configuration

Decision 
function

Traditional 
SIL 2 SW

These SW components can run on any of the CCPLEX
CPU Cluster (Cortex A78) in lockstep configuration used
for the AI/ML constituent with the same configuration,
since they have the same integrity level.

Distance 
estimation
Object 
classification 
and 
positioning
Train 
operation 
control

Traditional 
SIL 4 SW

CCPLEX CPU Cluster (Cortex A78) or SPE in lockstep
configuration.

MMUs for spatial independence

L4 cache partitioning or disabled

SAFEXPLAIN SW Stack or different OS on top of SPEs or
hypervisor

L2DM
Traditional 
SIL 4 SW

As the decision function is essential for bringing together the redundant paths it 
may have a higher integrity requirement as each of the AI based SIL2 SW components 
it gets the input from

Decision Function
18
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• Safety Pattern 3 (SP3)
• Same as SP2 with off-chip 

redundancy

we assume that for SP3 an 
HFT > 0 is required

ATO System (GoA 3 o 4)

“ lternatively, the voting can be done in an external 
element”

For this voter then also SIL4 needs to be applied

Voter
19



Next steps
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Railway SC – Activity planning

KICK-OFF 
MEETING

IKERLAN SEND 
RAILWAY SC TO TÜV R

REVIEW MEETING GET LIST OF OPEN 
ISSUES / 

COMMENTS FROM 
TÜV R

IKERLAN SEND 
NEW VERSIÓN OF 

RAILWAY SC

TÜV R REVIEW 
NEW VERSIÓN 

AND ISSUE 
TECHNICAL 

ASSESSMENT 
REPORT

✓ 
This meeting

Early Feb. 25 March 25✓ ✓ 



www.www.safexplain.eu

Follow us on social media:

This project  has received funding from the 
European Union's Horizon Europe 
programme under grant agreement number 
101069595. 

THANK YOU!

http://www.healthycloud-project.eu/
https://twitter.com/SafexplainAI
https://www.linkedin.com/company/safexplain/
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• BARCELONA SUPERCOMPUTING CENTER (BSC)

• https://www.bsc.es/

• IKERLAN, S. Coop (IKR)

• https://www.ikerlan.es/

• AIKO SRL (AIKO)

• https://www.aikospace.com/

• RISE RESEARCH INSTITUTES OF SWEDEN AB (RISE)

• https://www.ri.se/

• NAVINFO EUROPE BV (NAV)

• https://www.navinfo.eu/

• EXIDA DEVELOPMENT SRL (EXI)

• https://www.exida-eu.com/

Project Consortium

HiPEAC 2025

https://www.bsc.es/
https://www.ikerlan.es/
https://www.aikospace.com/
https://www.ri.se/
https://www.navinfo.eu/
https://www.exida-eu.com/


SafeYOLO
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AI-based applications usually prioritize performance, often leaving safety aside

Our objective is to avoid systematic errors and detect and mitigate runtime errors

Contextualization

•   lu    : “SafeYOLO”,     f    
mechanism to periodically  diagnose 
accelerator-based implementations

C-based 
Implementation

MISRA C coding 
guideline

C-based object detector accomplishing with
MISRA C coding guidelines

• Drawback: Execution time 
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• Input: images 

• Version: YOLOv4 (link) employing a specific layer configuration extracted from yolo_v7

• Framework: C-based Darknet

• We have focused on inference phase leaving aside training phase

• MISRA C compliant analysis based on Polyspace:

• Polyspace Bug Finder tool

• MISRA C:2012 

Set-up

https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v4_pre
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Main operations performed in darknet-based YOLO
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Main operations performed in darknet-based YOLO
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MISRA-C Violations

Representative examples:

5. Identifiers:
• Identifiers that define objects or functions with external linkage shall be unique.
• A tag name shall be a unique identifier.
• An identifier declared in an inner scope shall not hide an identifier declared in an 

outer scope.
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MISRA-C Violations

Representative examples:

10. The essential type model
• Both operands of an operator in which the usual arithmetic conversions are 

performed shall have the same essential type category.

• The value of an expression shall not be assigned to an object with a narrower essential type or of a different 
essential type category
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MISRA-C Violations

Representative examples:

14. Control statement expressions
• The controlling expression of an if statement and the controlling expression of 

an iteration-statement shall have essentially Boolean type.

15. Control Flow
• All if ... else if constructs shall be terminated with an else statement.
• The body of an iteration-statement or a selection-statement shall be a compound-statement.
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MISRA-C Violations

Representative examples:

16. Switch statements
• Every switch statement shall have a default label.
• An unconditional break statement shall terminate every switch-clause.
• All switch statements shall be well-formed (An unconditional break statement 

shall terminate every switch-clause + Default clause shall contain statements or 
comments).
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2nd Stage: Main operations performed in darknet-based YOLOv7 

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference/prediction

5. Get network boxes

6. Sort predictions

7. Draw detections

8. Save Image
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Specific modifications according to the operation:

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference /prediction

5. Get network boxes
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Specific modifications according to the operation:

• Avoiding the use of stlib library (fopen, malloc, qsort…)

Labels images:

Before Proposal

Alphabet_cfg.h Alphabet_cfg.c

Alphabet_lib.a
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Specific modifications according to the operation:

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference

5. Get network boxes

6. Sort predictions

7. Draw detections

8. Save Image
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• Network configuration

Previous Net and Layers Configuration

28th of March, Ikerlan - Arrasate

• Layers configuration

yolov7.cfg
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New Network Configuration proposal

28th of March, Ikerlan - Arrasate

yolov7.cfg Network_cfg.cNetwork_cfg.h
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New Layers Configuration proposal

28th of March, Ikerlan - Arrasate

• Layers_cfg.h • Layers_cfg.cyolov7.cfg
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Main operations performed in darknet-based YOLOv7 

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference

5. Get network boxes
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Parse network configuration

28th of March, Ikerlan - Arrasate

• Network configuration is done in the network_cfg.h and .c, however their values
shall be parser. For that we have designed check_network_cfg() function:
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Main operations performed in darknet-based YOLOv7 

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference

5. Get network boxes
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Parse Layer configuration

28th of March, Ikerlan - Arrasate
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Main operations performed in darknet-based YOLOv7 

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

3. Load weights, biases, rolling mean, scales…

4. Inference

5. Get network boxes
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Main operations performed in darknet-based YOLOv7 

Before Proposal

Layers_weights.h Layers_weights.c

Weights_lib.a

Same for:
- Label biases
- Layer outputs
- Layers Rolling mean
- Layer scales

Yolov7.weights
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Main operations performed in darknet-based YOLOv7 

• SafeYOLO allow to automatically generate of the following configuration documents:

• Alphabet 

• Layer biases 

• Layer outputs

• Layer Rolling mean

• Layer scales

• Layer weights
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Main operations performed in darknet-based YOLOv7 

28th of March, Ikerlan - Arrasate

1. Load alphabet (images employed to print the detected objects)

2. Network configuration:

• Read the network configuration from .cfg file

• Initialize the network to zero values and dynamically allocate memory

• Parse network configuration

• Parse layer configuration

• Load weights, biases, rolling mean, scales…

3. Inference

4. Get network boxes



Any Question?



www.www.safexplain.eu

Follow us on social media:

This project  has received funding from the 
European Union's Horizon Europe 
programme under grant agreement number 
101069595. 

THANK YOU!

http://www.healthycloud-project.eu/
https://twitter.com/SafexplainAI
https://www.linkedin.com/company/safexplain/
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