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Executive Summary 
This report presents the final results (as of M30) of SAFEXPLAIN’s FUSA-aware dependable Deep Learning 
(DL) solutions within WP3. This work aligns with the development of the FUSA for AI lifecycle (AI-FSM, D2.2) 
and reference architecture patterns (SPs, D2.1). We propose a systematic approach for cataloguing and 
categorizing Explainable AI (XAI) techniques, making them accessible to practitioners implementing FUSA-
compliant solutions following SAFEXPLAIN’s proposed approach. The document begins by refining the 
SAFEXPLAIN XAI concepts, incorporating latest standards, guidelines, best practices, and state-of-the-art 
XAI techniques. This establishes a strong foundation for dependable DL solutions that meet FUSA 
requirements. 
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1. Introduction 
This document reports the final results of tasks “T3.1 - Specification of dependable DL components”, “T3.2 
- Design of dependable DL components” and “T3.3 - Improved DL component robustness and online 
monitorability” within the SAFEXPLAIN project.  

It constitutes the final update to deliverables D3.1 and D3.2, including practical and hands-on 
recommendations for the complete lifecycle of specifying DL components, from initial requirements 
gathering and architecture selection to the deployment of embedded Deep Neural Networks (DNNs).  

The proposed strategy for achieving dependability in Deep Learning (DL) components designed for safety-
critical applications is predicated on the comprehensive characterization and systematic mitigation of 
uncertainties inherent in AI systems (that are connected to hazardous situations). This approach is 
rigorously aligned and supports compliance with the AI-FSM development lifecycle (detailed in D2.1[1]) and 
implements the Safety Patterns deployment architecture (as described in D2.2[2]). 

The report explores explainability, traceability, and robustness within the context of a Minimum Viable 
Product (MVP) and provides a practical handbook guiding the development of DL components for Critical 
Autonomous AI-based Systems (CAIS). 

This document is organized as follows: 

 Section 2: This section provides an overview of SAFEXPLAIN's adoption of XAI concepts, reviews the 
latest state of the art and updates on relevant standards, guidelines, and best practices. It also 
categorizes state-of-the-art XAI techniques to facilitate the usages throughout the lifecycle.  

 Section 3: This section outlines a systematic approach to applying XAI techniques in the AI-FSM 
development lifecycle and safety architecture design for operational and monitoring (OM) stage. It 
provides guidance on how to specify dependable DL solutions. 

 Section 4: This section describes two software libraries 
o EXPLib: Python library of XAI techniques and practices that support AI-FSM lifecycle 

compliance, and  
o DLLib: Python and low-level language library (optimized for embedded platform) for 

deploying the safety architecture and its components in OM stage. 
 Section 5: This section provides some discussions and future recommendations 
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2. Background  
2.1. AI trustworthiness related standards 
SAFEXPLAIN aligns with the latest AI trustworthiness standards to ensure the safe and reliable deployment 
of deep learning (DL) components in safety-critical systems. AI-FSM lifecycle, Verification & Validation 
(V&V) strategy, and dependable DL system specification are informed by key standards and evolving 
regulatory requirements. This section details the relevant standards and guidelines, updated as of M30, 
that shape our approach to building trustworthy AI systems. 

EU AI Act[3]: is a legal framework designed to ensure the safe, secure, and trustworthy development and 
deployment of AI systems across the EU and EEA, providing regulations and guidelines that prioritize the 
protection of fundamental rights and promote ethical considerations in AI development. The regulation 
categorizes AI systems into different risk levels, imposing strict requirements on high-risk AI systems, and 
prohibiting certain types of AI that manipulate or deceive individuals, exploit vulnerabilities, or infringe on 
privacy and human rights. SAFEXPLAIN focuses on the “High risk AI systems” category (described in Chapter 
III and relevant to Critical infrastructure Use case in Annex III).  

ISO/IEC DTS 6254[4] (Objectives and approaches for explainability and interpretability of ML models and AI 
systems): describes approaches for AI systems’ explainability, providing guidelines to various stakeholders 
(academia, industry, policy makers, end users) on achieving objectives throughout the AI system's lifecycle. 
The standard is a work-in-progress, with a draft submitted in Oct 2024. 

IEEE 2894-2024[5] (IEEE Guide for an Architectural Framework for Explainable Artificial Intelligence): 
provides a technological blueprint for building transparent and trustworthy AI systems using explainable AI 
(XAI) methodologies, defining architectural frameworks and application guidelines for XAI. 

P2976[6] (Standard for XAI - eXplainable Artificial Intelligence - for Achieving Clarity and Interoperability of 
AI Systems Design): defines mandatory and optional requirements and constraints that need to be satisfied 
for an AI method, algorithm, application or system to be recognized as explainable. The working group had 
started, and no official release has been published yet. 

ISO/IEC 8183:2023[7] (Information technology — Artificial intelligence — Data life cycle framework): 
provides guidelines of stages and actions for data processing throughout the AI system life cycle, from 
acquisition to decommissioning, and applies to all organizations using data in AI development and 
deployment. 

ISO/IEC 42001:2023[8] (Information technology — Artificial intelligence — Management system): specifies 
requirements for establishing and maintaining an Artificial Intelligence Management System (AIMS) within 
organizations. It provides guidance on responsible AI development and use, addressing ethical 
considerations, transparency, and risk management. 

ISO/IEC TR 24030:2024[9] (Information technology — Artificial intelligence (AI) — Use cases): Providing a 
collection of AI use cases across various domains, it illustrates the applicability and potential of AI in 
different sectors. 

ISO/IEC 5339:2024[10] (Information technology — Artificial intelligence — Guidance for AI applications): 
provides guidance on AI applications, emphasizing stakeholder engagement and the AI application life cycle. 
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It aims to enhance multi-stakeholder communication and acceptance by offering a framework that includes 
the make, use, and impact perspectives of AI systems. 

ISO/IEC TR 5469:2024[11] (AI Functional Safety and AI Systems): provides guidance on integrating AI into 
safety-critical environments, defining six usage levels of AI in safety functions. SAFEXPLAIN applies this 
incremental approach to align AI’s role with necessary supervisory mechanisms, ensuring robust safety 
management and explainability. 

ISO 21448[12] (SOTIF – Safety of the Intended Functionality): complements ISO 26262 by addressing hazards 
due to functional insufficiencies rather than hardware/software failures. SAFEXPLAIN integrates SOTIF’s 
scenario-based risk identification into its V&V strategy to mitigate unknown unsafe conditions, ensuring 
robust AI performance across edge cases. 

ISO 26262[13] (Functional Safety for Road Vehicles): remains a core safety standard, but its deterministic 
assumptions challenge the integration of stochastic DL components. SAFEXPLAIN combines ISO 26262 with 
AI-specific safety measures (e.g., ISO/PAS 8800) to address ML-related failure modes, ensuring alignment 
with best practices in AI safety. 

EASA ML Assurance Guidelines[14]: introduce a "W-shaped" AI lifecycle model, refining explainability, 
learning assurance, and risk assessment for ML systems in aviation. SAFEXPLAIN incorporates these 
principles to structure its AI-FSM lifecycle, ensuring transparency and regulatory readiness for critical 
applications. 

ISO/PAS 8800:2024[15] (Road Vehicles – AI Safety): published in December 2024, bridges ISO 26262 and 
SOTIF by proposing an AI-specific safety lifecycle. It introduces structured methods to handle AI functional 
insufficiencies, model failures, and post-deployment monitoring. SAFEXPLAIN adopts ISO/PAS 8800’s 
trustworthiness principles (robustness, explainability, controllability) to ensure dependable AI-based 
functions. 

UL 4600[16] & ISO 61508[17] provide additional safety frameworks. UL 4600, designed for fully 
autonomous systems, mandates a safety case approach for AI-driven decisions. ISO 61508, the foundational 
functional safety standard, underpins many AI-focused safety principles in emerging regulations. 
SAFEXPLAIN aligns with these to strengthen its AI risk assessment and lifecycle assurance. 

ISO/IEC 22989:2022[18] (AI Concepts and Terminology): standardizes AI trustworthiness attributes, 
including robustness, reliability, explainability, and fairness. SAFEXPLAIN applies these definitions to 
maintain consistency in risk assessment, XAI implementation, and regulatory compliance across safety-
critical AI components. 

2.2. SAFEXPLAIN AI Explainability concepts & categorization  
2.2.1. SAFEXPLAIN XAI Concepts 
For completeness, this section reproduces relevant content from our previous deliverable, D3.1[19], with 
updates to reflect our evolving knowledge and insights. 

Within SAFEXPLAIN, Explainable AI (XAI) concepts refer to methods, models, and algorithms that facilitate 
understanding of Deep Learning (DL) projects by stakeholders, including developers, data analysts, domain 
experts, and FUSA experts. We define explainability as the ability to generate human-understandable 
reasons for model predictions and internal workings, which is subjective and audience-dependent. 
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In our context, explainability involves providing a process and methods to map a black box DL component's 
behaviour to a knowledge level acceptable by humans (or machines, in deployment mode) as the target 
audience. This enables transparency and trustworthiness throughout the development lifecycle and 
deployment stage. 

2.2.1.1. Explainability and Understandability 
Explainable AI (XAI), Explainability and Understandability are closely related concepts, resulted from 
different actor perspectives in an interaction between human and AI: 

 Explainability: refers to the ability of a DL model to provide insights into its inner working process 
via different types of explanations. Explainability is about providing transparency to the DL’s 
reasoning and inner working via ability to generate relevant explanations. 

 Understandability: in contrast, refers to the ability of humans (consumer of the explanations) to 
comprehend the provided explanations to be able to make informed decisions. Understandability 
is about the usefulness of the explanations to the users. 

