
1

D2.4 Safety Guidelines
Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contratual Deadline 31.09.2025

Dissemination Level PU

Nature R

Authors Giuseppe Nicosia (EXI), Stefano Lodico (EXI), Carlo Donzella (EXI), Javier
Fernández (IKR), Xuban Ceccon (IKR)

Contributors Irune Yarza (IKR), Irune Agirre (IKR), Francesca Guerrini (EXI), Jaume
Abella (BSC), Martí Caro (BSC)

Reviewed by Jaume Abella (BSC) Frank Geujen (NAV)

Keywords AI, Functional Safety, V&V, Catalog Scenarios, Safety Concept

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

Ref. Ares(2025)8254857 - 30/09/2025

http://www.safexplain.eu/

2

Change Log

Version Description Change

V0.1 First draft
V0.2 Internal Review
V1.0 Final Version

3

Table of Contents

1 Introduction .. 6

2 Safety Reviews for the specific use cases domains ... 6

2.1 TÜV Railway ... 6

2.2 EXIDA Automotive ... 7

2.3 ESA Space ... 8

2.3.1 ESA meeting agenda .. 8

2.3.2 Key meeting highlights .. 10

3 Evaluation of Technical Solution ... 11

3.1 Basic concepts ... 11

3.1.1 Bounding boxes ... 12

3.1.2 Intersection over Union ... 12

3.1.3 True Positive, False Positive, False Negative and True Negatives .. 12

3.1.4 Non-Maximum Suppression .. 12

3.1.5 Precision .. 13

3.1.6 Recall ... 13

3.1.7 Accuracy .. 13

3.1.8 F1 Score ... 13

3.1.9 COCO Eval .. 13

3.2 Setup .. 14

3.2.1 Aim of the experiments ... 14

3.2.2 Combining Predictions with a Decision Function .. 15

3.2.3 Fault injection methodology ... 15

3.2.4 Underlying Platforms... 16

3.2.5 Validation dataset .. 16

3.2.6 Coco Eval Validation Methodology .. 16

3.2.7 Models ... 16

3.3 Results.. 17

3.3.1 Preliminary Dataset Analysis ... 17

4

3.3.2 Diverse Redundancy Techniques ... 18

3.3.3 Diverse Framework.. 32

3.3.4 Diverse Concept .. 38

4 DL Safety Lifecycle for DL-software V&V ... 39

4.1 System-Theoretic Process Analysis (STPA) ... 42

4.1.1 Triggering Condition and related Test Matrix .. 43

4.1.2 STPA: Safety Measures to mitigate the hazardous behaviour ... 43

4.2 Example of V&V strategy application .. 44

4.2.1 Automotive Use Case .. 44

4.2.2 Railway Use Case ... 46

4.2.3 Aerospace Use Case .. 47

4.3 Applied Normative ... 48

4.3.1 ISO 26262 .. 49

4.3.2 ISO 21448 .. 49

4.3.3 ISO/PAS 8800 ... 50

5 Acronyms and Abbreviations .. 51

6 Bibliography .. 54

7 Annexes ... 55

7.1 Annex A: ESA meeting presentation .. 55

5

Executive Summary
The main objective of this document is to present the key conclusions drawn from the reviews conducted
by certification authorities and technical standards assessment experts of the previously consolidated
safety guidelines generated as a result of WP2 activities applied to specific use case domains.

In addition, this document provides an update of Deliverable D2.3, incorporating enhancements and
extensions to the previously established Deep Learning (DL) software Verification and Validation (V&V)
strategy initially proposed. It includes a more detailed Systems Theoretic Process Analysis (STPA) Analysis,
particularly focusing on the safety measures required to mitigate the identified hazardous situations at
element level and finally, it also refines the previously defined strategies and specific solutions for
implementing safety patterns and its associated safety mechanisms in safety-critical software systems that
incorporate Artificial Intelligence (AI) components.

Finally, a dedicated section is included to present the applicable standards and normative references
relevant to the project's safety assurance framework related to this project, which can be found in 4.4
Applied Normative:

• A summary for the ISO 26262, just a brief summary, since it was already described in the previous
deliverables (linked in the section)

• A summary for ISO 21448, just a brief summary, since it was already described in the previous
deliverables (linked in the section)

• A summary of the ISO/PAS 8800, not actually applied in this project as published in December
2024, but summarized here as it applies to the project itself (described in the dedicated section)

• ASPICE, applied to some use cases (described in the dedicated section)

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

6

1 Introduction
This document compiles the results from all tasks developed in Work Package (WP) 2: T2.1, T2.2, T2.3,
T2.4, and T2.5. The objective of these tasks is to define and evaluate functionalities based on DL
components that are safety-related or whose use may have implications for safety functions.

This document is organized as follows:

• Section 2 describes the feedback from who analysed each use case, performed by external
resources from the domain owner

• Section 3 refines specific solutions for implementing safety patterns and its associated safety
mechanisms, describes the evaluation methodology applied to their assessment, and presents
the results obtained.

• Section 4 describes the analyses done for each use case, in particular for the safety measures as
output of the STPA analysis including some examples for each domain and a description of each
normative applicable in WP2.

This deliverable includes a list of acronyms and abbreviations as well as a list of references in all Sections.
This deliverable ends with Annex A, which includes the PowerPoint presented to ESA and additional space
experts.

2 Safety Reviews for the specific use cases domains
This section is divided into three subsections, each corresponding to a specific use case domain for which
the reviews have been conducted:

• For the railway domain, the review was carried out by TÜV Rheinland, along with an internal
review conducted by our colleagues from EXIDA.

• For the aerospace domain, meetings were scheduled, and email exchanges took place with ESA.

• For the automotive domain, the review was conducted by EXIDA personnel.

2.1 TÜV Railway
In the previous deliverable (D2.3), we presented the results of a safety concept applied to the railway
domain. This safety concept proposed a set of architectural patterns adapted to different usage levels of
AI constituent and the associated safety mechanisms for each pattern. At the time of writing that
deliverable, we documented the full assessment process conducted by IKERLAN in collaboration with the
certification authority TÜV Rheinland. However, although we had a comprehensive understanding of the
evaluation, the final assessment report had not yet been received, and thus the safety review remained
preliminary.

Following the reception of the official report from TÜV Rheinland, we can now confirm the conclusions
anticipated in D2.3. According to TÜV Rheinland, the safety concept of the railway use case—centered on
an AI-based collision avoidance system—has been positively assessed against the requirements and

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

7

recommendations of ISO 5469, while also demonstrating compatibility with conventional functional safety
standards such as IEC 61508 and the railway-specific CENELEC standards.

The report includes a detailed account of the technical discussions held during the evaluation meetings,
covering key topics such as:

• The pseudo-stochastic nature of AI-related faults.

• Safety patterns in the railway domain depending on AI usage levels and AI technology
classification as defined in ISO 5469.

• Associated diagnostics and monitoring mechanisms for each safety pattern.

• Handling of AI-specific risk factors.

As a result, the assessment concludes that all critical aspects required for the safe integration of AI
constituents into safety-related software systems have been appropriately addressed. The strategies and
solutions proposed are considered a sound and reasonable architectural approach, well tailored to the
specific demands of the railway use case.

2.2 EXIDA Automotive
The Exida considerations about SAFEXPLAIN for the automotive use case, based on formal and informal
communication received from Automotive use case responsible (NAVINFO)in the last 6 months, is
described in this section.

The contribution of NAVINFO (leader of the Automotive use case) in the project is not much related to the
production of the so-called “items” (e.g. the vehicle systems or sub-system) as typically provided by OEMs
and Tier 1 suppliers but rather related to the provision of add-on solutions.

The participating NAVINFO teams have undergone a considerable strategic evolution in terms of structure
and focus.

One of the contributions of NAVINFO is related to the development of a model of the simulation
environment partially based on ODDs and the catalogue of the scenarios provided by Exida: Exida provided
21 scenarios, NAVINFO focused on one of them.

The result of this development is very interesting from the DEMO’s point of view: even though it is limited
in terms of completeness, it shows that the model is implementable with appropriate effort in an industrial
project.

The DEMO developed is provided as Open Source and it will showcase all the developments contributed
by NAVINFO.

In terms of Functional Safety scope (that is the viewpoint of WP2), these are the limitations to consider:

• From the scenarios proposed by Exida, one of them has been implemented;

o The implemented scenario is not fully consistent with the proposed scenario, as it has
some limitations regarding some parameters and conditions.

• Specific recommendations from Exida regarding scenario-based test cases, triggering condition-
based test cases and safety measures have been partially considered.

8

• NAVINFO demonstrates a commendable commitment to achieve compliance with the ISO 26262
and ISO 21448 SOTIF, however the compliance with the normative cannot be fully achieved with
just the adopted approach (see below “Example of V&V strategy application: Automotive Use
Case”), for the detailed reasons explained there. Some critical hazardous behaviours were not
considered (e.g., override abortion).

2.3 ESA Space
On 12 May 2025, the SAFEXPLAIN consortium presented its latest results to representatives of several
aerospace and embedded system industries including Airbus DS, BrainChip, the European Space Agency
(ESA), Gaisler, and Klepsydra, showcasing major strides in making AI safe and certifiable in critical
autonomous embedded systems.

The meeting was hosted by project partner, AIKO, space case leader and a company in the space sector
providing scalable, up-to-date and user-friendly AI-powered solutions for the industry. AIKO opened the
meeting by introducing the project’s role in closing the gap between AI solutions and safety culture. AIKO
representative Gabriele Giordana highlighted that, “the project is paving the way for something new by
bridging the gap of different industrial domains that share the same challenge of safe AI integration.” In
the following subsections, we present the agenda followed during the meeting, the reference materials
shared with the ESA attendees to facilitate a clearer understanding of the content presented, and a
summary of the main discussion points and feedback received—both during the meeting and in
subsequent email exchanges. The PowerPoint presentation is provided in Annex A.

2.3.1 ESA meeting agenda
• IKERLAN presented its AI-Functional Safety Management (AI-FSM) methodology developed in the

project. This methodology guides the development process, maps the traditional lifecycle of
safety-critical systems with the AI lifecycle, and addresses their interactions.

More information on the AI-FSM can be
found here

https://safexplain.eu/integrating-ai-into-
functional-safety-management/

• Exida development followed with an
overview of the project’s V&V strategy,
which defines a valid method for proving
the intended functionalities at the vehicle
level and at the component level. The

strategy considers ISO 26262 standard and ISO 21448 testing techniques. For the space case the
V&V strategy has been applied to a guidance, navigation and control (GNC) technology implanted
in a space vehicle.

https://safexplain.eu/integrating-ai-into-functional-safety-management/
https://safexplain.eu/integrating-ai-into-functional-safety-management/

9

More information on Exida development’s scenario catalogues as part of
the V&V strategy can be found here.

• IKERLAN introduced the reference safety architecture patterns
for the adoption of DL in safety-critical systems with varying safety
requirements. This topic addressed the importance of runtime safety

mechanisms for dealing with random and residual systematic faults, HW/SW complexity, DL
model insufficiencies and to support DL explainability.

More information on IKERLAN´s work on “Safety patterns for
AI-based systems” can be found here.
https://safexplain.eu/safety-patterns-for-ai-based-systems/

• RISE discussed challenges, strategies and examples of including AI in safety critical systems and
making it explainable. Specifically, RISE discussed strategies and examples of using explainable AI
(XAI) to reduce uncertainties and as an enabler to manage residual uncertainties.

More information on XAI can be found here: https://safexplain.eu/rise-webinar-highlights-xai-
for-systems-with-functional-safety-requirements/

• The Barcelona Supercomputing Center highlighted the project’s platform level support and tools,
including support for HW integration, a common layer for SW V&V and functional safety
mechanisms, an abstraction layer for system confirmation and a reference common stack.

More information on the SAFEXPLAIN platform can be found here:
https://safexplain.eu/bsc-webinar-demonstrates-interoperability-of-safexplain-

platform-tech-tools/

• AIKO then went into detail of the implementation of the space case study,
specifically describing a docking scenario, an example that proved to be especially
interesting for ESA representatives. The functions under evaluation, safety needs,

https://safexplain.eu/exida-development-developing-scenario-catalogues-for-safexplain-case-studies-the-railway-case/
https://safexplain.eu/safety-patterns-for-ai-based-systems/
https://safexplain.eu/rise-webinar-highlights-xai-for-systems-with-functional-safety-requirements/
https://safexplain.eu/rise-webinar-highlights-xai-for-systems-with-functional-safety-requirements/
https://safexplain.eu/bsc-webinar-demonstrates-interoperability-of-safexplain-platform-tech-tools/
https://safexplain.eu/bsc-webinar-demonstrates-interoperability-of-safexplain-platform-tech-tools/

10

technology used and system integration were presented to show the value of the SAFEXPLAIN
results.

More information on the space case study can be found
here https://safexplain.eu/space-case-study/

• The presentation wrapped up with the unveiling of the
core demo instantiated to the space domain.

2.3.2 Key meeting highlights
In this section it will be explained the ESA’s considerations about SAFEXPLAIN project for the aerospace
use case (led by AIKO) and its potential application on their projects, based on feedback received both
during the meeting and through subsequent email exchanges.

Adopting AI for ESA missions represents a difficult challenge for the near future, since there are no ECSS
standard addressing the certification and/or qualification of AI on-board.

To use AI on board, inference time robustness and uncertainty quantification improvements are the keys,
but formal methods are here preferred.

Formal methods analytically assess the correctness of an output, while safety cages or qualitative methods
give this guarantee only under a certain probability, which can pose issues to the safety compliance of the
system.

This can be considered just for lower categories (not safety relevant), since just a COTS SW (e.g., linux-
based system) cannot be used in a high-critical application such as the space use case developed in the
SAFEXPLAIN project, but in a medium/long term future (3 ... 5 years) AI will be surely used in ESA missions,
if the ESA-ECSS standards evolve to reach this goal. Currently it is present with an ESA - ECSS handbook for
ML, but it does not address all the safety aspects.

Explainable AI could be useful in the process to support the humans work in the V&V strategy, even though
it is less relevant during inference, unless a practical method which applies it in real time is developed and
can be applied to quantitatively assess and monitor the AI function.

In the space field, the challenge of introducing AI is even more complex than in other sectors, due to the
high level of criticality and the harsh environmental conditions, distance and visibility of the assets,
impacting communication and control, and the many degrees of freedom.

Indeed, an important point depends on whether a human can interfere in the loop of the XAI execution,
because absence of humans makes its utility, currently, limited.

Some concerns are:

https://safexplain.eu/space-case-study/

11

• The V&V of AI components, the documentation starting from the ODD and the verification of the
ODD against the impossibility of covering the entire input space.

• Whether methods beyond the formal ones are considered more feasible for XAI, since the formal
methods are limited by architecture and scalability.

The focus of the future AI applications is to maximize accuracy while mitigating the latency in various use
cases.

Techniques such as redundancy of critical components, inference on tiles of the original input image or
temporal consistency verification are renowned and interesting, but some constraints need to be
considered such as memory restrictions on an embedded platform or multitasking management of the
models, or repeating the inference on porting of the same image, since they can represent a cost to trade
off. SAFEXPLAIN challenged this aspect by testing theoretical solutions in an embedded device.

Another challenging aspect is to certify systems with multiple agents and manage their interaction. For
instance, in SAFEXPLAIN, a standalone critical system is assessed thanks to its modularity. The whole
system is considered feasible also for the functional safety aspects.

ESA is working on AI application for navigation and docking manoeuvres even it is more difficult than
automotive use cases, and this confirms the relevance of SAFEXPLAIN works in this direction. Indeed,
SAFEXPLAIN is a great initiative to take inspiration for the update of ESA - ECSS standards, even though
SAFEXPLAIN can be improved on HW features to ease integration in safety critical systems.

In conclusion, the presentation was well received and complimented for its holistic approach that
considers all aspects of integrating AI into safety critical systems. Industry representatives mentioned the
relevance of the presentation given their interest in integrating the right AI technologies for activities like
docking, computer vision and more, and for developing robust certification processes that can be
developed without disrupting the current V&V cycle.

This feedback on the SAFEXPLAIN’s results is especially valuable given the important roles these companies
play in the space sector and their expert perspective on advancements for safety critical applications in
the space domain.

3 Evaluation of Technical Solution
This section evaluates the suitability of a variety of diagnostics mechanisms defined in deliverable D2.2.
This section is decomposed into the following subsections:

• Subsection 3.1 introduces some concepts related to the assessment of the results.

• Subsection 3.2 outlines the set-up under which the assessment has been carried out.

• Subsection 3.3 collects the results of assessment and includes conclusions.

3.1 Basic concepts
This subsection collects information about concepts and metrics employed for the assessment.

https://safexplain.eu/wp-content/uploads/2022/11/D2.2-DL-safety-architectural-patterns-and-platform.pdf

12

3.1.1 Bounding boxes
Bounding boxes are rectangular coordinates that enclose an object in an image to indicate its location and
size. They are widely used in computer vision, specifically in the domain of object detection.

3.1.2 Intersection over Union
Intersection over Union (IoU) quantifies the overlap between two bounding boxes by dividing the area of
their intersection (∩) by the area of their union (∪). The IoU value ranges from 0 to 1, where a value of 1
indicates a perfect overlap between a specific bounding box and another one, and a value of 0 indicates
no overlap at all. Therefore, higher IoU values indicate more precise localization. The equation for IoU is:

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐵𝐵pred1 ∩ 𝐵𝐵pred2)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐵𝐵pred1 ∪ 𝐵𝐵pred2)

Here, 𝐵𝐵pred1 represents the bounding box produced by one of the detectors, and 𝐵𝐵pred2 corresponds to the
one generated by a second object detector. This metric is widely used in the field of computer vision,
typically for evaluating model accuracy by comparing predictions against the ground truth. Although it can
also be employed to assess the consistency between two separate detectors. For that case, if the
computed IoU exceeds a predefined threshold, the detection is considered consistent.

Based on the IoU metric and the definition of an IoU threshold, and assuming that one of the bounding
boxes is designated as the ground truth, the metrics True Positive (TP), False Positive (FP), and False
Negative (FN) are defined as follows:

3.1.3 True Positive, False Positive, False Negative and True Negatives
In object detection evaluation, each predicted bounding box is matched to a ground-truth annotation of
the same class when their IoU is equal to or exceeds a specified threshold. Based on this matching and the
presence or absence of predictions each case is classified as one of the following:

• TPs occur when a predicted box both correctly identifies an object’s class and meets the IoU
threshold with a corresponding ground-truth box.

• FPs arise when a predicted box either fails to match any ground-truth annotation at the required
IoU or is assigned the wrong class.

• FNs represent ground-truth objects for which no prediction of the correct class reaches the IoU
threshold.

• Additionally, TNs correspond to the correct absence of any prediction in areas where no ground-
truth object exists, although in dense detection benchmarks like COCO True Negatives are not
explicitly counted because the background comprises an infinite number of potential detections.

3.1.4 Non-Maximum Suppression
Non-maximum suppression (NMS) is not a metric by itself but a post-processing technique that filters out
redundant detections by retaining, for each object class, only the highest confidence bounding box among
those that overlap beyond a specified IoU threshold and discarding the rest. It’s applied by default in YOLO

13

models during inference output post-processing and it ensures that overlapping boxes of the same class
are suppressed in favor of the most reliable prediction.

3.1.5 Precision
Precision is a performance metric that measures the proportion of correctly predicted positive instances
among all instances predicted as positive by a model. It reflects how accurate the model’s positive
predictions are, the ratio being between the number of TP predictions and the total number of positive
predictions made by the model:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

TP + FP

3.1.6 Recall
Recall quantifies the fraction of ground-truth objects that the model successfully detects. It is defined as
the ratio of TP to the sum of TP and FN:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

TP + FN

where TP denotes the number of correctly detected objects and FN the number of missed objects. A higher
recall indicates that the model locates a greater share of all objects, though without regard for precision
it can also allow more incorrect detections.

3.1.7 Accuracy
Accuracy (ACC) is a performance metric that quantifies the proportion of correct predictions made by a
model compared to the total number of predictions. It is commonly used in classification tasks, including
object detection:

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

3.1.8 F1 Score
F1 Score is a metric which is calculated from Precision and Recall and combines them into a single number.
It uses the harmonic mean, which penalizes extreme values more heavily than the arithmetic mean. This
metric is particularly relevant in those cases in which there is an uneven class distribution or when both
FP and FN carry important consequences. The equation of F1 Score is defined as follows:

𝐹𝐹1 =
2  ×  Precision ×  Recall

Precision + Recall

3.1.9 COCO Eval
COCO eval is an evaluation protocol used in the COCO dataset, a widely used benchmark for object
detection as well as other computer vision tasks. COCO eval has the feature of giving performance metrics
about different IoU overlaps, and different area sizes. This gives us a detailed understanding of a model’s

14

strength and weaknesses, as well as allowing fair comparison between models. The following paragraphs
explain basic concepts (Area, maxDets) and metrics (AR, AP):

Area
The ground truth contains bounding boxes of objects of different types. COCO eval groups them into three
categories: small, medium and large. The metrics are calculated for each of these object sizes which gives
insights into how the model performs at different sizes. Small objects tend to be the hardest to detect,
while large objects are generally easier to localize.

maxDets
MaxDets defines the maximum number of bounding box predictions per image that are retained for
evaluation. In the COCO protocol, common settings for maxDets are one, ten and one hundred predictions
per image to simulate different detection budgets. A low maxDets forces the model to output only its
highest confidence detections, usually increasing precision at the expense of recall. By contrast, high
maxDets allows more predictions, which raises recall but also increases the risk of false positives.
Evaluating performance across these settings reveals the tradeoff between detection coverage and error
rate.

AR
The COCO evaluation extends single threshold recall into Average Recall (AR) by computing recall at ten
equally spaced IoU thresholds from 0.50 to 0.95 and then taking the mean. By averaging recall over these
overlap criteria, AR captures the model’s ability to find objects under varying localization strictness,
offering a complete perspective on missed detections alongside Average Precision (AP), which is explained
below.

AP
To deliver a more comprehensive evaluation, the COCO eval methodology replaces single-threshold
precision with AP, which aggregates performance across multiple IoU criteria. Formally, AP is defined as
the mean area under the precision recall curve over ten evenly spaced thresholds from 0.50 to 0.95:

APCOCO  =  
1

10
� � pt(r)

1

0

10

t=1
 dr

Where pt(r) denotes the precision at a recall level r.

3.2 Setup
This subsection presents the experimental framework used to conduct the evaluation. It includes the
prediction combination strategy, fault injection methodology, models, hardware platforms, validation
dataset, and the COCO evaluation protocol used for validation.

3.2.1 Aim of the experiments
The aim of the experiments is to evaluate the impact of implementing Diverse Redundancy Schemes (DRS),
as outlined in SAFEXPLAIN Deliverable D2.2 (Section 3.1 and Table 2), on the quality of object detection
outputs. This is measured through COCO evaluation metrics explainedin subsection 3.1.9. In addition, the

15

experiments assess the the schemes' ability to maintain overall system performance during runtime in the
presence of failures. For that, we have implemented a fault injection campaign, adapting the bit-flip
methodology from D2.2 (Section 7.1.2.1) as explained in 3.2.2 to mimic random hardware faults,
systematic errors, or model insufficiencies.

The tested DRS configurations align with D2.2 framework for varying Diagnostic Coverage (DC) levels:

• DRS_1 (Low coverage): Lockstep execution with replicated models on the same or diverse
platforms (e.g., GPU-GPU or GPU-CPU), addressing traditional functional safety risks and making
the system fault tolerant with theoretically identical computations.

• DRS_2/DRS_3 (Low to medium coverage): Inference platform and development diversity, such as
combining PyTorch and TensorRT frameworks to mitigate framework-specific systematic faults
and variations introduced during model export/optimization.

• DRS_4 (Medium to high): Combination of DRS2 and DRS3, which address AI and traditional FUSA
risk factors together with performance insuffiencies.

• DRS_5 (Medium to high coverage): Concept diversity pairing standard object detection (e.g.,
pairing standard object detection with part-based detection (e.g., body parts like head, torso,
limbs)) to handle AI insufficiencies like occlusions or noise.

3.2.2 Combining Predictions with a Decision Function
The rationale for combining predictions with a decision function is detailed in the “3.1.1 Decision Function”
section of deliverable D2.2. It presents three decision functions: averaging, voting and NMS. The following
experiments use NMS (Subsection 3.1.4) which tends to improve recall by ensuring more predicted objects
are retained, but it does not necessarily improve precision, as valid detections with lower confidence might
be suppressed.

3.2.3 Fault injection methodology
All experiments were carried out under controlled stress conditions by injecting small perturbations into
the weights of the first convolutional layer of YOLO Convolutional Neural Network (CNN). This layer, which
contains 32 kernels of size 3×3×3 (a total of 864 weights), was selected because it forms the basis of all
subsequent feature extraction. By altering these early weights, we simulate hardware faults, systematic
errors or model insufficiencies.

Adapting D2.2's bit-flip methodology (Section 7.1.2.1), we use seeded random noise addition to simulate
transient faults in early layers. To generate the perturbations, a noise tensor N with the same shape as the
weight tensor W was created via the PytTorch’s “torch.randn_like(W)” function as follows:

𝑁𝑁 = torch. randn_like(W) ∗ 0.01

This produces samples from a normal distribution N(0, 0.01), so that roughly 99.7% of noise values lie
within ±0.03. Before each inference passes, we add N to W, yielding modified weights Wʹ = W + N, and
then perform a forward pass. A fixed random seed guarantees that each run is reproducible, while
regenerating N per image ensures that every inference experiences a distinct perturbation.