The level of understandability is dependent on the model complexity, which affects how easily humans can 
follow to understand the relationships among model structure and inputs/outputs. In other words, 
understandability is related to the number and type of associations that need to be made between model’s 
components and its behaviours. Various metrics to quantify Understandability have been proposed, such 
as those mentioned in [20]. For example. objectively measure the time consumed by test persons to 
complete a task related to understanding how the model deriving the output and use that to validate 
hypotheses if a proposed quantitative metric has significant impact on understandability. 

2.2.1.2. Interpretability and Transparency  
Interpretability and Transparency are a pair of related concepts to reveal insights into the internal workings 
of a DL system to make it more understandable and trustworthy.  

 Transparency Refers to the ability to view or understand the inner workings of a DL system, 
including architecture, data, and algorithms. Transparency is about providing access to required 
information about the system's structure, parameters, and operations.  

 Interpretability refers to the degree to which a DL model's decisions and behaviour can be 
understood by a human observer. Interpretability focuses on making sense of the information 
(provided via transparency), e.g. relationships between the input data, the model's parameters, 
and the output predictions. Interpretability can be characterized by different ways how humans 
gain their understandings from the explanations: 

o Simulatability: denotes the ability of a model of being simulated or thought about strictly 
by a human, hence complexity takes a dominant place in this class. Again, endowing a 
decomposable model with simulatability requires that the model must be self-contained 
enough for a human to think and reason about it as a whole. 

o Decomposability: stands for the ability to explain each of the parts of a model (input, 
parameter, and calculation). It can be considered as intelligibility. The added constraint for 
an algorithmically transparent model to become decomposable is that every part of the 
model must be understandable by a human without the need for additional tools. 

o Algorithmic Transparency: can be seen in different ways. It deals with the ability of the 
user to understand the process followed by the model to produce any given output from 
its input data. The main constraint for algorithmically transparent models is that the model 
must be fully explorable by means of mathematical analysis and methods. 
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2.2.1.3. Comprehensibility 
Comprehensibility refers to the ability of a DL algorithm to represent its learned knowledge in a human 
understandable fashion. This notion of model comprehensibility stems from the postulates of 
Michalski[21], which stated that "the results of computer induction should be symbolic descriptions of given 
entities, semantically and structurally similar to those a human expert might produce observing the same 
entities. Components of these descriptions should be comprehensible as single 'chunks' of information, 
directly interpretable in natural language, and should relate quantitative and qualitative concepts in an 
integrated fashion". Given its difficult quantification, comprehensibility is normally tied to the evaluation 
of the model complexity.  

 
Comprehensibility serves as a bridge between Explainability and Understandability and Interpretability and 
Transparency concepts. It shares the goal of making model knowledge accessible to humans with 
explainability, while also relating to how the model's internal representation can be made inherently 
interpretable. This concept is particularly important for deep learning models where transforming complex 
learned patterns into human-comprehensible representations is a significant challenge. 

2.2.1.4. Concept mappings 
Figure 1 illustrates the key XAI concepts used within SAFEXPLAIN, which are represented as part of the 
interactions between DL components and humans. A trustworthy interaction occurs when the DL 
component generates comprehensive and transparent explanations that provide insights into its internal 
working process, enabling humans to understand and trust the outcomes. From the human perspective, 
these explanations must be understandable, considering the subjective nature of human understanding, 
which can vary depending on the individual audience (e.g. via simulatability, decomposability and 
algorithmic transparency).  

The SAFEXPLAIN framework leverages a range of Explainable AI (XAI) techniques addressing diverse 
audiences at different phases of its proposed processes. By providing a systematic approach, these concepts 
enable the selection of suitable XAI techniques that maximize and control trustworthiness throughout the 
entire process. In the subsequent section, we will discuss the categorization of XAI techniques, offering 
practitioners a comprehensive understanding of how to effectively apply these techniques to develop and 
deploy dependable DL components.  

Figure 1: Explainable AI concept map 
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2.2.2. SAFEXPLAIN XAI Categorization 
XAI methodologies are categorized within SAFEXPLAIN based on several dimensions to facilitate solution 
mappings (how and where each XAI method can be leveraged within the lifecycle). 

These dimensions include target item types, which refers to whether the method applies to the dataset or 
the trained DL component. Another dimension is target audience of the explanations, including AI 
developers (focused on understanding model behaviour and design), data analysts (concerned with feature 
importance, data quality, and anomaly detection), domain experts (designed to help non-technical experts 
interpret AI decisions and verify predictions using their domain expertise), safety experts (engaged in risk 
assessment, reliability analysis, and V&V activities), and end users (who need interpretable models for 
direct interaction, such as vehicle drivers/operators). Explanations can be represented in different forms 
such as text/tabular data, graphs and images to accommodate diverse comprehension preferences. 

Explanations can be scoped as either (i) local, focusing on individual predictions or data points, or (ii) global, 
addressing overall model behaviour. XAI methods can operate without user input or incorporate human-
in-the-loop (HIL) approaches. Furthermore, techniques differ based on timing requirements, with some 
suitable for real-time deployment (as needed in the Operation and Monitoring stage) and others without 
such limitations. 

XAI methods/approaches are also categorized by their scope, being either model/data-specific or 
model/data-agnostic. Furthermore, techniques for explaining DL models can be classified as intrinsic 
(interpretable by design) or post-hoc (applied to explain trained model predictions). 

Transparency approach category refers to the interpretability nature that help human to understand the 
explanations as discussed earlier in Section 2.2.1: simulatability, decomposability and algorithmic 
transparency.  Table 1  summarizes the categories and relevant values. 

Table 1: Categories of Explainability methods 

Category Values 

Target item Dataset, trained DL component 

Target audience AI developer, data analyst, domain expert, safety 
expert, end user 

Representation Text/tabular, graph, image, numerical values 

Scope Local, global 

Interaction No interaction, interactive (human in the loop) 

Time critical Realtime, without time critical requirements 

Scope of application Model/data specific, model/data agnostic 

Techniques to complement the DL models Intrinsic, posthoc 

Transparency approach Decomposability, simulatability, algorithmic 

 

XAI approaches are required to be applied at different phases of the AI-FSM lifecycle including: Data 
Management – to assess required distributions and quality of data; Learning Management – to assess 
whether the selected model is optimal and optimized for the specific task(s) within the ODD/Operational 
scenarios; Inference Management – to assess whether the performance of the model can generalize, within 
defined safe boundaries, to making accurate predictions for real world data.  
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2.2.2.1. Data explainability 
Explainable AI (XAI) methods can be used to explain the data used in a DL development/deployment project. 
We refer to these methods as “data explainers” in this document. 

Data explainers can be used to provide insights into datasets and/or datapoints within a dataset, 
categorized as below: 

 Dataset distribution insights: Exploratory Data Analysis (EDA) is crucial for evaluating data quality, 
identifying skew, missing values, and potential feature explanations. Tools like yData profiling [22], 
SweetViz [23], and Google Facets [24] provide statistical summaries, while dimension reduction 
visualizations like t-SNE [25], and UMAP [26] reveal patterns, clusters, and correlations in high-
dimensional data. 

 Data point insights: Feature extraction techniques, including domain-specific and model-based 
approaches, can be used to identify significant features in a dataset. Domain-specific methods 
leverage expertise and insights from EDA, while model-based feature engineering employs 
mathematical models to analyse the inherent structure of a dataset. Examples include binary 
classifiers[27], clustering, and dictionary learning [28]. For image data, interpretable 
representations can be created using features such as DAISY[29], HOG[30], Haar[31], LBP[32], 
CenSurE[33], ORB[34], Gabor[35], SIFT[36], Shape index[37]. 

 Proximity and Similarity analysis: Methods that quantify the relationships between data points 
and datasets are essential for identifying if an input data is likely belonging to a known dataset.  

o Statistical tests: Kolmogorov-Smirnov and Chi-squared tests[38] compare distributional 
differences between datasets.  

o Distance/similarity metrics: Mahalanobis distance[39] measures the distance between a 
datapoint and a dataset. The Bhattacharyya distance[40] measures the similarity between 
two datasets modelled as probability distributions. Maximum Mean Discrepancy 
(MMD[41]) measures distance between datasets w.r.t. kernel induced Hilbert space.  

o Kernel density estimation (KDE): non-parametric methods to estimate kernel density 
functions without assuming distribution, which can facilitate the distribution distance 
computations. These methods collectively enable practitioners to decide data integration 
strategies, perform dataset assessments or design data anomaly detectors. 

 Data summarization and representation: Auto Encoder family of models, especially its statistical 
variants such as Variational Autoencoders (VAEs) [42] or Disentangled Inferred Prior Variational 
Autoencoder (DIPVAE) [43] can reconstruct data similar to the training set and provide a lower-
dimensional representation (the latent space) of the dataset’s underlying structure. The latent 
space in VAEs offers a compact summary of the dataset. Beyond generative approaches, 
deterministic dimensionality reduction techniques like Principal Component Analysis (PCA[44]), 
Linear Discriminant Analysis (LDA[45]), and Independent Component Analysis (ICA[46]) can reveal 
dataset structure and feature importance. These reduced representations can be visualized for 
intuitive understanding or statistically analysed to support the design of anomaly detectors in 
vector space. For example, applying these techniques to a VAE’s latent space can identify high-level, 
abstract concept anomalies.  

 Data mining and profiling: Data Readiness Levels (DRL[47]) proposed a systematic framework used 
to assess the quality and readiness of data for supporting data-driven algorithms. DRLs evaluate the 
usability, reliability, and completeness of data across different stages, providing organizations with 
a structured approach to identify gaps and improve data management practices. Standardized 
dataset documentation initiatives, such as Datasheets for Datasets [48], Dataset Nutrition Labels 
[49], and Data Declarations for Natural Language Processing [50], aim to bridge the communication 
gap between dataset creators and users by documenting essential information about datasets. 
Additionally, prototypes and criticisms methods such as ProtoDash [51] can be used for data 



 
 

 

 

15

D3.3 Final proofs-of-concept, arguments, and DL components and libraries 

summarization and visualization, enabling the identification of prototypical examples (or criticisms) 
that characterize a dataset or its clusters. 

2.2.2.2. Trained DL component explainability 
Unlike the previous categorization of explainability methods in D3.1[19] into intrinsic, post-hoc, and ante-
hoc—which organized techniques based on when they are applied in the model development lifecycle—in 
this section we proposed a new categorization characterized on the model functional purpose. The revised 
taxonomy groups techniques based on what aspect of the model they aim to explain. This approach 
provides practitioners with a more intuitive framework for selecting appropriate explainability methods 
based on their specific analytical goals in various steps of the AI-FSM lifecycle: to understand feature 
contributions, model structure, semantic concepts, or other aspects of a DL component. 

Model explainability refers to the techniques to enhance explainability of DL models through various 
approaches that provide insights into how models make decisions, represent information, and process 
inputs to produce outputs. 

DL model explainers can provide valuable insights into how models process information and make 
decisions. The following methods can be employed to achieve this: 

 Feature and Attribution Methods: These techniques help understand the influence of different 
input features on the model's predictions and decisions. This includes: 

o Feature importance techniques, which quantify the contribution of each input feature to 
the prediction. 

o Visualization techniques, which create visual representations of feature attribution to 
facilitate understanding. 

 Model Structure Interpretation: This involves analysing the architecture design of the DL model, 
including: 

o Architecture analysis: examining the organization and connections within the model. 
o Decision boundary mapping: identifying the boundaries that separate different decision 

regions. 
 Semantic Understanding Methods: These methods assess whether the internal decision-making 

process of the DL model aligns with domain concepts. This includes: 
o Concept-based methods: evaluating the model's understanding of specific concepts and 

relationships. 
o Prototype methods: analysing the dominant concepts in the domain and if the DL model is 

using them for the predictions. 
 Interpretable Model Design: This approach involves designing DL models with interpretability in 

mind, either by: 
o Design model architecture with white-box or gray-box approaches that provide explicit 

explanations for their decisions. 
o Incorporating hook checkpoints to export explanations when required. 

 Rule Extraction Methods: These techniques describe the model's decision-making process in terms 
of rules, allowing domain experts to verify whether the rules align with their expertise. This 
includes: 

o Decision rule generation: extracting rules that approximate the model's decision-making 
process. 

o Architecture decomposition: breaking down the model into smaller functional components 
to understand its decision-making process. 

 Uncertainty and Reliability Analysis: This involves quantifying the residual uncertainty of the 
model's predictions, which is essential for: 

o Mitigating uncertainty in AI-FSM phases. 
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o Controlling risk levels by ensuring that uncertainty does not lead to hazardous situations. 
This includes: 

o Uncertainty quantification: estimating the uncertainty associated with the model's 
predictions. 

o Model robustness evaluation: assessing the model's ability to withstand 
perturbations or changes in input data and understanding its limitations. 

 Enhanced Representation Methods: These techniques design DL models with mechanisms that 
encourage them to derive predictions based on approved reasoning. This includes: 

o Attention mechanisms: focusing the model's attention on specific input features or regions. 
o Custom layers and structures for interpretability: incorporating specialized components 

that facilitate understanding of the model's decision-making process. 

More details will be provided in the following subsections. 

2.2.2.2.1. Feature and attribution methods 

Feature importance and attribution methods reveal how inputs contribute to model outputs, highlighting 
the most influential aspects of the decision-making process. By quantifying and visualizing feature 
importance, these techniques bridge the gap between raw inputs and model predictions, helping users 
understand “what” the model is focusing on. 

These methods can be categorized as follows: 

 Activation based and/or Gradient based methods: Utilize gradients of the model output with 
respect to input data to assign importance scores and propagate them back to individual features. 
Examples include: Saliency map[52], Integrated Gradient[53], Class Activation Map (CAM) [54], 
Grad-CAM[55], gradient based feature importance[56], DeepLIFT[57], SmoothGrad[58], Guided 
backpropagation[59], EigenCAM[60]. 

 Perturbation based methods: Assess feature importance by perturbing the input data and 
analysing the resulting changes in model predictions. Examples include: LIME[61], SHAP[62], 
Anchors[63], Feature occlusion[64], Randomized input sampling RISE [65], Counterfactual[66] 

 Representation based methods: Provide insights into the model’s internal workings by learning 
interpretable and disentangled representations. Examples include: TCAV[67], beta-VAE[68], 
Deformable ProtoPNet[69], Neural-symbolic learning[70], infoGAN[71],  

 Visual graph methods: Visualize relationships between features and model outputs using graphs. 
Examples include: Partial Dependence Plot (PDP) [72], Accumulated Local Effects (ALE) [73], 
visualizing decision boundaries of classification model[74]. 

 Feature space visualization and dimensionality reductions: Techniques such as t-SNE [25] and 
UMAP [26] reduce the number of dimensions while preserving important relationships, allowing 
for visualization of data clusters and patterns in a 2D or 3D space. Methods that visualize higher-
layer features [75] allow examination of what the model "sees" at intermediate stages of 
processing. Inceptionism[76] takes this further, leveraging the model's learned features to generate 
artistic and often surprising visualizations, offering insights into the model’s internal 
representations and potential biases.  

2.2.2.2.2. Model structure interpretation  

Model structure interpretation methods analyse how different sub-components of a DL model interact and 
contribute to the overall functionality. These approaches explore how information flows through the 
internal components of a DL model. By examining the interactions between layers, neurons, and activation 
patterns, these methods provide insights into the model's internal "reasoning" process. Model structure 
interpretation helps clarify the black-box nature of deep networks by uncovering how the architecture 
transforms and processes information at each stage.  
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The methods can be categorized as follows: 

 Model explanation methods: aim to understand the model's structure and decision-making 
process via tracing the influence scores through the network. Examples include: LRP[77] [78] [79], 
Deep Taylor decomposition[80], Spectral relevance analysis[81]. 

 Feature and concept analysis methods: focus on analysing and understanding the features and 
concepts learned by the model. Examples include: Concept Relevance Propagation[82], Decision 
boundary visualization (readers consult a review paper [83] for more example methods) 

 Representation and disentanglement methods: aim to disentangle the extracted feature 
representations in a lower-dimensional feature space, often using techniques such as 

o Training strategies: Freezing certain latent dimensions during training to encourage 
different neurons to capture distinct concepts. 

o Dimension reduction and clustering of the latent vector space: Using traditional methods 
such as PCA[44], Isomap[84], LLE[85], NMF, and SVD[86] to reduce dimensionality and 
investigate clustered structures of the space. 

2.2.2.2.3. Semantic understanding  

Semantic understanding methods focus on connecting model features to higher-level, human interpretable 
concepts. These techniques aim to bridge the gap between the model’s internal mathematical operations 
and human conceptual reasoning, making model behaviour more accessible to both technical and non-
technical users.  

These methods can be categorized as follows: 

 Example based methods: Leveraging specific instances from the dataset as examples to illustrate 
how model derives its prediction, enhancing simulatability of the explanations. Examples include: 
Protypes and criticisms (ProtoDash[51], ProtoPNet[69], MMD-criticism[87]), counter factual 
explanations[66] 

 Concept based methods: mapping the important features to specific concepts. Examples include: 
Concept Relevance Propagation [82], And-Or Graph (AOG) [88] 

2.2.2.2.4. Interpretable model design 

Interpretable model design approaches focus on creating models that are inherently easier to understand 
by design. By incorporating transparency directly into the architecture, these methods provide built-in 
explainability without sacrificing performance. Interpretable design represents a proactive approach to 
explainability that addresses the core challenge of balancing model complexity with human comprehension. 

These methods can be categorized as follows, according to the three approaches of enhancing 
interpretability as described in Section 2.2.1.2: 

 Simulatability: These simplified models allows humans to easily understand and can mentally 
simulate reasoning process. Examples include: Generalized Linear Models (GLM[89]), Generalized 
Additive Models (GAM[90]) Decision Trees (DT[91]), Decision sets[92], rule sets[93], [94], Random 
Forests (RF[95]). 

 Algorithmic transparency: These models utilize structured mathematical functions where each 
parameter possesses a clear and readily interpretable meaning. This allows for direct understanding 
of “how” the model arrives at its predictions. Examples include: Tree regularization[96], 
ProfWeight[97], Teaching Explanations for Decisions (TED) [98], Self-Explaining Neural Networks 
[99] 

 Decomposability: These approaches decompose DL models into smaller, understandable 
submodules. Examples include: ModelSpeX[100], which outlines a dynamic workflow for specifying 
deep neural network models, engaging domain experts and incorporating explainable AI to analyse 
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data and model relationships.  ViT-NeT[101] is an interpretable architecture specifically designed 
for fine-grained image classification, incorporating a neural tree decoder that mimics human-like 
decision-making and offers insights into the model's reasoning process. 

2.2.2.2.5. Rule extraction 

These techniques transform the complex behaviour of neural networks into simpler, human-readable rule 
sets. By distilling a model's decision-making into logical statements, these methods provide clear 
explanations that can be easily verified and understood. Rule extraction offers a practical compromise 
between the high performance of deep learning and the clear interpretability of traditional rule-based 
systems. 

Rule extraction methods can be categorized as follows: 

 Model decomposition/analysis: These methods reverse engineer the trained network to identify 
and express its logic directly. Examples include: Anchors [63], RxTEN  [102], DEXiRE  [103] (for binary 
classifiers), and ECLAIRE [104]. 