16

3.2.4 Underlying Platforms
All benchmarks were conducted on the NVIDIA Jetson AGX Orin platform. The NVIDIA Jetson AGX Orin is
designed for embedded real-time systems, featuring 32GB of unified memory and efficient power
consumption. It operates at a maximum of 50W, with reduced power usage in lower-performance modes.
Unless otherwise specified, benchmarks utilized the GPU exclusively, except for the diverse platform
benchmark, which leveraged both GPU and CPU

3.2.5 Validation dataset
The dataset used is the Common Objects in Context (COCO) -2017 validation split. It contains 5000 images
and 80 objects. Regarding classes, coco dataset has 80 classes which are imbalanced, meaning that there
are more objects of certain classes, like person which is 30% of the validation dataset. experiments do not
focus on specific classes, but on the entirety of the dataset classes.

3.2.6 Coco Eval Validation Methodology
COCO eval has been used for experiments which are explained in depth section 3.1.7. In the results, we
present the following metrics:

Table 1. Metrics and associated identifier employed for the assessment

ID Metric
AP1 AP @IoU=0.50:0.95 (all areas, maxDets=100)
AP2 AP @IoU=0.50 (all areas, maxDets=100)
AP3 AP @IoU=0.75 (all areas, maxDets=100)
AP4 AP @IoU=0.50:0.95 (small areas)
AP5 AP @IoU=0.50:0.95 (medium areas)
AP6 AP @IoU=0.50:0.95 (large areas)

3.2.7 Models
The baseline object detection model for this study is YOLOv8x which is a convolutional neural network
comprised of 68.2 million parameters. YOLOv8x processes input images at 640 × 640 pixels by default, with
non-standard resolutions handled through upsampling or downsampling.

For the Diverse Concept experiment a custom body part detection model was trained based on the
YOLOv11x architecture. This model detects whole person’s and specific body parts1. It has been trained
on a relabeled COCO 2014 dataset augmented with DensePose annotations and background images,
containing 13,483 training images and 2,215 validation images. The model, trained on an NVIDIA RTX 4090
for 70 epochs with a batch size of 22 and 640px image size, achieves an overall mAP50 of 0.926 and mAP50-
95 of 0.624 across all classes, with strong performance on person (mAP50: 0.993) and head (mAP50: 0.993)
detection.

1 Body parts: Person, Head, Torso, Upper Arm, Lower Arm, Upper Leg, Lower Leg, Hand, and Foot

17

3.3 Results
This section presents results from three experiments testing Diverse Redundancy Schemes (DRS_1: diverse
platforms (Sections 3.3.2.1 and 3.3.2.2), DRS_2/DRS_3/DRS_4: framework diversity (Sections 3.3.3 and
3.3.3.2), DRS_5: concept diversity (Sections 3.3.4.1) from Section 3.2.1. We evaluate their impact on object
detection quality using COCO metrics, checking performance in fault-free and fault-injected scenarios.
Before presenting the experimental results, we conduct a preliminary analysis of the dataset used, which
helps contextualize and interpret some of the observations discussed later in this section.

3.3.1 Preliminary Dataset Analysis
We provide an overview of the classes’ distribution of the COCO-2017 training and validation datasets
inFigure 1 and Figure 2. The blue bars depict the number of instances per class in the training dataset,
while the orange bars correspond to the validation set. As shown, the distribution is clearly non-uniform.
In fact, the class “person”, is the by far the most presented, with 262,465 appearances in the training set
and 11,004 in the validation set, followed by car and chair. At the tail end of the distribution, classes like
"hair dryer" are much less frequent, appearing only 198 times in the training set and 11 times in the
validation set.

Figure 1. Distribution of classes in the COCO training dataset

18

Figure 2. Distribution of classes in the COCO validation dataset

3.3.2 Diverse Redundancy Techniques
3.3.2.1 Diverse Input Image Transformations
In this subsection, we introduce the evaluation (YOLO implementation, dataset, evaluation metrics, and
fault injection framework), we discuss the results obtained with each image transformation when
executing a single model, and we discuss the results obtained with our scheme, considering the different
image transformations and results merging schemes in fault-free and faulty scenarios.

The evaluation and the set-up of this this particular technique differs from the rests. Instead of the
evaluation devised for the different domains, we have explored and tailored the technique to work in the
automotive domain, and hence, the setup used for this technique differs to that of the others.

3.3.2.1.1 Setup
We use a 32-bit floating point Tensorflow Keras implementation of YOLOv42 [1] with the publicly available
pre-trained YOLOv4 parameters with the training subset of the COCO dataset [2]. We evaluate our
proposal using the default 608x608 (image width x image height) network size of YOLOv4. We evaluate
our proposal with COCO, using the validation subset, and keeping only those images that contain objects
such as vehicles and pedestrians, which leaves 870 images for evaluation.

However, the COCO dataset is not specific to AD, hence we have also evaluated our scheme with the KITTI
dataset, designed specifically for AD applications. The KITTI dataset contains 7481 images captured from

2 Different to the other techniques since this one allowed us to explore a number of fine-grain optimizations such as
running redundant layers at once reusing weights to improve data locality without affecting the overall concept

19

onboard vehicle cameras, and also includes three temporally preceding frames of each image, but
captured at a very low FPS, which makes detections across images highly independent. Hence, we resorted
to evaluating each image independently. The main limitation when using the KITTI dataset with the
pretrained YOLOv4 model is that some classes (e.g., bus) are not labelled, and some classes (e.g., person,
and motorbike) have significantly different labelling policies to those of COCO. Therefore, we have
restricted our evaluation with the KITTI dataset to those classes with fewer discrepancies to obtain
accurate results (i.e., car, van, and truck object classes). Another difference w.r.t. the COCO dataset is that
the KITTI dataset includes some regions of the image – mostly background regions – that have not been
labelled. Therefore, predictions made within these unlabelled zones are ignored during the evaluation
process.

As evaluation metrics, we use the Accuracy (ACC) and Mean Average Precision (mAP). To obtain those,
first we have to compute the Intersection over Union (IoU), i.e., the fraction of the intersection of the
bounding boxes w.r.t. the union of those bounding boxes. In particular, we do so for the final objects
detected by our proposal and the ground truths. Since the detection process is stochastic and subject to
some variation, whether an object is regarded as detected or not is done with a threshold, which in our
case is 0.5, as set in other works [3]. This leads to TP if the IoU is above the threshold, FP if the IoU is below
the threshold for a predicted object, and FN if the IoU of a groundtruth is below the threshold.

The mAP is a more complex metric that is often the reference for object detection evaluation. It builds on
the AP metric presented before, and averages it across the different object classes. We refer the interested
reader to other publications for detailed explanations of this metric [4].

Regarding our fault injection campaign, we focus on random hardware faults impacting the computation
(i.e., transient faults). We have injected a single transient fault per image in the result generated by
multiplication or addition operations of the convolutional layers, as these layers account for over 99.5% of
the total number of operations to process an image. Furthermore, random faults have only been
considered to affect the sign or exponent of the floating-point number representation (i.e., 9 highest order
bits), since random bit flips in the mantissa are mostly masked and do not lead to semantic changes in the
outputs of the model. This level of control in the fault injection is possible due to the use of YOLOv4, since
newer versions of YOLO build on frameworks imposing additional limitations in the way faults can be
injected.

In fact, Tensorflow Keras (used in YOLOv4) poses difficulties to inject faults in the intermediate results of a
layer, since layers operate as black boxes. To overcome this limitation, we have implemented a custom
convolutional layer (same functionality but less efficient implementation). We choose an operation
(addition or multiplication) randomly across all those operations in all convolutional layers. To inject a fault
in a specific result of a specific layer, we execute the Keras model until the previous layer, replace the target
layer with our custom one, inject the fault as needed (flipping a random bit in the sign or exponent), and
resume the execution of the Keras implementation from the following layer onwards passing the result of
our custom layer as needed.

The image transformations and the corresponding fine-tuned parameters that we have used are as
follows:

• Applying histogram equalization (EQ). No parameters needed.

• Image sharpening (SH). Parameters: kernel = ((0, -1, 0), (-1, 5, -1), (0, -1, 0)

20

• Dropout (DR) by setting some pixels to zero. Parameters: percentage = 0.05

• Applying Gamma correction (GC). Parameters: gamma = 1.5

• Blurring the image applying a Gaussian filter (GB). Parameters: kernel_size = 5

• Applying Gaussian noise (GN). Parameters: mean = 0, sigma = 10

• Blurring the image applying the median filter (MB). Parameters: kernel_size = 5

• Adding salt and pepper pixels (SP). Parameters: low = 0, up = 25

• Raising pixel values by a set amount (RV). Parameters: power = 0.9

• Shifting the image some pixels to the right (RS)32. Parameters: pixel_shift = 5

• Shifting the image some pixels to the left (LS). Parameters: pixel_shift = 5

• Shifting the image some pixels to the top (TS). Parameters: pixel_shift = 5

• Shifting the image some pixels to the bottom (BS). Parameters: pixel_shift = 5

• Rotating the image clockwise at a certain angle (CR). Parameters: angle = 0.8

• Rotating the image anticlockwise at a certain angle (AR). Parameters: angle = -0.8

• Horizontally flipping the image (HF). No parameters needed.

• Vertically flipping the image (VF). No parameters needed.

3.3.2.1.2 Results of Independent Configurations
Table 2 shows the TP, FP, and FN counts, as well as the ACC and mAP for each image transformation with
the COCO and KITTI datasets.

First, note that the VF image transformation produces very low ACC and mAP results for both datasets,
since the pretrained model has not been trained with vertically flipped objects. However, we keep this
transformation for completeness.

In the case of COCO there are 4 image transformations (TS, RV, HF, LS) providing up to 0.25% higher mAP
than the baseline. For KITTI there are 3 image transformations (EQ, GC, BS) providing up to 0.73% higher
mAP than the baseline.

Note that the pretrained YOLO model used the COCO training subset. Hence, the baseline model was
expected to obtain high accuracy when evaluating similar images (e.g., COCO validation subset), but for
different datasets, such as KITTI, it was indeed expected that some image transformations could surpass
the accuracy of the baseline model by a greater margin.

Table 2. Results of each Image Transformation analysed independently with the COCO and KITTI datasets. Definitions of the
configuration abbreviations can be found before in this section.

3 Note that in the case of shifting transformations, certain pixel rows/columns will be set to 0 as they correspond to
parts of the image that need to be filled in. For example, when applying an RS of 5 pixels, the leftmost 5 pixel columns
will be set to 0.

21

3.3.2.1.3 Results of the Merging Algorithms
We have obtained the TP, FP, and FN counts, as well as the ACC and mAP values for all TMR and DMR
configurations with the relevant merging algorithms, namely Voting, Averaging, and Maximum in the case
of TMR, and only Averaging and Maximum in the case of DMR. Since the number of combinations is too
large to allow reporting data for all those configurations (817 per merging algorithm with TMR, and 154
per merging algorithm with DMR), we show the mAP for all the possible combinations of the image
transformations that we have evaluated in Figure 1, Figure 2, Figure 3, and Figure 4, and the detailed
results for the top-5 (in terms of mAP) for each algorithm in Table 3, Table 4, Table 5, and Table 6.

Figure 4. Sorted mAP for all TMR F(x), G(X), and H(x)
permutations for all merging algorithms using COCO.

Figure 5. Sorted mAP for all TMR F(x), G(X), and H(x)
permutations for all merging algorithms using KITTI.

22

Figure 6. Sorted mAP for all DMR F(x) and G(X) for Averaging
and Maximum using COCO.

Figure 7. Sorted mAP for all DMR F(x) and G(X) permutations
for Averaging and Maximum using KITTI.

Results in these figures are sorted independently for each merging algorithm, meaning that the n𝑡𝑡ℎ best
combination of image transformations for one algorithm may differ for the other algorithms despite being
aligned w.r.t. the X-axis. For example, the combination labelled as 1 in Figure 1 corresponds to "HF, LS, TS"
with Voting, "BL, BL, BL" with Averaging, and "HF, RS, BS" with Maximum. Hence, the X-axis is not labelled
with the specific name of the image transformations used for that particular combination. However,
showing the data this way allows us to get several conclusions for both TMR and DMR scenarios: (1)
Maximum provides consistently the best results in terms of mAP across all merging algorithms; (2)
Averaging is consistently worse, in terms of mAP, than the baseline when using the COCO dataset, but it is
slightly better than the baseline in very few cases when evaluating the KITTI dataset; (3) Voting, for TMR
scenarios, is slightly better than the baseline in some cases; and (4) all merging algorithms provide a
smooth degradation of the mAP across image transformation combinations, hence meaning that, while
some transformations may delve better results than others, there is not a strong dependence on very few
combinations, so the approach provides robust results.

We have analysed the commonalities between the worst-performing set of transformations under each
merging algorithm (i.e., Average, Voting, and Maximum) to determine if any patterns emerge or if each
merging algorithm is unique in these terms. Upon reviewing the results, it is evident that the accuracy of
each merging algorithm is influenced by the presence of poorly performing transformations. However, the
impact varies based on the merging algorithm used:

(1) Average: This merging algorithm is particularly sensitive to poorly performing transformations. If
one of the transformations yields poor results, it significantly degrades the overall accuracy. The
averaging process diminishes the effect of the better-performing transformations by averaging
them with the poor one. This implies that in the Average merging algorithm, consistency in
accuracy across all selected transformations is crucial, and the presence of even a single weak
transformation can lead to poor results.

(2) Voting: This merging algorithm shows a moderate level of robustness against poorly performing
transformations. It generally requires at least two out of three transformations to perform well to
achieve higher accuracy than the baseline. This implies that the occasional low accuracy of a single
transformation does not critically impact the outcome, as long as the other two transformations
have high accuracy.

(3) Maximum: This merging algorithm is the most robust against poorly performing transformations.
In this algorithm, the presence of at least one good-performing transformation can yield results better

23

than the baseline. Even if two transformations perform poorly, the good performance of one
transformation can still dominate and improve the overall outcome w.r.t. the baseline.

Our results indicate that the best combinations are achieved using transformations from the TOP-10 best
accuracy independent configurations (Table 2). Therefore, we could safely ignore combinations involving
transformations with lower independent accuracy, as they are less likely to contribute positively to the
detection accuracy across the different merging algorithms. However, we included all the combinations
for completeness. In summary, while each merging algorithm exhibits different levels of sensitivity to
poorly performing transformations, the key to achieving high accuracy lies in selecting transformations
that perform well independently.

Table 3. TMR results for the top-5 configurations of each
merging algorithm using COCO.

Table 4. TMR results for the top-5 configurations of each
merging algorithm using KITTI.

24

Table 5. DMR results for the top-5 configurations of each
merging algorithm using COCO.

Table 6. DMR results for the top-5 configurations of each
merging algorithm using KITTI.

Results in the tables offer a different angle to our analysis. For the COCO TMR configurations, in the case
of Voting, we note that slightly shifting the original image in one direction is a frequent choice since 9 out
of the 15 choices correspond to top, bottom, left or right shift, HF appears 3 times, RV appears twice, and
GC appears once. In the case of Averaging, the best combination, despite not providing diversity, consists
of using 3 times the BL. RV and GC appear three times, HF appears twice, and GN appears once. Finally, in
the case of Maximum merging, we observe that slightly shifting the original image in one direction is a
frequent choice since 11 out of the 15 choices correspond to top, bottom, left or right shift. HF is the
second most frequent choice with 4 appearances. The best image transformations in the TMR
configurations also work particularly well in DMR scenarios. In particular, in the case of Averaging, the best
combination is also using two baselines, but GC, RV and HF also appear in the top-5 mAP configurations.
Similarly, in the case of Maximum, we observe that slightly shifting the original image in one direction is
also the most frequent choice, and HF is the second most frequent choice. Therefore, the image
transformations that appear in the top-5 configurations work particularly well regardless of the number
of redundant components (i.e., DMR or TMR).

For the KITTI TMR configurations, in the case of Voting, EQ and shifting appear 5 times each, GC appears
4 times, and HF appears once. In the case of Averaging, EQ appears 5 times, HF and GC appear 3 times, RV
and BL appear twice. In the case of Averaging, EQ appears 5 times, and HF and GC appear 3 times. Finally,
in the case of Maximum merging, shifting appears 7 times, EQ appears 5 times, and HF appears 3 times.
Similarly to the COCO dataset, the best image transformations in the TMR configurations also work
particularly well in DMR scenarios. In particular, in the case of Averaging, EQ appears 4 times, RV and GC
twice, and BL and HF appear once. In the case of Maximum merging, EQ appears in all top-5 configurations,
shifting transformations appear 4 times, and HF appears once.

25

In summary, for the KITTI dataset, EQ is a particularly good option since it appears in all the TOP-5
configurations for all merging algorithms, and for both TMR and DMR scenarios, except for one
configuration in the DMR Averaging case. The shifting image transformations works particularly well for
both COCO and KITTI datasets when using a Voting with TMR or Maximum merging algorithm with both
TMR and DMR. The BL works particularly well for the COCO dataset when performing an Average merging,
and the HF and GC are also noteworthy configurations for the KITTI dataset with an Average merging.

For the COCO dataset we note that Voting may increase a bit TPs and decrease a bit FPs. Hence, despite
not providing the best mAP values, it provides an interesting tradeoff since it outperforms the baseline in
all fronts. Averaging, instead, tends to decrease TPs while failing to decrease FPs sufficiently, and it is
systematically worse than the baseline case in both TMR and DMR scenarios. Finally, Maximum tends to
increase TPs and FPs, which is expected since any object being detected by at least one of the three
redundant inferences is regarded as a detection, and hence, a TP or a FP. Still, the combined effect clearly
increases ACC and mAP values w.r.t. the baseline in both TMR and DMR scenarios. Overall, looking at the
results from the COCO dataset, Maximum is clearly the best choice in DMR scenarios since Averaging
produces worse results than the baseline. In TMR scenarios, if we care only about mAP or ACC, Maximum
is clearly the best choice. If, instead, FPs are particularly problematic, Voting is the best solution.

For the KITTI dataset, looking at the mAP values, Maximum is clearly the best choice in DMR scenarios,
providing up to ≈2% more mAP than Averaging, but in this case, all TOP-5 mAP Averaging configurations
have higher mAP than the baseline. However, looking at the ACC, some Averaging configurations have
slightly more ACC than Maximum merging. For instance, the top-mAP configuration with Averaging (i.e.,
EQ, GC) provides a 70,62% ACC while the top-mAP configuration with Maximum (i.e., HF, EQ) provides a
lower ACC of 70,39%. Note that the ACC of some configurations is slightly lower than the baseline, specially
for the KITTI dataset, where only one configuration (i.e., HF, EQ) has an ACC greater than the baseline. We
ascribe this effect to the fact that the KITTI dataset does not properly label all background objects, which
are mostly small, causing more FPs than it should if all objects were properly labelled, which causes a
higher decrease in the ACC whereas the mAP seems not to be as impacted by this effect. We validated this
observation in a subset of images by means of visual inspection, yet could not properly label the full
dataset manually to fully fix this issue.

In the case of TMR, Voting is clearly superior than Averaging for all configurations. However, looking at the
ACC values, these approaches have closer results. Finally, Maximum tends to increase TPs and FPs, but the
combined effect provides the highest mAP values. However, the ACC of the Maximum merging algorithm
is slightly lower than the baseline, due to the same limitations of the KITTI dataset, as previously discussed.

Overall, if we care only about mAP, Maximum merging is clearly the best choice for all the datasets
analyzed. If, instead, FPs are particularly problematic, Voting is the best solution in the case of TMR.

It is worth mentioning that profiling every possible combination of transformations offline and ranking
them, as shown in Figure 1, Figure 2, Figure 3, and Figure 4, is not mandatory each time a new
dataset/model pair is used. We have evaluated the TOP-5 configurations from one dataset on the other
dataset and found out that the differences were not very significant (i.e., 0.28-0.54% lower mAP when
using the TOP-5 configurations of the COCO dataset on the KITTI dataset, and 0.49-1.16% mAP when using
the TOP-5 configurations of the KITTI dataset on the COCO dataset). Our results suggest that a reasonable
approach would be to use the TOP-5 configurations obtained from the COCO dataset when working with
other datasets/models.

26

3.3.2.1.4 Results of Fault Injection Configurations
We have selected the top-mAP and top-ACC configurations for each merging algorithm, network size, and
dataset, and analyzed the impact of random fault injections on this subset of configurations. In the case
of a single configuration providing both the top-mAP and top-ACC, this configuration with both the top-
mAP and top-ACC, and the second highest mAP configuration have been selected instead.

First, we analyze the individual image transformations used in any of the top-mAP and top-ACC
combinations indicated above. Table 7 and Table 8, present the fault-free results as well as the results after
fault injection for those image transformations for the COCO and KITTI datasets, respectively. Note that,
as previously discussed, these configurations correspond to the execution of their respective image
transformation with a single transient fault injected per image. The tables provide the FP, FN, and TP count,
as well as the ACC and mAP. Since some combinations use an ensemble of up to three baselines, we
perform 3 different fault injections in such baseline, which we refer to as BL_1 AF, BL_2 AF, and BL_3 AF.
For the remaining cases we report the fault-free (e.g., LS) and fault-injected cases (e.g., LS AF).

Table 7. Results of the Fault Injection of the individual
image transformations part of the combinations with
the best mAP and ACC for the COCO dataset.

Table 8. Results of the Fault Injection of the individual
image transformations part of the combinations with
the best mAP and ACC for the KITTI dataset.

We observe that, in general, fault-injected configurations have lower TP counts, and also lower FP
counts. ACC and mAP drop similarly for all configurations, with a 2.88% and 3.62% drop on average,
respectively.

27

Table 9, Table 10, Table 11, and Table 12 show the results of our proposal in the non-faulty TMR/DMR
case, as well as in two faulty TMR/DMR cases: (i) with independent faults where, for a given image, only
one of the three configurations is affected by a fault, and (ii) with faults in the same image for all three
configurations. The latter case corresponds to faults that affect the exact same operation across all
components of the system. However, while the faults affect the same operation, the specific bit that is
flipped is chosen randomly for each component. The reason is that each component processes a
different image transformation, and hence, values operated differ, so neither the impact of a fault can be
fully cloned, nor it would have the same effect in practice since, at physical level the current flows differ,
and therefore, the effects of electrical disturbances will also differ. In the fault-free scenarios, which
would correspond to virtually 100% of the time given that faults occur seldom, we obtain the following
conclusion: (1) Voting (in the TMR scenario) and Maximum (in both TMR and DMR) merging algorithms
provide higher mAP and ACC than the Baseline, except for the HF, EQ, LS configuration for the KITTI
dataset in the TMR scenario, where we observe a slight ACC drop w.r.t. the baseline (for reasons
discussed before), (2) Averaging, in both TMR and DMR, only produces better results than the baseline
with the KITTI dataset.

Table 9. TMR results for the best mAP and ACC configurations of each merging algorithm using the COCO dataset.

When faults occur independently, we obtain the following conclusions: (1) Voting, in the TMR scenario,
provides higher mAP and ACC than the Baseline with both datasets. (2) Maximum, in both TMR and
DMR, provides higher mAP and ACC than the Baseline for the COCO dataset. However, for the KITTI
dataset, we observe that the HF, EQ, LS configuration provides higher mAP but lower ACC (for reasons

28

discussed before). (3) Averaging, corresponds to the top-ACC configuration and does not necessarily
have to produce also higher mAP due to the differences between these metrics.

Table 10. TMR results for the best mAP and ACC configurations of each merging algorithm using the KITTI dataset.

Table 11. DMR results for the best mAP and ACC configurations of each merging algorithm using the COCO dataset.

29

Table 12. DMR results for the best mAP and ACC configurations of each merging algorithm using the KITTI dataset.

When faults occur in the same image for all the redundant components, we obtain the following
conclusions: (1) for the COCO dataset, in the TMR case, all merging algorithms provide lower mAP than
the baseline, (2) Voting produces the closest accuracy to the baseline, both in terms of ACC and mAP, (3)
However, in the DMR case, Maximum merging still provides higher accuracy than the baseline even
when faults are present in both images. (4) for the KITTI dataset, both Voting and Maximum have at least
one configuration producing higher accuracy (either both ACC and mAP or only one of the metrics) than
the baseline. For example, the HF, EQ, GC (same frame) configuration with Voting has higher ACC and
mAP, the EQ, GB, LS (same frame) configuration with Voting has lower mAP but higher ACC, and the HF,
EQ, LS (same frame) configuration with Maximum has higher mAP but lower ACC.

We can conclude the following: (1) Averaging is consistently worse than Voting , in the TMR scenario,
and worse than Maximum in all cases. (2) Maximum produces the highest ACC and mAP results in the
fault-free scenarios, as well as when faults occur independently, but for the KITTI dataset, in a TMR
scenario, the ACC of Voting is slightly higher than that of Maximum with all configurations. (3) In a TMR
scenario, Voting produces the highest mAP results with the COCO dataset when faults occur
simultaneously. For instance, the highest mAP obtained with Voting is 60,48% with the RV, LS, TS (same
frame) configuration, whereas the highest mAP obtained with Maximum is 58,75% with the HF, RS, BS
(same frame) configuration. (4) When faults occur simultaneously for the KITTI dataset, Maximum
provides the highest mAP but in a TMR scenario, Voting provides the highest ACC in all cases.