 Surrogate models: These methods train a simpler, interpretable model to approximate the 
behaviour of the complex neural network. Examples include: DeepRED [105], TrePAN [106], RuleFit 
[107], Two-step CNN rule extractor [108] 

 Neuro-symbolic approaches: These methods integrate neural networks with symbolic reasoning 
techniques, allowing for learning and inference with logical constraints. Examples include: Neural-
symbolic learning [70], DL2 [109], DeepProbLog [110], Learning with logical constraints [111] 

 Using attention mechanisms and concept disentanglement: These methods focus on identifying 
and utilizing meaningful concepts within the model’s representations. 

o Concept bottleneck models (CBM): Separates processing into predicting concepts from 
input, then predicting task labels from those concepts. Examples include: Concept 
bottleneck [112], Concept whitening[113] 

o Posthoc Concept Extraction (CME): Extracts concepts from a pre-trained model's hidden 
representations. Examples: Now You See Me[114], ConceptSHAP[115] 

o Disentanglement Learning: Uses unsupervised or semi-supervised to encourage the DL 
model to learn disentangled latent factors, which are argued to represent human-
perceived concepts. Examples include: Unsupervised Beta-VAE[68], Weakly-
supervised[116] 

o Visual Attention and Captioning: Leveraging attention mechanisms to generate 
explanations, such as image captions, highlighting relevant visual features [117] 

2.2.2.2.6. Uncertainty and reliability analysis 

These approaches quantify how confident a model is in its predictions and under what conditions it might 
fail. By measuring different types of uncertainty, these methods help users understand the limitations of 
model outputs and identify potential edge cases. Uncertainty quantification is crucial for building trust in 
AI systems by providing honest assessments of prediction reliability in different contexts. 

Bayesian neural networks [118] offer a method to evaluate various uncertainties by replacing traditional 
network weights with probabilistic variables. It is imperative to address both aleatoric and epistemic 
uncertainties to construct robust and reliable DL models.  

Dropout, a technique employed to prevent overfitting in DNNs by intermittently excluding a fraction of the 
neurons during training, aids in fostering more generalized features within the network. This approach also 
serves as an approximation to Bayesian inference, enabling the model to gauge the uncertainty in its 
predictions by averaging the outcomes from several iterations of the DNN with dropout applied. This 
process improves the reliability of decision-making systems[119].   
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Studies have demonstrated a correlation between the measure of uncertainty and the accuracy of object 
detection [120]. Predictions that are marginally incorrect exhibit greater uncertainty compared to those 
that are more accurate, aligning with expectations from a reliable uncertainty estimation method. This 
insight suggests that uncertainty estimation in bounding box regression could enhance non-maximum 
suppression techniques by preferring boxes with lower variance. 

The presence of aleatoric uncertainty may also be also linked to partial object occlusion, making it a useful 
indicator of inherent ambiguities in the data. 

2.2.2.2.7. Enhanced representation 

These techniques modify model architectures to improve interpretability. By incorporating specialized 
components that highlight important information, these methods make model behaviour more transparent 
without redesigning the entire system. Enhanced representations offer a middle ground between post-hoc 
explanation and fully interpretable design by strategically improving model transparency where it matters 
most. 

 Attention mechanisms: Attention mechanisms allow models to focus on the most relevant parts of 
the input data when making predictions. These techniques learn to assign different weights to 
different elements, highlighting those that contribute most to the task. Examples include:  

o Global-and-local attention (GALA) [121] 
o DomainNet [122] 
o Residual Attention [123] 
o Loss-based attention [124] 
o D-Attn [125] 

 Autoencoder-based: Autoencoders are neural networks trained to reconstruct their input, forcing 
them to learn compressed, meaningful representations of the data. When used for interpretability, 
these representations (the latent space) can be analysed to understand which features are most 
important for encoding the input. Examples include: 

o Explainer model [126] 
o XCNN [127] 

 Other methods to enhance representation also include: 
o Adaptive Deconvolutional (Adaptive DeConv) [128] 
o Deep Fuzzy Classifier (FCM) [129] 
o Network In Network (NIN) [130] 

3. Specification and Design of FUSA-aware DL 
solutions 

3.1. System scope 
A DL component is considered dependable when its development process and deployment architecture 
adhere strictly to the guidelines (provided in SAFEXPLAIN project as AI-FSM lifecycle and Safety patterns for 
development and deployment stages respectively), with the system scope defined from the following 
perspectives: 

 Operational scope: Encompassing two main components that establish clear boundaries for a DL-
based system's operation 

o Operational Design Domain (ODD): specific conditions under which the DL-based system 
operates. 
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o Operational scenarios: Intended use cases and interactions of the system and other actors 
within the ODD conditions. This provides boundaries on dynamic interactions. 

 Functional scope: Intended functionalities that the DL component aims to provide within a defined 
ODD and operational scenarios 

 Integrated architecture scope:  
o System architecture: Within this document, a typical Sense Think Act system architecture 

is in focus (Figure 2), where: 
o Sense: Responsible for perceiving the environment and gathering real-time data for 

system operations. The Sense component consists of various types of sensors 
(camera, lidar, radar, IMU…) capturing the surrounding situations and context. The 
Sense component also includes DL-based perception module, typically performs 
tasks such as object detection/tracking, semantic/instance/panoptic 
segmentation, estimate situations including environmental parameters and 
scenarios classification/parameters. 

o Think: Decision making component that process the detections from Sense 
component and make informed decisions in real-time. This component can either 
be rule-based, statistical based or DL based. In a safety critical system, this 
component shall take as its input the detections from Sense components together 
with other safety assessment measures (from supervision components) and safe 
operational boundaries to ensure that all actions adhere to the safety 
requirements with control level of operational risks that may lead to identified 
hazards. 

o Act: This component actuates the decisions made by Think component through 
actuators, HMI devices or other components that can interact with surrounding 
environment (e.g. external HMI or messaging). The component ensures that the 
actions taken are safe. 

o Development/Deployment environments 
o Development environment: the environment where the DL component is designed, 

trained and tested before deploying into real world environments. Development 
environment allows access to large datasets, powerful computing resources for 
training and testing, software frameworks/libraries, and interactions with different 
human stakeholders during the development lifecycle. 

o Deployment (runtime) environment: The environment under operational context 
where the DL component is operating in and interacting with real world under the 
predefined scope (ODD, operational scenarios). Deployment environment is 
usually limited in terms of computing power, network connectivity, storage and is 
subject to time critical requirements. 

 Safety aspects[13], [17]:  
o Safety goals: specific objectives to ensure that the DL based system operates safely within 

the defined ODD and operational scenarios. The goals shall address all unreasonable risks 
or hazards associated with the system’s interactions with environment, users or other 
systems. 

o Safety strategies: Strategies to be applied both in development environments (setting up 
safety requirements, define the V&V strategies and related test scenarios, applying 
explainability techniques to generate human understandable evidence) and deployment 
environment (which safety related components to be employed for the final safe 
operational architecture) 
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o Safety requirements: Detail specifications describing how the DL component shall be 
designed, developed and deployed to meet its safety goals and strategies. Depending on 
the domain specific risks and severity/critical levels, the safety requirements are required 
to ensure that system failures shall not lead to hazardous consequences. The DL 
component dependability relies on its ability to adhere to the requirements throughout the 
development and deployment lifecycles. 

3.2. Minimum Viable Product (MVP) 
A Minimum Viable Product (MVP) prototype has been developed collaboratively across work packages and 
is used to illustrate how XAI methods can support different activities throughout this document. The MVP 
consists of the key components as follows: 

 MVP Datasets: The dataset comprises 10,000 space images featuring diverse backgrounds and a 
target satellite. Each image is annotated with bounding boxes around the satellite object (Figure 3). 

 AI/ML constituent: Two state-of-the-art object detection models were selected: (i) SSDLite 
[131]with MobileNet [132] V3 backbone and (ii) Faster R-CNN[133] also with MobileNet V3 
backbone. Both models were trained, tested, and evaluated using the MVP datasets. 

 Safety components: Anomaly detection, uncertainty-aware models, a safe surrogate model, and 
an ensemble model are included, with detailed descriptions provided in Section 3.5.2 

Figure 2: Sense - Think – Act architecture 

Figure 3: Example images from the MVP dataset 
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3.3. Uncertainty management strategy 
A challenge in integrating DL into safety-critical autonomous systems is addressing the inherent uncertainty 
associated with its predictions. It is essential to adopt a structured and systematic approach that manages 
and mitigates this uncertainty to the greatest extent possible. The Safety of the Intended Functionality 
(SOTIF[12]) provides a guideline for achieving this goal. As illustrated in Figure 4, SOTIF defines scenario 
categories based on two dimensions: Known/Unknown and Hazardous/Not hazardous. This framework 
highlights the importance of understanding and managing uncertainty to ensure safe and reliable system 
operation. 

The SAFEXPLAIN proposed FUSA-aware DL solution accommodates the SOTIF recommendations by actively 
expanding the "Known" subspace and refining the boundary between subspaces, as indicated by the 
evolutionary paths in Figure 4. Specifically, the solution corresponds to the two arrows on the right side of 
the figure, contributing to a safer and more reliable operation. During the Operation and Maintenance (OM) 
stage, the FUSA-aware DL safety architecture ensures that the system operates safely within the 
"Known/Not hazardous" region, thereby minimizing the risk of accidents or failures.  

Effective management of uncertainty during both development and deployment phases can be achieved 
by formally identifying and separating the distinct sources of uncertainty. This disentanglement enables 
each type of uncertainty to be properly managed. Different algorithms can be employed at different steps 
to monitor and mitigate each uncertainty type in a targeted manner, ensuring that management strategies 
are tailored to meet system safety requirements. 

Figure 4: Alternative evolution of the scenario categories resulting from ISO21448[11] activities 
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In our previous work [134], we have proposed disentangled sources of uncertainty into three primary 
categories: domain uncertainty, model epistemic uncertainty, and aleatoric uncertainty. Figure 5 provides 
an overview of this disentanglement of uncertainty types, where the upper part of the figure corresponds 
to the development lifecycle (AI-FSM) and the lower part of the figure corresponds to the operation and 
monitoring stage (OM stage).  