Overall, we can conclude that the Maximum merging algorithm is clearly the best choice in a DMR
scenario. However, when considering a TMR scenario, Maximum merging produces the highest mAP
results, but it provides significantly higher FPs than Voting. Therefore, if FPs are a major concern, Voting
is the best solution, while if the objective is to obtain the maximum mAP, the Maximum algorithm is the
best solution since fault-free operations occurs virtually 100% of the time, and typically faults will not
affect all redundant components at the same time.

30

For completeness, we have also conducted an additional experiment to analyze the mAP trend when
multiple faults are injected within the execution of an image. However, note that this case is very unlikely
to occur since the probability of having a transient fault is extremely low, and hence, accumulating
several of them within a short timeframe occurs with even much lower probabilities. Figure 5 and Figure
6 show this analysis when faults are injected independently, and when faults are injected simultaneously,
respectively. We only show the results of one configuration (i.e., HF,LS,TS) since this configuration is
among the best ones for both Voting and Maximum merging algorithms. We do not analyze the impact
of multiple fault injections with the Average merging algorithm since this algorithm produces poor
results even in non-faulty scenarios. Note that these figures only show one configuration for the COCO
dataset. However, the mAP trends are analogous with other configurations/datasets.

Figure 8. Analysis of multiple fault injections (Independent

faults, "HF,LS,RS" configuration).

Figure 9. Analysis of multiple fault injections (Simultaneous

faults, "HF,LS,RS" configuration).

When independent faults are injected, we observe that the Voting merging algorithm is highly resistant
since even when 10000 faults are introduced, the mAP only decreases by 4.16%. In contrast, the Maximum
algorithm performs significantly worse under these conditions. For instance, Maximum with 100 faults
already performs worse than Voting with 10,000 faults. This difference is mainly due to the fact that
introducing many faults decreases TPs but increases FPs. These added FPs can be discarded using the
Voting merging algorithm, since only one configuration is affected by the independent faults. However,
the Maximum algorithm cannot effectively discard or mitigate these numerous FPs.

When simultaneous faults are injected, the mAP decreases rapidly. The merging algorithms perform worse
with 10 simultaneous faults than with 10000 independent faults. We observe that the Maximum merging
algorithm always performs better than Voting, and the difference in mAP becomes larger as the number
of faults increases. This difference is mainly due to the fact that now faults are being injected into all
components at once, and hence, Voting has difficulties to filter out these faults since all components are
faulty. On the other hand, Maximum does not filter out these faults, but still the number of added TPs
supersede the added FPs w.r.t. Voting.

3.3.2.2 Lockstep Execution
As explained in D2.2 [Section 3.1.2.1, DRS_1], lockstep redundancy (low DC) involves replicating the same
DL model and running identical operations in parallel on the same or different hardware platforms (GPU
or CPU). This approach introduces a fixed delay in clock cycles to avoid common-cause failures.

31

In the Lockstep execution, the models (head and tail),are delayed by 5 cycles. The fault injection is applied
constantly in the head or both head and tail. The fault injection has always the same value.

The following experiments were performed:

• EX1: Model on GPU - baseline model

• EX2: Model on GPU with fault injection

• EX3: Two models in GPU combined

• EX4: Two models in GPU combined, one with fault injection

• EX5: Two models in GPU combined, both with fault injection

• EX6: A model in GPU and a model in CPU combined

AP Table:

Metrics EX1 EX2 EX3 EX4 EX5 EX6
AP1 0.4740 0.1801 0.4707 0.4661 0.1789 0.4707
AP2 0.6052 0.2471 0.6026 0.5982 0.2465 0.6026
AP3 0.5176 0.1954 0.5133 0.5073 0.1931 0.5132
AP4 0.2719 0.0766 0.2709 0.2696 0.0761 0.2709
AP5 0.5280 0.2101 0.5234 0.5216 0.2083 0.5235
AP6 0.6681 0.2573 0.6641 0.6590 0.2556 0.6641

AR Table:

Metrics EX1 EX2 EX3 EX4 EX5 EX6
AR1 0.3595 0.1576 0.3595 0.3592 0.1576 0.3595
AR2 0.5267 0.2073 0.5217 0.5242 0.2051 0.5218
AR3 0.5331 0.2082 0.5279 0.5307 0.2058 0.5279
AR4 0.3018 0.0836 0.3002 0.3017 0.0830 0.3002
AR5 0.5862 0.2363 0.5795 0.5827 0.2337 0.5796
AR6 0.7389 0.2983 0.7327 0.7366 0.2953 0.7327

Results show consistent performance, with EX3 (dual GPU, no faults) and EX6 (GPU-CPU, no faults)
achieving nearly identical Average Precision (AP1@0.50:0.95 = 0.4707 for both, difference ≤0.0001) and
Average Recall (e.g., AR3@maxDets=100 = 0.5279 for both), confirming deterministic behavior and GPU-
CPU equivalence. Fault injection in EX2 reduced performance significantly, dropping AP1 from 0.4740 (EX1,
baseline) to 0.1801 (~62%) and AR3 from 0.5331 to 0.2082 (~60.9%), due to lower detection confidence.
Redundancy in EX4, using Non-Maximum Suppression (NMS) to combine outputs, mitigated single-fault
effects, reaching AP1 = 0.4661 (~98.3% of EX1) and AR3 = 0.5307 (~99.5% of EX1). However, EX5 (both
models faulted) showed persistent degradation (AP1 = 0.1789, ~012% worse than EX2; AR3 = 0.2058),
indicating limited recovery for correlated faults. These findings validate DRS_1’s low diagnostic coverage
(~62% performance loss for single faults, largely recovered by redundancy) and support reliable GPU-CPU
integration for safety properties SP1/SP2.

32

3.3.3 Diverse Framework
This section evaluates the main modifications made to adapt a C-based implementation of YOLO in order
to comply with the MISRA C coding guidelines. The primary objective is to enable the simultaneous
execution of two object detection frameworks, ensuring that the MISRA C-compliant YOLO is executed at
least once every N executions of the other object detector. The adaptation of YOLO aims to mitigate
systematic errors by applying MISRA C recommendations, which is highly encouraged for applications that
must meet high Safety Integrity Levels (SILs).

3.3.3.1 MISRA C-Compliant YOLO for Object Detection
In this subsection we have focused on adapting an AI-based system. Our work has targeted one of its most
relevant functionalities, object detection. To this end, we target YOLOv4, which to the best of our
knowledge, is the most recent Darknet-based version written in C and CUDA. Our efforts are primarily
directed at mitigating potential programming errors in its C implementation to improve reliability and
ensure alignment with functional safety standards. The contributions of this subsection are the following:

1. Analysis of MISRA C compliance within a C-based YOLO object detector using Polyspace Bug Finder
Static Analysis Tool (SAT).

2. Adaptations of YOLO to comply with MISRA C recommended programming practices in order to
comply with the requirements of safety standards.

3. Integration analysis of our adapted YOLO implementation within a safety architectural pattern,
exploring its role as a diagnostic mechanism, and validating the behavioral consistency of the
compliant framework by comparing its results against those of the original implementation using
the COCO dataset.

For that, we have started analyzing the MISRA C compliance of the original C-based YOLOv4, and
subsequently we have presented the modification made to the original YOLO v4.

3.3.3.1.1 Systematic Error Avoidance In AI-Based Object Detection
Polyspace generates a report listing all MISRA C violations after analyzing the 89 source files used by YOLO,
which consist of 41,477 lines of code (33,231 after extracting comments). From this report, we extracted
the number of violations by file and by violation type and depicted them in Figure 8. This figure shows
advisory4 violations in grey, mandatory5 violations in pink, and required6 violations in green. In the top-
right corner, a pie chart shows the distribution of violations by type, revealing that most violations are
required (65%), almost none are mandatory (5%), and the remaining are advisory (30%). The x-axis labels
in blue correspond to files with required layer functionalities. The upper graph displays the 41 files with

4 Guidelines that should be followed when reasonably practicable, but they do not require a formal deviation
process.

5 Guidelines for which deviation is not allowed.

6 Guidelines that must generally be followed, but deviation is allowed if it is properly justified, documented, and
authorized and a formal deviation process is followed.

33

the highest number of violations (16,820), accounting for 93.56% of the total violations (17,976), while
the lower graph shows the remaining 48 files (note that the y-axis scale differs between the two bar
graphs).

Figure 10. YOLOv4 violations decomposed by files

Additionally, we have collected in Table 13 the 15 most frequently violated rules in the entire YOLO from
the results provided by Polyspace, limiting the displayed files to those with the highest number of
violations. From this table, it can be observed that violations of these 15 rules in the 24 selected files
account for 12,239 violations (68.07% of the total), increasing to 14,742 (82%) when considering all files.
More specifically, the 28.69% of violations are concentrated in data.c, detector.c, image.c, and parser.c
files. These are the largest files, where the network and layer configurations are performed—an area that
is prone to MISRA C violations, as will be explained.

34

Table 13. Summary of main rules and files violations

3.3.3.1.2 Corrective actions
This subsection addresses the main corrective actions performed to adhere to MISRA C guidelines. Since
our work focuses on the inference phase, where the model features remain fixed, it is possible to avoid
dynamic memory allocation and properly store the configuration parameters. These are the first corrective
actions discussed in this section, followed by general corrective actions to address the most frequently
violated guidelines.

Memory Allocation Strategy: The original darknet-based YOLO initially focuses on configuring the network
and parsing the layers from information extracted from external files. These include “yolov4.cfg”, for
network and layers configuration, “coco.names”, for class labels for which the model has been trained and
“yolov4.weights”, for the model’s learned parameters, among other configuration files involved in the
setup.

Accessing this information from files relies on input/output functions, which violate rule 21.6 (1013
violations throughout the code). Once opened, some data needs to be stored as integers or floating-point
values, while the provided information is in string format. The original YOLO uses conversion functions like
“atoi” and “atof”, which are forbidden according to rule 21.7 due to their undefined behavior when
conversion fails (34 violations). Additionally, it frequently allocates memory dynamically using macros
expanded into functions such as “malloc” from <stdlib.h> library, violating rule 21.3 (386 violations) and,
by extension, directive 4.12, which is explicitly enforced throughout this rule.

Since our work focuses on adapting the inference phase of YOLO, where the model and its associated
features remain fixed and do not require further tuning, safeYOLO eliminates the previously mentioned
issues by adopting a static memory allocation strategy. It embeds preloaded and preconverted
configuration data directly into the final configuration structure and embeds the model’s learned
parameters—biases, rolling mean, scales, activations and weights—and the outputs in source and header
files using the raw IEEE 754 binary format to ensure floating-point precision and reproducibility.

35

Network Parameters Storage: Regarding the configuration structs, we use the same structs in which
network and layer configuration are stored at runtime in the original YOLO but generate a template with
predefined default values for each entity. This ensures that all values are initialized before being used and
that structs are not left partially initialized, aligning with rule 9.3 for arrays and rule 9.1 for variable
initialization. Although rule 9.1 does not explicitly extend to structs, we consider it good practice to apply
the same principle.

Our design allows AI developers to modify this configuration structs for their specific applications in an
intuitive way. However, care must be taken to avoid multiple initializations of the same entity, as this would
violate rule 9.4. Additionally, the original defensive programming mechanisms are preserved but adapted
to ensure all configuration values remain within the expected range.

General Corrective Actions: The rest of this subsection collects the general corrective actions applied to
comply with MISRA C, grouping them according to the categories defined in MISRA C and indicating, in
brackets, the total number of violations for each explained category.

• Identifiers (914). This category states that identifiers (macros, typedefs, tags, functions, etc.) must
be unique regardless of scope, namespace, or linkage (internal/external). The most frequently
violated rule is rule 5.8, with 318 violations, which specifically forbids using the same name for
objects or functions with external linkage. To address this, we have renamed them accordingly.

• Literals and constants (874). Its main aspects involve enforcing proper suffixes for data types,
such as “u” for unsigned integers and “f” for floating-point numbers and preventing non-const
assignments of string literals to pointers. The latter is the most violated (rule 7.4), with 849
occurrences. This rule prevents attempts to modify string literals, which can result in undefined
behavior. For example, C99 does not explicitly specify whether string literals that share a common
termination must be stored in separate memory allocations. Consequently, modifying a string
literal could inadvertently alter another one. To prevent this, we have explicitly defined them as
const-qualified.

• Declarations and definitions (1392). It focuses on avoiding ambiguities and potential conflicts
across translation units by providing guidelines for properly declaring and defining functions and
variables (appropriate linkage, scope, visibility, etc.). The most frequently violated rule is rule 8.4
(379 violations), which states that objects or functions with external linkage must have a
compatible declaration. Additionally, rule 8.7 (423 violations), an advisory rule, specifies that
objects or functions referenced in only one translation unit should not be defined with external
linkage. To address these violations, we have placed the declarations of external functions and
variables in header files accessible by the required translation units. For functions or variables
used in only one translation unit, we have restricted their visibility by employing internal linkage
using the static keyword.

• The essential type model (4303). This category aims to enforce a robust type-checking system,
reducing the risk of issues such as loss of value, sign, or precision due to improper type
conversions. It requires that both implicit and explicit type conversions be carefully checked and
controlled to ensure type compatibility and prevent potential problems during execution. The
rules in this category emphasize using well-defined, compatible data types and avoiding complex
or unsafe type casting, ensuring that type mismatches are minimized. The most frequently
violated rules in this category are rule 10.1 (480 violations), rule 10.3 (2098 violations), and rule
10.4 (1527 violations). To address these violations, we have specifically employed appropriate

36

essential types, avoided assignments to narrower essential types, and ensured the use of
compatible essential types in arithmetic operations, respectively.

• Pointer type conversions (959). It defines the conversions permitted and those that must be
avoided due to potential unexpected behaviour, such as conversions between pointers and any
arithmetic types other than integers, which can result in incorrect memory alignment. In this
category, rule 11.5 (597 violations) is the most frequently violated. As an advisory rule, compliance
has been ensured as much as possible; for any exceptions, it has been verified that pointer
conversions do not lead to undefined behavior.

• Expressions (3037). It centers on avoiding comma operator, limiting the right-hand operands of a
shift operator with a top range lower than the width in bits of the essential datatype or explicitly
defining the precedence of operators within expressions, among others. Rule 12.1 is the most
violated (3003 violations) and we have explicitly defined the precedence using parentheses to
make the order of execution clear, as MISRA C recommends.

3.3.3.1.3 SafeYOLO Integration
This subsection describes the integration of the previously introduced safeYOLO into a real-time safety-
critical system. One of the main limitations of the proposed safeYOLO approach is its sequential execution.
The strategy adopted to minimize systematic faults—relying on the widely used C programming
language—restricts the performance achievable by safeYOLO. To address this limitation, the integration
strategy leverages safeYOLO as a periodic diagnostic mechanism for detecting runtime faults. Specifically,
we propose a diverse redundancy scheme, as is depicted in Figure 9, as outlined in IEC 61508, to enhance
fault detection capabilities while maintaining system reliability.

Figure 11. SafeYOLO integration with a GPU-based implementation

Since the execution time of the CPU-based safeYOLO implementation is higher than that of accelerator-
based implementations such as GPUs, safeYOLO shall be synchronized with original YOLO to periodically
evaluate the same image. A semantic comparison of the results explicitly verifies the proper behavior of
all the components and built-in mechanisms, such as cache coherency, employed in the underlying
platform. In Figure 9the subindex of GPU and CPU refers to the processed image index, numbered
progressively based on their appearance. We conducted timing performance experiments to assess the
feasibility of our proposal by measuring the average execution time over 5,000 images from the COCOeval
validation dataset2. The safeYOLO implementation was deployed on the ARM Cortex-A78 cores, while the
GPU-based implementation ran on the CUDA cores of the Ampere architecture in the NVIDIA Orin AGX
GPU. The results indicate that the execution time of safeYOLO is 72 times higher than that of the original
GPU-based implementation. Then, the applicability of our solution depends on whether this execution
time remains acceptable within the Process Safety Time (PST) of the specific safety-related application.
We employed COCOeval3, the official evaluation tool of the COCO dataset, to quantitatively compare the

37

object detection performance of our MISRA C-compliant framework against the original YOLO. The
evaluation was conducted over the COCOeval validation subset using standard metrics such as Average
Precision (AP) and Average Recall (AR) across different object sizes and IoU thresholds. The results show
that both implementations yield identical evaluation scores, confirming that our modifications—primarily
focused on achieving MISRA C compliance and eliminating dynamic behaviors—do not alter the detection
performance. This outcome is consistent with expectations, as the inference logic and model parameters
remain unchanged. Thus, we validate the introduced changes preserve functional equivalence while
enabling a step towards a safe end-to-end safe AI-framework.

3.3.3.1.4 Conclusions
The adaptation and the experiments regarding the adaptation of YOLO according to MISRA C
recommendations has led to safeYOLO, a statically memory-allocated version of the YOLO object detector
that complies with MISRA C guidelines. We analyze the key corrective actions applied to address the
17,976 violations detected by Polyspace Bug Finder SAT across YOLO’s 41,477 lines of code. The Polyspace
analysis reveals that 15 rules account for 68.07% of the total violations, with 28.69% of all violations
concentrated in just 4 out of the 89 files used by YOLO. We have described the main corrective actions
undertaken to comply with MISRA C, resulting in a YOLO version with no required or mandatory violations,
emphasizing the transition from dynamic to static memory allocation and our proposed configuration
storage strategy. We also discuss general mitigation actions applied to address the most frequently
violated rules.

3.3.3.2 Diverse Framework – TensorRT and Pytorch
As explained in D2.2 [Section 3.1.2.4, DRS_2], diverse framework redundancy (low to medium diagnostic
coverage) involves replicating the same DL model and running it on different inference frameworks (e.g.,
PyTorch and TensorRT). This approach combines outputs to detect differences and mitigate faults.

The following experiments were performed:

• EX1: Single TensorRT model (baseline)

• EX2: PyTorch GPU and TensorRT models combined

• EX3: PyTorch GPU model with fault injection and TensorRT model combined

Fused AP Table:

Metrics EX1 EX2 EX3
AP1 0.4740 0.4750 0.4659
AP2 0.6053 0.6092 0.5983
AP3 0.5174 0.5172 0.5078
AP4 0.2723 0.2750 0.2699
AP5 0.5300 0.5302 0.5238
AP6 0.6689 0.6689 0.6589

38

Fused AR Table:

Metrics EX1 EX2 EX3
AR1 0.3611 0.3633 0.3609
AR2 0.5286 0.5298 0.5255
AR3 0.5350 0.5363 0.5321
AR4 0.3029 0.3070 0.3027
AR5 0.5901 0.5899 0.5871
AR6 0.3611 0.3633 0.3609

Diverse framework redundancy effectively enhances fault tolerance by replicating a deep learning model
across PyTorch and TensorRT. Experiments demonstrate that EX2 (PyTorch GPU and TensorRT combined)
achieves slightly improved performance over EX1 (single TensorRT baseline), with Average Precision
(AP1@0.50:0.95 = 0.4750, +0.2%) and Average Recall (AR3@maxDets=100 = 0.5363, +0.2%), maintaining
consistency across runs and stable recall for specific conditions (e.g., AR6 = 0.3633). Fault injection on
PyTorch in EX3 reduces performance (AP1 = 0.4659, ~98.2% of EX2; AR3 = 0.5321, ~99.2% of EX2), but
combining with TensorRT mitigates single-fault effects, recovering performance close to the baseline.
These results confirm DRS_2’s low to medium diagnostic coverage, validating its ability to detect and
mitigate random and systematic faults for safety patterns SP1/SP2.

3.3.4 Diverse Concept
As explained in D2.2 [Section 3.1.2.5, DRS_5], diverse concept redundancy involves developing two DL
models based on complementary but distinct concepts, aiming at the same goal. The first Diverse Concept
implementation is Part Detector where a model detects the whole object while the diverse redundant
model detects specific parts of the object.

3.3.4.1 Part Detector
In this case, we evaluate a diverse concept redundant implementation of an application based on one
model for holistic object detection (e.g., identifying a "person") and another for object part detection (e.g.,
detecting sub-components such as head, torso, arms, legs, hands, feet). This scheme employs DL model
diversity on the same inference platform, addressing both AI-related and traditional functional safety risk
factors, while also mitigating AI performance limitations.

Outputs from these two models are fused using a decision function, to identify inconsistencies. For
example, a detected person without supporting parts might indicate a FP, whereas detected parts without
an associated person might reveal a FN, potentially enabling error detection. This "part voter" mechanism
enhances error detection and recovery by leveraging semantic complementarity, as object parts provide
redundant evidence for robust detection, especially under faults such as noise or occlusions.

The following experiments were performed:

• EX1: Baseline: Single YOLOv8x detecting the person class.

• EX2: Baseline with fault injection: YOLOv8x detecting people under fault injection.

• EX3: Part detector: Custom part detection model which detects the class person as well as parts
(evaluated for person detections only).

39

• EX4: Part detector with fault injection: Custom YOLOv11x detecting persons and parts under fault
injection (evaluated only for person detections).

• EX5: Part Voter: Combined baseline detector and parts

• EX6: Part Voter with fault injection in the baseline model

• EX7: Part Voter with fault injection in the part detector

• EX8: Part Voter with fault injection in both models

AP Table:

Metrics EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8
AP1 0.6485 0.4786 0.3287 0.3259 0.5637 0.4624 0.5627 0.4591
AP2 0.8620 0.7030 0.4410 0.4400 0.7580 0.6630 0.7570 0.6620
AP3 0.7090 0.5150 0.3440 0.3420 0.6040 0.4840 0.6020 0.4800
AP4 0.4420 0.2850 0.0140 0.0150 0.3280 0.2060 0.3320 0.2090
AP5 0.7320 0.5720 0.3980 0.3930 0.6360 0.5380 0.6280 0.5320
AP6 0.8480 0.6690 0.7670 0.7580 0.8270 0.7690 0.8240 0.7570

AR Table:

Metric EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8
AR1 0.2130 0.1770 0.1740 0.1740 0.2080 0.1910 0.2070 0.1890
AR2 0.6400 0.5010 0.3550 0.3530 0.5760 0.4850 0.5730 0.4810
AR3 0.7393 0.6074 0.3707 0.3688 0.6297 0.5381 0.6274 0.5345
AR4 0.5720 0.4180 0.0090 0.0100 0.4320 0.3060 0.4360 0.3090
AR5 0.8130 0.6890 0.4490 0.4470 0.6770 0.5910 0.6690 0.5850
AR6 0.9020 0.7950 0.8340 0.8270 0.8760 0.8310 0.8710 0.8220

These results clearly illustrate both the strengths and limitations of diverse concept redundancy. The Part
Voter without fault injection reduces AP by approximately 13.1%, primarily due to strict voting criteria that
inadvertently discard valid detections lacking sufficient parts evidence. Fault injection transparently
degrades mono performance: Baseline AP drops significantly (~26.2%) due to spurious detections caused
by injected noise, while Part detector AP exhibits greater resilience (~0.8% drop). Under single faults, the
Part Voter shows mixed recovery effectiveness: with fault injection in the baseline model, performance is
reduced by ~3.5%, whereas with fault injection in the part detector, performance nearly restores the
original Part Voter result (within 0.2%). With fault injection in both models, AP drops strongly (~18.6%),
indicating limited robustness against correlated noise.

4 DL Safety Lifecycle for DL-software V&V
The figure 10, has the goal to show the component-level V&V strategy objectives, such as:

1. the verification of the intended functionality; and

2. the systematic improvement of the system, where such improvement is ensured.

40

The process starts through an examination of the identified triggering conditions, which will be assessed
to validate whether it is adequately mitigated by an existing safety measure.

When a triggering condition it is not covered by a safety measure, it is necessary to update the system
specifications and therefore their implementation, whereas, when a condition is already covered by a
safety measure, a test case is derived, which is useful to evaluate the intended functionality behaviour.

Once all test cases are created and executed, resulting data shall be analysed to:

• Create evidence that the intended functionality behaves as expected, in case of passed tests.

• Implement needed corrective action by updating system specification and implementation
according to root cause analysis results, in case of failed tests.

Figure 12. component-level V&V strategyScenario catalogue and related test matrix

The V&V strategy is initiated from the scenarios, which are created in accordance with the related ODD
(where is defined every specific condition).This facilitates the analysis of the hazardous situation, which
has the potential to impact on the safety of the vehicle.

The validation of the created scenarios is to be conducted by means of tests assisted by test case
specification derived from the scenarios themselves, which will be useful for the tester as evidence for the
result of the test executions.

Below some descriptive pictures of the derived scenarios for each use case we worked on:

Automotive use case:

41

Railway use case:

Aerospace use case:

42

For a more comprehensive overview of the part of V&V strategy which concerns the scenarios catalogue
and the related test matrix, please refer to the deliverable D2.3(see clause "Scenario catalogue and related
test matrix").

4.1 System-Theoretic Process Analysis (STPA)
STPA is a hazard analysis technique that has been developed for the purpose of evaluating the safety of
complex systems and identifying potential specification insufficiencies.

 According to the established specifications, including the Item Definition, potential losses of functionality,
that may lead to hazardous behaviour, have been identified. Appropriate improvements have been
implemented to mitigate these risks.