Each type of uncertainty will be addressed throughout the lifecycle as follows: 

 Uncertainty reduction in the Development Lifecycle (AI-FSM Phases): During this phase, we focus 
on identifying and minimizing reducible types of uncertainty. We also propose 
methods/approaches to estimate irreducible uncertainty and the residual components of reducible 
uncertainty. Additionally, we establish a clear understanding of the boundaries between the 
"Known" and "Unknown" areas, which serves as a baseline for the anomaly detectors to be used in 
OM stage. This ensures that the system operates within its safe boundaries, where all known 
uncertainties are properly managed and mitigated. 

 Uncertainty management in the Operation and Monitoring (OM Stage): In this stage, our 
architecture is equipped with safety components that guarantee the system operates strictly within 
its known scope (safe boundaries). The mitigation strategy for known uncertainty is continuously 
verified to ensure its effectiveness. Furthermore, we constantly estimate residual uncertainty and 
assess the associated risk of entering hazardous situations. If the derived risk exceeds an acceptable 
threshold, the decision-making module is alerted to execute mitigation actions, ensuring the 
system's safe operation and preventing potential hazards. 

Detailed strategies with connections to the uncertainty types are discussed in the following subsections. 

3.3.1. Reduction of uncertainties within development cycles 
3.3.1.1. Reduction of domain uncertainty 
AI-FSM data management (PhDM) phase is a specific phase designed to address mitigation of domain 
uncertainty.  

Figure 5: Uncertainty types 
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XAI methods belonging to data explainer category can be used to support different steps within AI-FSM 
PhDM phase as follows: 

 Identification of analytical and statistical gaps between the collected dataset and the real-world. 
This will be done with the supports of data explainers in PhDM phase. 

o Data value completeness analysis: Identify feature importance in missing values to 
determine which features are most critical to the problem. 

o Feature-wise completeness analysis: Extract important features from the data and evaluate 
missing features that are crucial to supporting the problem. 

o Reconstruction of missing data: Use data descriptors to describe the dataset and synthesize 
missing data samplings to close the data distribution gap. 

o Data balance analysis: Visualize feature distribution and data point distribution across 
selected data dimensions to identify potential biases or imbalances. Measure distribution 
distances between datasets and design approaches to close gaps, including strategies to 
mix different datasets (e.g., synthetic and collected datasets) to improve overall data 
quality in terms of distributional representativeness. 

o Data relevance analysis: Extract prototypes and/or criticisms to identify data points or 
features most representative of the dataset and problem space. 

o Data accuracy analysis: Analyse annotation distributions and identify potential mislabelled 
instances (e.g., anomalous labels). Use feature importance methods to explain how 
different data features influence annotations. 

 Data collection planning 
o Uncertainty analysis: Use uncertainty quantification techniques (e.g., Bayesian neural 

networks) to identify high-uncertainty areas that may require more data to be collected. 
o Diversity analysis: Apply clustering methods to guide data balance across unsupervised 

clusters, ensuring that the collected data is diverse and representative. 
 Data preparation 

o Data synthetic: Use GAN-based synthetic data to augment real-world data points in 
underrepresented areas. 

o Feature importance guided: Identify important features where data augmentation should 
be focused. 

o Counterfactual guided augmentation: Use counterfactual examples to guide data 
augmentation and improve the robustness of the dataset. 

o Noise modelling and augmentation: Identify realistic data noises and adversarial noises and 
use them to augment the dataset and address potential vulnerabilities. 

3.3.1.2. Reduction of model epistemic uncertainty 
The reduction of model epistemic uncertainty is done in the AI-FSM PhLM phase, provided the assumption 
that data domain uncertainty has been already mitigated in the PhDM phase. Various model explainers can 
be employed, targeting AI developer audience, including the below: 

 Improving model architectures: Where applicable, design models with decomposition of concepts 
to ensure that all sub-concepts are accurately modelled and can be thoroughly tested. This 
approach enables the identification and mitigation of potential flaws in the model architecture. 

 Enhancing model explainability: Utilize XAI techniques to increase the transparency of the model 
(intrinsic or posthoc designs).  

 Design uncertainty-aware models: Leverage uncertainty quantification techniques to modify 
models, enabling them to provide not only predictions but also estimates of epistemic uncertainty.  
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 Analysing model global/local behaviour: Employ various model explainers to verify the learned 
feature space and assess the model's robustness to input changes, including both expected and 
unexpected variations.  

3.3.1.3. Logging of aleatoric uncertainty 
Aleatoric uncertainty, being irreducible, can be quantified and estimated using XAI methods within the AI-
FSM PhLM phase. To achieve this, aleatoric uncertainty aware models will be designed and trained on the 
same datasets used for the primary model. This approach enables the estimation of uncertainty levels 
associated with the data quality and label quality. 

Known uncertainties corresponding to the verified datasets are used as the baseline to support the OM 
stage. 

3.3.2. Management of residual uncertainty within OM 
3.3.2.1. Management of data/model epistemic uncertainty 
Residual epistemic uncertainty from both data and model will be mitigated by XAI enabled supervision 
components to ensure the trustworthiness of the system, even in the presence of uncertainty. The key XAI 
components include: 

 Out-of-Distribution (OOD) detectors: These detectors monitor the input data, model activation 
patterns, and output predictions to ensure they fall within established boundaries. These 
boundaries are defined based on the knowledge gained during the AI-FSM phases, as documented 
in corresponding artifacts.  

 Certified surrogate model: This safe alternative model provides a fallback option when epistemic 
uncertainty levels exceed predefined acceptable limits. The certified surrogate model guarantees 
prediction confidence and handles situations where the primary model's uncertainty is too high. 

3.3.2.2. Management of aleatoric uncertainty 
The aleatoric uncertainty-aware model will be integrated into the OM safety architecture, providing insights 
to inform decision-making and ensure reliable system performance. The employment of this model enables 
various approaches, including: 

 Trade-off mechanisms: When estimated uncertainty exceeds an acceptable threshold, the system 
can adapt by: 

o Running inference on multiple consecutive frames, increasing processing delay but 
reducing uncertainty to an acceptable level. 

o Dynamically adjusting the trade-off between prediction accuracy and latency, ensuring that 
the system operates within defined safety bounds. 

 Model fusion: The decision function, based on an ensemble model, will utilize estimated 
uncertainty as input to: 

o Produce final consolidated predictions with higher certainty, considering the estimated 
uncertainty of individual model outputs. 

o Assign weights to each model's output based on its corresponding uncertainty estimate. 
 Defining safe limits for system operation: The aleatoric uncertainty-aware model will help 

establish safe limits for the system, where: 
o Prediction variations within predefined boundaries can be tolerated and used by the 

decision-making component. 
o The system's operating range is defined, ensuring that predictions are reliable and 

trustworthy, even in the presence of uncertainty. 
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3.4. XAI usages in AI-FSM Lifecycle 
The integration of explainable AI (XAI) techniques within the AI-FSM lifecycle ensures transparency, 
robustness, and compliance with safety standards throughout the development and deployment of deep 
learning solutions. XAI supports various phases of AI-FSM, from defining safety goals and enhancing model 
robustness to improving data management, learning processes, and inference monitoring. 

The primary objective of ensuring DL model compliance within the AI-FSM framework is to systematically 
identify, mitigate, and document uncertainties, thereby enhancing the model's reliability, robustness, and 
overall trustworthiness. Specifically, this involves: 

 Reducing reducible uncertainties: addressing domain uncertainty and model epistemic uncertainty 
through targeted efforts to improve knowledge and understanding in corresponding steps. 

 Characterizing residual uncertainties: acknowledging and documenting the remaining 
uncertainties, including irreducible aleatoric uncertainties. 

3.4.1. Safety goals & strategy 
Ensuring safety throughout the AI-FSM lifecycle requires a structured approach based on safety argument 
patterns and rigorous verification and validation (V&V) activities. These mechanisms establish confidence 
in deep learning models by systematically assessing their performance, reliability, and compliance with 
predefined safety requirements. The core strategy is to reduce uncertainty-related risks by ensuring that 
all hazardous situations are identified, assessed, and documented, while continuously monitoring and 
reporting safe operational boundaries. 

Safety argument patterns serve as a foundation for justifying the dependability of AI components. These 
patterns link system specifications, risk assessments, and supporting evidence from V&V activities to ensure 
that AI models meet functional safety standards. By integrating XAI techniques, these patterns gain 
traceability and interpretability, allowing stakeholders to understand and assess AI-driven decisions 
effectively. 

V&V activities span across different lifecycle phases, from data validation and model training to inference 
monitoring and operational diagnostics. These activities focus on detecting and mitigating failure modes, 
biases, and edge cases, ensuring that AI models remain robust under real-world conditions. Techniques 
such as anomaly detection, uncertainty estimation, and neural coverage analysis contribute to a proactive 
risk management approach, reducing unexpected failures and improving fault tolerance. 

A key element of the safety strategy is uncertainty management, which involves continuous monitoring of 
AI predictions to detect out-of-distribution (OOD) data, concept drift, and anomalous behaviours. XAI 
techniques play a crucial role here by providing interpretable insights into model confidence and decision 
boundaries, ensuring that AI systems operate within validated safe zones. The integration of supervisory 
monitors and decision functions further enhances reliability by dynamically assessing the trustworthiness 
of AI-generated outputs and enabling corrective actions when necessary. 

Ultimately, embedding safety argumentation and explainability throughout the AI-FSM lifecycle ensures 
that deep learning models remain traceable, robust, and aligned with functional safety requirements, 
supporting their deployment in critical and high-risk environments. 