A set of requirements are created from them, which are necessary to prevent or manage the hazards in
question.The STPA method is divided into two sides:

• the analysis of the hazardous behaviours, see 4.2.1 Triggering Condition and related Test
Matrix

• The potential improvements to mitigate the found hazardous behaviour, see 4.2.2 STPA:
Safety Measures to mitigate the hazardous behaviour

For a more comprehensive overview of the part of V&V strategy which concerns the STPA, please refer to
the deliverable D2.3(clause 3.2. Focus STPA (triggering condition) and related test matrix)

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR
https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

43

4.1.1 Triggering Condition and related Test Matrix
Triggering conditions have been shown to act as the initiator of a chain reaction which can bring to
hazardous behaviours.These conditions, which may occur during normal use, could cause a safety risk due
to the limitations of the system.

The functionality of the system is dependent on various environmental and situational factors, including
but not limited to:

• sensor limitations, such as blind spots, which may affect the range over which the system
can detect environmental stimuli

• ambiguous situations, where the system may misinterpret the environment

• other factors

The fundamental characteristic of triggering conditions is that they represent scenarios that are
foreseeable, where it is the system's design limitations, rather than malfunctions, that create potential
safety risks. These risks must be identified and addressed during the development process.These found
triggering conditions will be validated through dedicated test execution aided by dedicated test case
specifications.

The part of the V&V strategy related to the analysis of the hazardous behaviours which contains the
analysis of the triggering condition related to them is explained in the deliverable D2.3(3.3. Example of
V&V strategy application).

4.1.2 STPA: Safety Measures to mitigate the hazardous behaviour
 A comprehensive analysis of hazardous behaviours is useless unless a method of preventing them is
identified. The final step of the STPA method focuses, in fact, on improving the system to eliminate the
risk (with the option to accomplish S=0 or C=0).

The hazardous causes are exposed by the found triggering condition which causes the chain reaction till
the analysed hazardous behaviour.

The scope of STPA is mitigating the risk of occurrence related to the found triggering condition by
implementing some safety measures, such as:

• System modification as measure which have the goalto maintain the intended functionality as
much as possible, such as:

o Increase the sensor performance and/or accuracy, which can be improved by:

 Sensor technology improvements

 Sensor calibration and installation improvements

o Increase the actuator performance and/or accuracy by improving the actuator technology

 Speed up image processing with enhanced computing power

 using a machine learning accelerator or operation-efficient hardware

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

44

o Increase the performance and/or accuracy of the recognition and decision algorithms by
algorithmic modifications

o Increase the visibility of the ego vehicle to enhance the controllability of other traffic
participants in case of hazardous behaviour of the ego vehicle (e.g., installation of retro-
reflectors, turn indicators, active sounds, etc.)

• Functional restrictions as measures which have the goalto partial maintain the intended
functionality by degrading it:

o Handing over authority as measure which have the goal to increase the controllability at
lower levels of driving automation, by communicating to the driver to take over the
driving task, modifying the Human-Machine Interface (HMI) or the user notification and
DDT fallback strategy

• Addressing reasonably foreseeable misuse as measure which have the goal to address the
misuses:

o Customer education (information and training)

o Improving the HMI to support the driver by providing the correct operation

o Implementation of a driver monitoring and warning system

o When the safety measures are implemented, they could produce unintended
consequences, hence monitoring and review activities are relevant to ensure their
reliability.

After the implementation of the safety measures, these must be validated by starting again the V&V
strategy from the beginning (with the new safety measures implemented in the system), to ensure the
reliability of the system, the correct implementation and integration in the system and the mitigation of
the found hazardous behaviour.

4.2 Example of V&V strategy application
Most of the activities related to the V&V strategy were already explained in the deliverables D2.3 (3.3.
Example of V&V strategy application and D2.1(4.3 Examples in the automotive domain), except for the
safety measures foreseen, which covers the defined triggering conditions.

4.2.1 Automotive Use Case
All standards in the ISO/IEC 61508 tradition (including the automotive-oriented ISO 26262, 21448 SOTIF
and the brand-new ISO/PAS 8800) share a two-pronged common approach to functional safety:

• On one side, they recommend/mandate progressive ‘rigor’ compared to basic
engineering practices for requirements, design, implementation and testing;

• On the other side, they prescribe risk-based safety analyses to identify specific safety
goals and to satisfy them with trusted safety measures.

While increased ‘rigor’, especially if ’safety-oriented’, is always welcome and commendable even in a FuSa-
specific perspective, full compliance to FuSa standards cannot be achieved by just an “increased rigor"
strategy.

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR
https://1drv.ms/b/c/02d3a4f6e0f1e809/EXqOOjrPYypGhaHyCQREcc0BtnUZDtCMRh2DwDRvRlNBCw?e=KCh2Bm

45

The two cornerstone analyses in automotive-oriented FuSa are the HARA (introduced by ISO 26262) and
the STPA (introduced by 21448 SOTIF, confirmed by ISO/PAS 8800 and complementary - not alternative -
to HARA).

As mentioned above, the activities related to the V&V strategy were already explained in the deliverables
D2.3 and D2.1.

The topic which will be reported here is related to the safety measures to be implemented at element
level (triggering condition based).

For the automotive use case, we assumed some safety measures in the defined test cases specification
based on the triggering condition, an example which describes all the path from the hazardous behaviour
to the safety measure is reported below:

Hazard Vehicle-Level AEB doesn't provide emergency braking when needed
Control Action Perform emergency braking
Control Action Failure Mode Emergency braking is not performed when a collision is imminent
Functional Insufficiency The AEB does not provide the requested braking intervention
Triggering condition Missing object detection due to camera low performances (e.g. damaged

lens or undetected offline sensor)
Test Description The test aims to verify whether the AEB will be deactivated when a

damaged camera lens is detected at system boot state
Test Preconditions • Kl.15 = off

• No warning message available
• A Collision Relevant Object is present
• Camera lens is damaged
• Intended functionality state: active

Test Steps (Operating) Step 1:
• AEB system is started

Step 2:
• At [x] ms, verify whether the AEB detects inaccurate camera position

Acceptance criteria
(related to the last step)

• AEB is suppressed within [x] ms
• Collision Relevant Object not detected
• Intended functionality state: deactivated

Foreseen Safety measure When a damaged camera is detected at boot state, the intended
functionality will be suppressed and deactivated to reach the safe state.

These safety measures are supposed to be tested through a simulation to determine whether it is sufficient
to mitigate the hazardous behavior that has been identified, or whether additional safety measures are
required.

As indicated by the expected results of the test cases based on the triggering conditions, the designated
safety measures have been implicitly delineated and explicated in this document.

The domain owner (NAVINFO) adopted a different approach from the one indicated by Exida, and it is the
following one:

In order to demonstrate and guarantee the practical value of the project, the domain owner (NAVINFO)
implemented 24 concrete variants, covering day/night, dry/wet, child/adult pedestrian, and multiple

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR
https://1drv.ms/b/c/02d3a4f6e0f1e809/EXqOOjrPYypGhaHyCQREcc0BtnUZDtCMRh2DwDRvRlNBCw?e=KCh2Bm

46

approach speeds (10/30/50 km/h). It should be noted that these variants are based on a single scenario
at vehicle-level from the 21 proposed by exida (coverage of the proposed scenarios: 4.7%).

NAVINFO implemented a limited number of the proposed triggering conditions (based on their
applicability to the concept), and the related tests were not based on the proposed test matrix for the
triggering conditions (one of which is illustrated above).

NAVINFO exhibited a high level of attention to how the software works with the specific hardware platform
and the entire process is founded upon the construction of authentic working code with proper testing.

It is evident that meticulous documentation of each component is in place, thus allowing for
comprehensive technical evaluation but not sufficient to provide all the evidence needed for a fully-
fledged FuSa standard assessment.

Full compliance to automotive FuSa standards was never claimed as a direct requirement for the
automotive use case, that was rather oriented to adapt, port, and run the case study on the target platforms.

The partial implementation of the expected work-products for full compliance is therefore not a
shortcoming; the direction is the right one and the full road to compliance and ‘certifiability' is clearly
indicated, simply beyond the scope of the current R&D project and rather intended for full industrial
projects, with quite different objectives and budgets.

As indicated by the expected results of the test cases based on the triggering conditions, the designated
safety measures have been implicitly delineated in the related test cases specification and explicated in
the example present in this document.

4.2.2 Railway Use Case
As mentioned above, the activities related to the V&V strategy were already explained in the deliverable
D2.3.

The topic which will be reported here is related to the safety measures to be implemented at element
level (triggering condition based).

For the railway use case, we assumed some safety measures in the defined test cases specification based
on the triggering condition, an example which describes all the path from the hazardous behaviour to the
safety measure is reported below:

Hazard Vehicle-Level ATO doesn't provide service braking when needed
Control Action Perform service braking
Control Action Failure Mode Service braking is not performed when a collision is imminent
Functional Insufficiency The ATO provides the intervention request too late.
Triggering condition Too late detection of sensor decreases in performance (e.g. black

screen)
Test Description The test verifies whether the ATO system correctly detects repeated

black frames (indicative of damage, obstruction, or misalignment) and
transitions to safe state.

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

47

NOTE: we may need to define some terms, like:
• Black Frame Definition: a frame where average luminance
(Y channel) < threshold (e.g. <10).
• Temporal Condition: configurable number of black frames in last N
frames (e.g. 5 of 10)

Test Preconditions • Kl.15 = off
• No warning message available
• Camera field of view is covered
• Intended functionality state: active

Test Steps (Operating) Step 1:
• Start ATO System
Step 2:
• Monitor image reception Count number of black frames
• Check the number of the acquired black frames

Acceptance criteria
(related to the last step)

• More than 5 of 10 frame received, are black frame
• Safe state is triggered

Foreseen Safety measure When a black screen issue in the camera is detected at boot state, the
intended functionality will be suppressed and deactivated to reach the
safe state.

These safety measures are supposed to be tested through a simulation (according to the defined test case)
to determine whether it is sufficient to mitigate the hazardous behavior that has been identified, or
whether additional safety measures are required.

As indicated by the expected results of the test cases based on the triggering conditions, the designated
safety measures have been implicitly delineated in the related test cases specification and explicated in
the example present in this document.

The showed example represents a complete STPA method execution from Hazard Vehicle-Level to the
related safety measure to mitigate it.

Furthermore, some of the proposed safety measures were also implemented.

4.2.3 Aerospace Use Case
As mentioned above, the activities related to the V&V strategy were already explained in the deliverable
D2.3.

The topic which will be reported here is related to the safety measures to be implemented at element
level (triggering condition based).

For the aerospace use case, we assumed some safety measures in the defined test cases specification
based on the triggering condition, an example which describes all the path from the hazardous behaviour
to the safety measure is reported below:

Hazard Vehicle-Level The GNC System wrongly provide information related to the docking
operation

Control Action Information needed to docking operation is provided to the driver
Control Action Failure Mode Wrong information related to the docking operation is provided to the

driver

https://1drv.ms/b/c/02d3a4f6e0f1e809/ER-PFSTXJQpFrq0EDONX-3kBl5ublzqpoxGUdFatYWhYgQ?e=MUdBBR

48

Functional Insufficiency The GNC algorithm wrongly processes the received data
Triggering condition Agent parameters are wrongly estimated due to low computational

power (e.g. overload, ...).
Test Description The test aims to verify whether the GNC is deactivated when low

computational power (which causes wrong agent parameters
estimation) is detected

Test Preconditions • Kl.15 = on
• No warning message available
• Intended functionality state: active

Test Steps (Operating) Step 1:
• Docking target is detected
• No warning message provided
• Intended functionality state: active

Step 2:
• Input signals from sensors are received by GNC
• At [x] ms, before the Agent parameters estimation, the system has
been overloaded

Acceptance criteria
(related to the last step)

• GNC is suppressed within [x] ms
• Intended functionality state: deactivated

Foreseen Safety measure When a black screen issue in the camera is detected at boot state, the
intended functionality will be suppressed and deactivated to reach the
safe state.

These safety measures are supposed to be tested through a simulation to determine whether it is sufficient
to mitigate the hazardous behavior that has been identified, or whether additional safety measures are
required.

As indicated by the expected results of the test cases based on the triggering conditions, the designated
safety measures have been implicitly delineated and explicated in this document.

Most of the safety measures we assumed, the domain owner (AIKO) covered them by testing the scenarios
at vehicle-level.

4.3 Applied Normative
The V&V strategy applied in SAFEXPLAIN is created in compliance with regulation: Functional Safety and
SOTIF, with the related standards.

The ‘overarching’ Functional Safety standard is the ISO/IEC 61508, that is not sector-specific and is the
basis of almost all sector-specific standards. However, the current edition is quite old (2010) and does not
cover aspects like Intended Functions and AI.

In the automotive sector, the quest for autonomous vehicles has spurred more specialized coverage,
currently unparalleled by any other sectors. The standard which regulates the Functional Safety side is
the ISO 26262, whereas the standard which regulates SOTIF (Safety of the Intended Functionality) is the
ISO 21448.