3.4.2. Robustness, Explainability 
Robustness in the AI-FSM lifecycle refers to the stability of model explanations when subjected to slight 
perturbations in input, ensuring that the model's output remains consistent. A robust AI system should 
provide stable predictions and interpretable explanations, even when exposed to noise, adversarial 
manipulation, or unseen environmental conditions within its ODD. Robustness is closely linked to 
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explainability, as highly unstable explanations indicate potential vulnerabilities, making the system more 
susceptible to adversarial attacks or unsafe behaviours. 

3.4.2.1. Adversarial attacks and defence mechanisms 
Adversarial attacks exploit model vulnerabilities by introducing subtle perturbations that mislead AI 
predictions while avoiding being detected e.g. by maintaining human-perceptible similarity to valid inputs. 
These attacks can occur at different stages. 

Adversarial Attack Types 

 Input based with or without model access (OM stage): Manipulating input with crafted noises to 
influent output. These attacks introduce small but strategic changes to input data to cause incorrect 
predictions while keeping the changes imperceptible to humans. There are two types of such 
attacks: 

o Black-box attacks: Attackers do not have direct access to the model but probe its responses 
to generate adversarial inputs. 

o White-box attacks: Attackers have full knowledge of the model, allowing them to 
manipulate gradients to create adversarial perturbations (e.g., FGSM, PGD). 

 Model poisoning (AI-FSM DM): add malicious behavior (to specific types of inputs) into the model 
by unauthorized access allowing attackers to manipulate training dataset. 

o Occur during training, where maliciously modified data is introduced into the dataset, 
leading to hidden biases or targeted misclassifications. 

o These attacks are particularly dangerous because they can compromise model reliability 
without visibly affecting training accuracy. 

 Manipulating the real world (OM): adding strange objects, masking object, manipulating 
illuminations… These attacks alter the physical environment to mislead AI models without 
modifying digital inputs. Examples include: 

o Adding strange objects (e.g., adversarial stickers on traffic signs to fool autonomous 
vehicles). 

o Masking critical features (e.g., obscuring objects in a way that disrupts detection). 
o Manipulating lighting conditions (e.g., using shadows or reflections to distort object 

recognition). 

Defense approach 

To ensure robustness to an identified set of possible adversarial attacks, a combination of proactive (AI-
FSM) and reactive (OM) defence mechanisms is required. 

 Mitigation actions within AI-FSM lifecycle:  
o PhDM: adding anticipated adversarial data points to datasets. Incorporate adversarial data 

augmentation, adding perturbed examples to training datasets to improve generalization 
w.r.t. predefined types of adversarial attacks. 

o PhLM: adding crafted adversarial datapoints dynamically during training (adversarial 
training, Tradeoff balance robustness and accuracy) 

o Model design: Introducing adversarial loss functions, explicitly penalizing incorrect 
predictions caused by adversarial perturbations. 

o Implement adversarial training, dynamically injecting adversarial samples into 
training to improve model resilience. 

o Optimize the trade-off between robustness and accuracy, ensuring the model can 
handle adversarial examples without overfitting. 

 Mitigation strategy in OM stage: 
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o Uncertainty aware model: Use uncertainty aware models estimate prediction uncertainty, 
flagging unreliable outputs. 

o Adversarial attack detection as an additional supervisory monitor 
o Deploy anomaly detection[135] to identify unexpected perturbations in input 

data. 
o Cross-check model explanations over consecutive frames or redundant AI models 

to detect inconsistencies caused by adversarial attacks. 

By embedding robustness and explainability throughout the AI-FSM lifecycle, AI systems become more 
resilient to adversarial threats and environmental variations. A robust model ensures that explanations 
remain stable even when inputs change slightly, while explainability helps detect and mitigate 
vulnerabilities before they compromise system safety. Integrating these principles enables AI-driven 
systems to operate reliably and transparently in safety-critical applications. 

3.4.2.2. Robustness 
Robustness is a multifaceted concept that encompasses not only performance but also generalization, 
resilience to adversarial threats, and explainability across all phases of the AI-FSM lifecycle. Achieving 
robustness requires a comprehensive approach that involves strategies at various levels. 

Data management strategies 

Robustness improvement can be done via data generalization. Within the context of SAFEXPLAIN, data 
generalization refers to improving the representativeness and relevancy of the datasets. 

 Data augmentation: the followings can be considered: 
o Geometric transformations such as rotation, flipping, and scaling to ensure the model is 

robust against positional changes. These transformations are done to generate missing 
data points and achieve expected distribution (with respect to real world) 

o Colour and texture augmentation: to prevent over-reliance on low-level image statistics, 
which can be resulted from the data collection limitations but not necessarily reflect real 
world data. 

o Synthetic data generation to create additional data points that are underrepresented in 
real-world data samplings. 

 Additionally, dataset profiling is performed to detect biases, ensuring that the model does not learn 
spurious correlations that could lead to unexpected failures in critical situations. Ensuring dataset 
balance, feature importance analysis, and diversity in training samples prevents overfitting and 
strengthens the model’s ability to handle novel situations. 

Strategies for model design  

A robust AI system must learn invariant features that remain stable across different conditions. If a model 
learns fragile correlations, it may perform well on training data but fail in deployment when faced with 
small variations. To enhance robustness at the architectural level, the following strategies can be adopted: 

 Feature disentanglement techniques, ensuring that the model captures core semantic information 
rather than overfitting to specific patterns. For example, in object detection, the model should learn 
shape-based features rather than relying on background textures, which could mislead predictions. 

 Structural regularization methods, such as dropout, batch normalization, and weight decay, which 
force the model to distribute its learned representations more evenly, reducing over-reliance on 
specific neurons or layers. 

 Intrinsic explainability mechanisms, where models incorporate interpretable structures such as 
attention mechanisms, decision trees, or prototype-based learning to maintain explainability and 
stability. 
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By embedding these design choices into the model architecture, we can ensure that learned 
representations remain consistent and interpretable, even under adversarial conditions. 

Strategies during model learning and inference 

 Model Learning: balancing overall accuracy with distribution of accuracies across dataset space. 
 Inference: preparing input data by removing noises and detecting attacks (e.g., unexpected input 

variations/distributions). Uncertainty aware model with adversarial noises 
 Verification and validation (V&V): testing with adversarial noises (both intended and unintended) 

to ensure robustness. As illustrated in Figure 6, an example of robustness testing against adversarial 
attacks is provided, where images are intentionally corrupted with varying levels of adversarial 
noise (measured by Epsilon, ε). Notably, at a noise level of ε = 0.002, the model begins to exhibit 
confusion in its detections, highlighting the importance of robustness testing in ensuring reliable 
performance under adverse conditions. 

 

3.4.2.3. Explainability 
To foster trust and confidence in generated artifacts, explainability is essential where applicable. This 
involves providing insights into the data and models used to produce these artifacts, ensuring that they are 
transparent, interpretable, and reliable. 

Explainability shall be maintained for both data and model: 

 Data explainability and traceability: Data should be accompanied by detailed explanations and 
statistical measures to assess its compliance with set requirements. 

o Traceability: The ability to track the origin, processing, and manipulation of data 
throughout its lifecycle. 

o Statistical measures: Providing summary statistics and other relevant metrics to 
characterize the data distribution, variability, and interactions between variables. 

o Reproducibility: Maintaining a record of data access, modifications, and confidentiality 
measures to ensure reproducibility and feature importance-based diagnoses. 

 Model explainability: Model explainability is crucial for ensuring that the DL system behaves as 
intended within its scope and provides required safety related performance 

Figure 6: FGSM attack on 4 sample images using different degrees 
of small perturbation (Eps).  
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o Conceptual functionality decomposition: Breaking down complex models into smaller, 
manageable components to verify that each sub-functionality behaves correctly according 
to design logic. 

o Supporting V&V strategies: Using model explainers such as those of metaheuristic search 
or disentanglement of model's feature space w.r.t. model performance clusters. 

o Diagnosis: Providing insights into how input data and/or feature affects model behaviour, 
enabling the identification of potential biases, errors, or areas for improvement. 

3.4.3. XAI usages in Data Management 
Effective data management in the AI-FSM lifecycle is critical for reducing domain uncertainties and defining 
the boundary between known and unknown data distributions. Explainable AI (XAI) techniques play a key 
role in ensuring data traceability, quality, and reliability, helping to establish a well-defined Operational 
Design Domain (ODD). This structured approach enables Out-of-Distribution (OOD) detection, ensuring that 
AI models remain robust against unseen or anomalous data. 

3.4.3.1. Data requirements 
To ensure that the dataset meets the Deep Learning (DL) system’s functional and safety requirements, it 
must be traceable, reproducible, and free from data integrity issues. AI-FSM leverages XAI-based data 
profiling, validation, and integrity assessment tools to ensure that datasets align with the AI system’s 
intended use. 

 Data Traceability: Establishing a direct link between raw data and DL model requirements ensures 
transparency in dataset origins. Version control mechanisms track dataset modifications, 
preventing unintentional data shifts or inconsistencies during retraining. XAI-enhanced dataset 
lineage tracking enables explainability by maintaining a clear audit trail of data transformations. 

 Data Integrity: XAI-based data validation rules ensure data quality and consistency by measuring 
the percentage of missing values and their impact on model learning, continuity of time-series data 
to identify unexpected gaps in sequences, and statistical consistency by verifying that feature 
distributions remain within expected ranges. Malicious data modifications, such as data poisoning, 
are detected using anomaly detection models and distribution consistency checks. 

 Raw Data and Annotation Requirements: Bounding box consistency checks verify that object 
annotations are correctly labelled, avoiding misalignment issues that could impact model learning. 
Data balance analysis ensures that critical classes and features are well-represented in the dataset, 
preventing biases in model predictions. 

 Data Gaps and Compliant Tools: Dataset completeness verification identifies missing data 
segments that may lead to performance degradation in critical scenarios. Compliant tools include 
explainability-driven dataset metrics and integrity checks, such as outlier detection for spotting 
inconsistencies and statistical summaries of dataset properties to detect imbalances and biases. 