49

The brand-new normative ISO/PAS 8800, specifically on AI aspects, was published in the last months. It
appears that in the specific scope of this project most of its requirements have already been met thanks
to rigorous adherence to what already required by ISO 26262 and SOTIF.

Finally, during the course of this project, an AI-extension of the popular ASPICE standard was published
and officially integrated in the ASPICE PRM/PAM 4.0. Although not directly anticipated, compliance to this
new standard has been also targeted and one of the three demos (railway domain use case) has already
undergone an official ASPICE assessment, receiving a positive assessment.

4.3.1 ISO 26262
ISO 26262 is a functional safety standard for E/E (Electrical/Electronic) systems in road vehicles that
provides a comprehensive framework to address hazards caused by malfunctioning behaviour, focusing
on managing random hardware failures and systematic failures through a structured development
process.

This approach presupposes the sufficiency and reliability of the intended functionality, focusing exclusively
on failures and faults within the E/E systems.

The scope of the project encompasses the establishment of safety requirements, the implementation of
safety measures derived from architectural-level analyses, and the provision of evidence to demonstrate
that integrated system elements fulfil their safety requirements.

In the context of configurable systems comprising a multitude of elements or calibration data, ISO 26262
guarantees compliance across all potential configurations. However, it does not address hazards that may
arise from the limitations inherent in the system itself when it is functioning correctly.

How the ISO 26262is applied in this Work Product was already explained in the deliverable
D2.3(3.1 clause DL Safety Lifecycle for DL-software V&V).

4.3.2 ISO 21448
The objective of the Safety of the Intended Functionality (SOTIF) approach is to address a critical gap left
by ISO 26262. The latter focuses on hazards that can occur even when systems function correctly according
to their specifications.

SOTIF recognizes that electronic and electrical systems, dependent on environmental sensing, which may
exhibit hazardous behaviour under certain conditions.

Such behaviour may be a consequence of limitations in their functionality.

SOTIF provides a framework for the identification, evaluation and mitigation of such risks through the
implementation of comprehensive verification and validation strategies.

How the ISO 21448 is applied in this Work Product was already explained in the deliverable D2.3(3.1
clause DL Safety Lifecycle for DL-software V&V).

https://onedrive.live.com/?cid=02D3A4F6E0F1E809&sb=name&sd=1&id=2D3A4F6E0F1E809%21s24158f1f25d7450aaead040ce357fb79&parId=2D3A4F6E0F1E809%21s96bfbac1fe734c4d9c6c53341c18d179&o=OneUp
https://onedrive.live.com/?cid=02D3A4F6E0F1E809&sb=name&sd=1&id=2D3A4F6E0F1E809%21s24158f1f25d7450aaead040ce357fb79&parId=2D3A4F6E0F1E809%21s96bfbac1fe734c4d9c6c53341c18d179&o=OneUp
https://onedrive.live.com/?cid=02D3A4F6E0F1E809&sb=name&sd=1&id=2D3A4F6E0F1E809%21s24158f1f25d7450aaead040ce357fb79&parId=2D3A4F6E0F1E809%21s96bfbac1fe734c4d9c6c53341c18d179&o=OneUp

50

4.3.3 ISO/PAS 8800
This project was based on the two standards ISO 26262ì and ISO 21448, but, in the meantime, in December
2024, a new standard related to functionalities AI-based was published, which basically is an extension of
the ISO 26262 and the ISO 21448 that specifically addresses the aspects related to AI.

At a first review, most of the results of this Work Package are already compliant with the new ISO/PAS
8800, as the specific narrow scope of the project was mostly covered by requirements of ISO 26262 and
ISO 21448. In particular, we can mention:

• The analysis of the triggering condition related to the AI-based functionality, covered by 6.7.1
"cause-effect chain"6.7.1 "cause-effect chain“ of ISO/PAS 8800, aims to trace the progression
from the initial cause of a functional insufficiency to the occurrence the related hazard.

• In the design it is also described the dataset source used to train the AI model with all the
related considerations.

• The STPA (System Theoretic Process Analysis), introduced by SOTIF, is adopted and
described in detail in the ISO/PAS 8800 (ANNEX E), and it is the method adopted in our
V&V to analyse the triggering condition related to the found hazards in consistence with
the ODD. ASPICE

Originally SPICE was a project funded by the European Union. The main goal was to develop a counterpart
to CMMI. SPICE is an abbreviation and stands for "Software Process Improvement and Capability
dEtermination". Even if software development was the main driver of the initiative at that time, the "S" in
SPICE is nowadays used for the entire system development.

The project was very successful and finally, ISO issued the standard series ISO 15504-x to support the
future development of specific standards for all kinds of domains. In the meantime, most parts of this
standard have been replaced by the ISO 330xx series, and we have a choice from various Process
Assessment Models. The focus of SPICE has widened to all Software-based Systems and to Operation and
Maintenance processes. [source: https://intacs.info/spice-center].

ASPICE (Automotove SPICE) is a framework for the assessment of the maturity of software development
processes specific to the automotive industry.

It is employed for the evaluation of the capability to develop reliable and high-quality automotive
software. As it is an Assessment Model, rather than a Development Model, it is more abstract than most
of the other technical standards, ensuring its applicability also to adjacent sectors (e.g. all transportation
sectors).

The ASPICE framework uses an approach to evaluate and improve development processes, which covers
the following domains:

• System, Software, Hardware, Machine Learning Engineering: requirements management,
architecture, design, implementation, testing, and integration.

• Management: project management, quality, configuration, and risk management

• Support: quality assurance, verification, documentation

51

• Acquisition: supplier selection and monitoring

• Reuse: reusable asset management

The ASPICE framework assists in the development of validation strategies through the following
mechanisms:

1. Complete traceability, which requires bidirectional links to ensure the validation of every feature.

2. Structured V&V, which is employed to denote a specific set of processes for the purposes of V&V.

3. Multi-level testing is defined as the implementation of unit, integration, system, and acceptance
testing, with defined coverage criteria.

4. Risk Management: identification and mitigation of technical risks which could compromise
validation

5. Objective metrics: they are defined as providing measurable indicators for the purpose of
assessing validation completeness and effectiveness.

6. Systematic reviews: they are required at each stage to identify issues before final validation.

Exida has several SPICE Assessors in its ranks and it’s very active in ASPICE-related Working Groups,
including one on Hardware and one on Machine Learning.

Ikerlan has expressed the interest of organizing an ASPICE assessment of its Railway Demo, with a narrow
scope centred around MLE (Machine Learning Assessment) processes.

The assessment has been thoroughly planned with a pre-assessment that took place in July 2025 and has
concluded with the official assessment in early September. Preliminary results shown that the CL1
(Capability Level 1) target has been already achieved, then confirmed in the final official assessment. More
details in Sect 10 and Annex I of D6.8 Final Exploitation Report.

5 Acronyms and Abbreviations
Below is a list of acronyms and abbreviations employed in this document:

ACC Accuracy
AEB Autonomous Emergency Braking
AI Artificial Intelligence
ASPICE Automotive SPICE
AP Average Precision
AR Average Recall/Anti-Clockwise Rotate
ATO Automatic Train Operation
BS Bottom Shift
CENELEC Comité européen de normalisation en électronique et en électrotechnique
CL Capability Level
CMMI Capability Maturity Model Integration
COCO Common Objects in COntext
COTS Commercial Off-The-Shelf

52

CPU Central Processing Unit
CR Clockwise Rotate
DDT Dynamic Driving Task
DL Deep Learning
DMR Dual Module Redundancy
DR Dropout
DRS Diverse Redundancy Schemes
E/E Electrical and/or Electronic system
e.g. Exempli Gratia (for example)
ECSS European Cooperation for Space Standardization
Ego vehicle vehicle fitted with functionality that is being analysed for the SOTIF
EQ Equalization
ESA European Space Agency
FN False Negative
FP False Positive
FPS Frames Per Seconds
FuSa Functional Safety
GB Gaussian Filter
GC Gamma Correction
GN Gaussian Noise
GNC Guidance, Navigation and Control
GPU Graphics Processing Unit
HARA Hazard Analysis and Risk Assessment
HF Horizontal Flipping
HMI Human-Machine Interface
HW Hardware
i.e. Id Est (that is)
IEC International electrotechnical commission
II Information Items
IoU Intersection over Union
ISO International organization for standardization
ISO/PAS International organization for standardization - Publicly Available Specification
LS Left Shift
mAP Mean Average Precision
MB Median Filter
ML Machine Learning
MLE Machine Learning Engineering
NMS Non-maximum suppression
ODD Operational Design Domain
OEM Original Equipment Manufacturer
PAM Process Assessment Model
PRM Process Reference Model

53

ROS2 Robotic Operating System 2
RS Right Shift
RV Raising pixel Value
SH Sharpening
SOTIF Safety Of the Intended Functionalities
SP Salt and Pepper Noise
SPICE Systems Process Improvement and Capability dEtermination
STPA System Theoretic Process Analysis
SW Software
TMR Triple Modular Redundancy
TP True Positive
TS Top Shift
TÜV Technischer Überwachungsverein
V&V Verification and Validation
VF Vertical Flipping
w.r.t. with respect to

54

6 Bibliography
[1] Li, Chih-Yang, Accessed in Oct-2023. YOLOv4 Tensorflow Keras Implementation.

https://github.com/taipingeric/yolo-v4-tf.keras.
[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,

Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár, Microsoft COCO:
Common Objects in Context. arXiv:1405.0312, 2015.

[3] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman, The pascal visual object classes (VOC) challenge. International Journal of
Computer Vision 88, 2, 2010.

[4] Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva, A Survey on Performance
Metrics for Object-Detection Algorithms. In 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP). 237–242.
https://doi.org/10.1109/IWSSIP48289.2020.9145130, 2020.

55

7 Annexes
This section collects the annexes attached together with the deliverable D2.4.

7.1 Annex A: ESA meeting presentation
This annex collects the power point shared with ESA meeting attendants. In that presentation, the
SAFEXPLAIN consortium presented its latest results to representatives of several aerospace and embedded
system industries including Airbus DS; BrainChip, the European Space Agency (ESA), Gaisler, and Klepsydra,
showcasing major strides in making AI safe and certifiable in critical autonomous embedded systems.

	1 Introduction
	2 Safety Reviews for the specific use cases domains
	2.1 TÜV Railway
	2.2 EXIDA Automotive
	2.3 ESA Space
	2.3.1 ESA meeting agenda
	2.3.2 Key meeting highlights

	3 Evaluation of Technical Solution
	3.1 Basic concepts
	3.1.1 Bounding boxes
	3.1.2 Intersection over Union
	3.1.3 True Positive, False Positive, False Negative and True Negatives
	3.1.4 Non-Maximum Suppression
	3.1.5 Precision
	3.1.6 Recall
	3.1.7 Accuracy
	3.1.8 F1 Score
	3.1.9 COCO Eval
	Area
	maxDets
	AR
	AP

	3.2 Setup
	3.2.1 Aim of the experiments
	3.2.2 Combining Predictions with a Decision Function
	3.2.3 Fault injection methodology
	3.2.4 Underlying Platforms
	3.2.5 Validation dataset
	3.2.6 Coco Eval Validation Methodology
	3.2.7 Models

	3.3 Results
	3.3.1 Preliminary Dataset Analysis
	3.3.2 Diverse Redundancy Techniques
	3.3.2.1 Diverse Input Image Transformations
	3.3.2.1.1 Setup
	3.3.2.1.2 Results of Independent Configurations
	3.3.2.1.3 Results of the Merging Algorithms
	3.3.2.1.4 Results of Fault Injection Configurations

	3.3.2.2 Lockstep Execution

	3.3.3 Diverse Framework
	3.3.3.1 MISRA C-Compliant YOLO for Object Detection
	3.3.3.1.1 Systematic Error Avoidance In AI-Based Object Detection
	3.3.3.1.2 Corrective actions
	3.3.3.1.3 SafeYOLO Integration
	3.3.3.1.4 Conclusions

	3.3.3.2 Diverse Framework – TensorRT and Pytorch

	3.3.4 Diverse Concept
	3.3.4.1 Part Detector

	4 DL Safety Lifecycle for DL-software V&V
	4.1 System-Theoretic Process Analysis (STPA)
	4.1.1 Triggering Condition and related Test Matrix
	4.1.2 STPA: Safety Measures to mitigate the hazardous behaviour

	4.2 Example of V&V strategy application
	4.2.1 Automotive Use Case
	4.2.2 Railway Use Case
	4.2.3 Aerospace Use Case

	4.3 Applied Normative
	4.3.1 ISO 26262
	4.3.2 ISO 21448
	4.3.3 ISO/PAS 8800

	5 Acronyms and Abbreviations
	6 Bibliography
	7 Annexes
	7.1 Annex A: ESA meeting presentation