3.4.3.2. Data collection 
The data collection phase establishes a baseline dataset by applying XAI-based analysis and reporting 
techniques to ensure that collected data is valid, representative, and free from systematic biases. 

 Baseline the Collected Datasets: Ensuring dataset consistency involves verifying file format 
standardization to prevent errors in data loading, dataset volume and balance analysis through 
histograms and heatmaps to detect imbalances in class distributions, and dataset comparisons to 
track changes across different collection stages. 

 Generate Reports with Data Profiling: XAI-enhanced data profiling tools, such as 
DataGradients[136] or  SHAP explainers for the entire dataset as distribution, generate statistical 
graphs that describe feature distributions, label consistency, and dataset shifts over time. 
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 Describe Multi-Dimensional Data: Variational Autoencoders (VAEs) extract latent feature 
representations, providing a high-dimensional understanding of dataset structure. Clustering 
techniques, such as k-means and hierarchical clustering, reveal underlying data patterns, improving 
explainability. 

 Synthetic Data Quality Assessment: Synthetic data augmentation is validated using Fréchet 
Inception Distance (FID) to measure similarity between synthetic and real data distributions, Kernel 
Inception Distance (KID) to assess feature-level alignment, and Structural Similarity Index (SSI) to 
evaluate perceptual consistency. 

3.4.3.3. Data preparation 
In the data preparation phase, XAI techniques ensure data cleanliness, accurate labelling, balanced 
distributions, and robust preprocessing. 

 Annotation Consistency and Accuracy: Statistical plots reveal annotation inconsistencies, such as 
bounding box overlaps that could lead to misclassifications in object detection models. Class 
distribution analysis ensures sufficient representation across different ODD parameters, such as 
weather and time of day. 

 Data Augmentation for Robustness: Augmentation techniques, including scaling, rotation, and 
flipping, improve generalization and robustness. XAI-based metrics measure class balance before 
and after augmentation to ensure that minority classes are sufficiently represented and analyse 
distribution stability after transformations to prevent data distortions that could affect model 
performance. 

 Data Cleaning and Labelling: Noise characterization and removal use autoencoders to denoise 
corrupt images and restore missing information. Manual re-labelling recommendations help 
address datasets where automated correction is insufficient. 

 Data Preprocessing for Model Input Standardization: Normalization, scaling, and feature selection 
improve dataset quality while maintaining explainability. XAI-based dimension reduction 
techniques, such as PCA, UMAP, and t-SNE, help measure distributions across different feature 
dimensions before and after preprocessing and identify the most important features while 
maintaining explainability. 

3.4.3.4. Data verification 
The data verification phase ensures that datasets align with the requirements for deep learning models, 
reducing domain uncertainties and improving explainability. By leveraging XAI tools, this phase validates 
whether collected data covers expected distributions, identifies representative samples, and establishes 
clear boundaries between known and unknown data. 

3.4.3.4.1. Data Profiling 

Data profiling involves evaluating data distributions and structure to confirm that the dataset meets 
predefined quality and completeness criteria. This step generates reports on dataset characteristics, 
ensuring that no significant biases or inconsistencies affect model training and inference. Key verification 
aspects include: 

 Class distributions, which assess whether different object categories are adequately represented 
to prevent biases in model predictions. 

 Bounding box (Bbox) distribution analysis, which checks the sizes and locations of detected objects 
to ensure consistency in training data, particularly in object detection tasks. 

 Image statistics, including size, resolution, and colour profiles, which verify whether images in the 
dataset maintain a standard format, reducing preprocessing variability. 
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 ODD and scenario-related parameter distributions, which analyse contextual data such as time of 
day, illumination levels, weather conditions, target distances, viewing angles, and scene variations. 
Ensuring that these parameters are well-distributed helps the model generalize better across 
diverse conditions. 

 Timestamp-based data consistency, which ensures that time-dependent data is correctly ordered, 
preventing temporal inconsistencies that could affect models reliant on sequential inputs.  

Figure 7 illustrates class distribution and bounding box distribution as part of the data profiling activity for 
Railway UC. 

 
Figure 7: Bounding box and class distribution for Railway use case. 

3.4.3.4.2. Data Prototyping 

Data prototyping helps extract representative examples from the dataset, ensuring that key patterns, 
objects, or concepts are well captured and understandable. This process enables explainability by linking AI 
decision-making to specific dataset elements. Usages of data explainers for this purpose are: 

 Prototype extraction via clustering methods identifies core representations of objects and 
concepts within the dataset. By grouping similar samples, clustering ensures that each category is 
well-defined, improving interpretability. 

 Prototype patching examines whether smaller image regions still retain key characteristics 
necessary for classification. This method is particularly useful for assessing whether AI models rely 
on meaningful features rather than background artifacts or irrelevant details. 
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Prototyping enhances the explainability of model decisions by demonstrating how well the dataset covers 
real-world variations and whether the model’s learned representations align with human-interpretable 
features. 

Figure 8 provides an example of extracted prototypes (typical small, squared patch of input images) that 
most likely representing the dominant image feature in the MVP dataset. The algorithm used is MMD-
criticisms[87]. 

3.4.3.4.3. Data Descriptors 

Data descriptors provide a structured way to summarize dataset characteristics, helping define the 
boundaries between known and unknown data distributions. These descriptors support the identification 
of OOD data, ensuring that AI models operate within reliable and well-understood domains. Applications 
of data explainers include: 

 VAE-based descriptors use Variational Autoencoders (VAEs) to learn a compressed representation 
of dataset features. By encoding the dataset into a lower-dimensional latent space, VAEs help 
capture meaningful variations while filtering out noise, improving dataset interpretability. 

 Distribution descriptors log feature distributions across different dataset dimensions. These 
descriptors may include operational design domain (ODD) parameters such as weather conditions, 
lighting variations, or target attributes, as well as annotations and feature-based representations 
extracted from VAEs or clustering methods. 

 Latent space analysis applies techniques like t-SNE, UMAP, or PCA to visualize the structure of the 
dataset in lower-dimensional spaces. These methods help reveal whether different data categories 
are well-separated or if overlaps indicate possible misclassifications or biases in the dataset. 

 Boundary reporting defines the limits between in-distribution and out-of-distribution data, 
identifying areas where the model might struggle to generalize. By mapping these boundaries, AI-
FSM ensures that decision-making remains reliable and interpretable, reducing the risk of 
unpredictable behaviour in deployment. 

Figure 9 illustrates the data descriptor, describing each data point (image) as a tuple {VAE weight, latent 
values}. The VAE model has been trained with MVP dataset. 

Figure 8: Extracted prototypes of MVP dataset, patch size 100x100 
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3.4.4. XAI usages in Learning Management 
Learning management in the AI-FSM lifecycle focuses on structuring models to mitigate the model 
epistemic uncertainty in a way that enhances interpretability, modular transparency, and verification of 
decision-making logic. Different verification and validation (V&V) activities should be planned to evaluate 
whether models follow structured, logical, and understandable reasoning processes. 

Here we discuss how models shall be made explainable by design with reasoning logics shall be made 
transparent or (more transparent). Different V&V activities shall be planned to verify modular logics. 

3.4.4.1. Model design 
The selection of an appropriate design architecture for a deep learning (DL) model is a crucial first step in 
reducing epistemic uncertainty related to a specific problem. The chosen model structure serves as the 
foundation for defining the entire model space, where each trained model is represented by its unique set 
of parameters, effectively mapping to coordinates within this space. A well-designed model space should 
ideally encompass the optimal solution and possess a structure that enables efficient convergence towards 
this ideal solution during the training process.  

Several critical questions must be addressed: 

 Does the input data provide sufficient insights to enable the model of such architecture to solve 
the problem effectively? 

 Are the dimensions of the model parameters in the model space comprehensive enough to capture 
and account for all important aspects of the problem adequately? 

 Can the model space be decomposed into subspaces, corresponding to sub-problems, given the 
domain knowledge to ensure that the complex problem can be solve correctly via solving its 
subproblems? 

The modular design of deep learning models plays a key role in improving transparency and explainability. 
By decomposing models into functional blocks, it becomes easier to analyse and validate each component 
independently, ensuring that the system’s decision-making logic remains interpretable and traceable.  

Transparency of internal working of selected model can be provided by some architectural modifications: 

 Explainable feature extractor Specify key layer(s) of the model’s backbone and add functions to 
extract activation patterns and/or gradients (requiring backward pass). 

Figure 9: Trained VAE model as data descriptor. The model describes its input image (left) as an reconstructed version (center) and 
corresponding latent vector. The reconstruction error map (right) highlights the reconstruction error area (anomalous area) 
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 Embedded attention mechanisms: add additional block accounting for attentions such as 
CBAM[137]   

 Embedded uncertainty estimate mechanism: add additional block accounting for uncertainty 
estimates and modify the loss function accordingly 

 Interpretable surrogate model: train an interpretable surrogate model on the same dataset to 
predict the model predictions. This surrogate model can then be used to explain the main model. 

 Feature importance: Design the model so that it best leverages the extracted dominant prototypes 
or data features as techniques provided in PhDM. 

 Disentanglement of backbone feature space: Using architecture design and training techniques to 
introduce concept representation into the feature space (e.g. specific dimensions are connected to 
specific concepts) 

3.4.4.2. Model training 
During the Model training step in PhLM, XAI tools are leveraged to minimize model epistemic uncertainty 
from multiple angles, including: 

 Optimizer and Scheduler Selection: ensuring that the chosen training optimizer and scheduler 
promote model robustness and resilience to varying training conditions 

 Convergence Monitoring: verifying that the training process converges to a global optimum, rather 
than getting stuck in local minima. 

 Subobjective Alignment: confirming that each subobjective (represented by individual loss 
components) is properly supported and balanced to achieve overall model objectives 

 Overfitting Prevention: preventing model overfitting by carefully selecting the batch size and 
learning rate, and monitoring convergence stability through visualization of iteration logs to 
minimize fluctuations caused by incoming batches of data. 

 Reproducibility: ensuring that the training process is reproducible, allowing for consistent results 
and facilitating model reliability and trustworthiness. 

To ensure that the DL model behaves as expected and aligns with domain expertise, various XAI techniques 
can be employed in this step. These techniques can be categorized into several key areas: 

Global model explainers can be employed to validate the overall behaviour of the DL model, ensuring it 
aligns with domain expertise and expectations. Domain experts verify that the model behaves as expected, 
providing confidence in its performance. Examples of global explainers include LIME (Figure 10), SHAP 
(Figure 12) or visualizing an interpretable model that surrogates the main model.  

Explainability techniques enable AI developers to monitor the convergence process and ensure that the 
model is learning in the right direction. By analysing the explanations of intermediate results, developers 
can verify whether the model's performance is improving as it converges. This allows them to: 

 Track progress: evaluate the model's improvement over time and identify potential issues 
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 Identify biases: detect any emerging biases or flaws in the model's decision-making process 
 Refine the model: adjust the training process, hyperparameters, or architecture to optimize 

convergence and improve overall performance 
 Analysing model inner activation and feature representation (if model uses or ignores important 

features). 

 

 

To investigate how different parts of the model respond to distribution shifts in the input data, we can also 
leverage XAI tools. One such approach involves analysing the Mean Maximum Discrepancy (MMD) of 
activation patterns extracted at key layers of the DL model. This analysis provides insights into how the 
model's internal representations change when faced with different datasets. As illustrated in Figure 11, we 
computed these distances for key layers of the MVP Model using two distinct datasets: the original MVP 
dataset and a randomly selected dataset. By comparing the MMD values, we can gain a deeper 

Figure 10: LIME Heatmap (30 SLIC segments) 

Figure 11: MMD distance per MVP model’s key conv layers (comparing two datasets) 
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understanding of how the model's behaviour changes in response to variations in the input data 
distribution. A model that is truly robust to domain gaps between datasets should exhibit a decreasing 
Mean Maximum Discrepancy (MMD) distance as the input data propagates through its layers, ultimately 
converging to zero at the deeper layers.  

3.4.4.3. Model evaluation 
To determine which model architecture is best suited for a particular problem, it's essential to evaluate 
different architectural settings and measure their impact on model performance. This involves: 

 Layer setting evaluation: assessing the effects of varying layer configurations, such as: Number of 
layers, Convolutional kernel size, Bottleneck size 

 Hyperparameter tuning: optimizing hyperparameters to achieve optimal model performance 

XAI tools can support this evaluation process by providing insights into the model's behaviour and decision-
making processes. XAI techniques can be used in conjunction with hyperparameter selection to design 
models that provide the trade-off between: 

 Timing: computational efficiency 
 Performance/Accuracy: model accuracy and reliability 
 Explainability: transparency and interpretability of model decisions 

To gain a deeper understanding of the model's internal workings, XAI algorithms can be applied to analyse: 

 Feature importance: measuring the contribution of different features or components (e.g., heads, 
skip connections) to the final prediction 

 Activation and gradient analysis: visualizing activations and gradients at specific layers, for 
example 

o Last CNN layer 
o Different blocks of Feature Pyramid Network (FPN) 
o Region Proposal Network (RPN) heads 
o Classification heads 

3.4.4.4. Model verification 
In this step, the goal is to ensure that the model performs well and remains robust across the dataset space, 
considering variations in input parameters. This involves: 

Figure 12: SHAP heatmap with superpixels 
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 Performance evaluation: assessing how the model's performance varies with different input 
parameters 

 Robustness assessment: measuring the model's ability to withstand common adversarial noise and 
attacks 

Explainable AI (XAI) algorithms can be applied to test and verification data to: 

 Evaluate trade-off relationships: analysing the balance between 
o Timing: computational efficiency 
o Performance: model precision and reliability 
o Uncertainty: confidence in model predictions 
o Explainability: transparency and interpretability of model decisions 

 Measure performance degradation: assessing how the model's performance deteriorates when 
faced with generalized datasets, including those with adversarial noise 

 Report correlation analysis: identifying relationships between performance and dataset 
dimensions 

 Diagnose if the model’s behaviours are correct to the domain knowledge (e.g. analysing the 
attention heatmap as illustrated by Figure 13) 

To test the model's robustness against adversarial noise, noise generators and attack simulators can be 
used to: 

 Generate adversarial examples: creating input data that is designed to mislead or deceive the 
model 

 Simulate attacks: testing the model's defences against various types of adversarial attacks 

 

XAI algorithms also support to generate report on expected behaviours, including: 

Figure 13: MVP model EigenCAM 
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 Uncertainty levels: predicting the level of uncertainty associated with different input parameters 
 Performance expectations: estimating the model's performance for specific input parameters (see 

Figure 14) 
 In-distribution activation patterns: analysing the model's internal workings and identifying typical 

activation patterns for in-distribution data 

 

3.4.5. XAI usages in Inference Management 
Inference management in AI-FSM ensures that deployed models operate within acceptable safe boundaries 
while maintaining consistency with their original training behaviour. Explainable AI (XAI) techniques play a 
key role in validating inference stability, monitoring deviations, and detecting Out-of-Distribution (OOD) 
inputs. By continuously assessing model predictions against expected behaviours, inference management 
ensures that decisions remain interpretable, reliable, and aligned with safety requirements. 

A key requirement for inference management is to verify that the model performs as intended in real-world 
scenarios. XAI techniques help compare inference-time decisions with the original model's expected 
behaviour by: 

 Tracking feature importance shifts between training and inference phases to ensure that the 
model relies on the same key features for decision-making. 

 Analysing activation patterns in neural layers to detect any unexpected deviations that could 
indicate model drift or changes in learned representations. 

 Ensuring stability in explainability metrics, such as attention maps and saliency visualizations, to 
confirm that inference-time reasoning remains consistent with training logic. 

Figure 14: PhIM - Model performance (IoU metrics) dependency on input feature parameter 
(center position of object) 
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 Comparing performance distributions across different ODD conditions (e.g., different lighting 
conditions, object scales, viewing angles) to ensure inference robustness across varying 
environments. 

Inference models must operate within predefined safe boundaries, ensuring that predictions remain 
trustworthy and interpretable. To achieve this, AI-FSM incorporates supervisory monitors, which act as a 
safety layer to cross-check predictions, detecting potential misclassifications or model failures before they 
impact decision-making: 

 Uncertainty estimation, where models quantify their confidence levels in predictions, flagging 
high-uncertainty outputs for human review or fallback mechanisms. 

 Anomaly detection for OOD inputs, which identifies when inference data significantly deviates 
from training data distributions. Techniques such as distance metrics in latent space, probabilistic 
modelling, and clustering-based detection help recognize unexpected scenarios. 

To verify that the inference process remains transparent and trustworthy, AI-FSM applies various 
explainability techniques:  

 Feature attribution methods, such as SHAP or LIME, analyse whether the model is using the correct 
input features for its predictions.  

 Prototype-based verification, ensuring that the model’s inferences align with known, 
representative samples rather than relying on spurious correlations. 

 Saliency maps, which highlight the most important regions in input data that contribute to the 
model’s decision-making. By visualizing which areas of an image, text, or structured data impact 
predictions, saliency maps provide insights into the reasoning process and help detect cases where 
models rely on unintended or misleading features. Figure 15 illustrates a saliency map generated 
for Railway UC. 

 

3.5. XAI usages in Operation and Monitoring stage 
Within the Operational and Monitoring (OM) stage, the residual uncertainties (irreducible uncertainties and 
residual reducible uncertainties) are managed by different safety components within the safety 
architecture. The components aim to identify and assess uncertainties, making sure that the system is 
operating safely as it has been designed for (upon the steps taken in AI-FSM lifecycle).  

Table 2 provides a proposed mapping of XAI methods to the types of uncertainty encountered during the 
Operational Management (OM) stage. This mapping facilitates the integration of these XAI techniques as 
key safety components within the safety patterns detailed in subsequent sections. 

Figure 15: EigenCAM on railway use case. 
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Table 2: Uncertainty types and corresponding proposed supervisory monitors 

Uncertainties Descriptions Supervisory monitors 

Residual domain 
uncertainties 

Out of Distribution: input data in runtime has 
not been seen (not likely belong to the 
datasets generated from AI-FSM PhDM) 

 Anomaly detectors 
o Input data 
o Extracted feature 
o Output predictions 

Residual model 
epistemic 
uncertainty 

Low confidence of model predictions (or high 
uncertainty) due to non-representative 
training dataset or non-ideal model 
architecture 

 Uncertainty-aware model 
 Surrogate model  
 Logical ruled constraints 

Aleatoric 
uncertainty 

Sensor noises, annotation uncertainties, 
occlusion 

Adversarial attacks 

 Aleatoric uncertainty 
aware model 

 Adversarial detector, 
distribution shift detector 

 

3.5.1. Reference safety architecture  
The previous deliverable D3.1[19] has presented a high-level safety reference architecture for deployment 
in OM stage. This section provides a more detailed and updated final reference architecture where a 
minimum viable product (an MVP) version has been prototyped and implemented in the project’s demo 
platform. 

Figure 16 depicts the architectural diagram with the representative key components, to illustrate how the 
integration of these components constitutes a safe application of DL component in runtime environments. 

 

Figure 16: Reference safety architecture for Operation and Monitoring stage 

The reference architecture includes the following safety mechanisms:  
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 AI/ML constituent: A diverse set of redundant DL components, each designed to achieve the same 
objective, operate in parallel and generate related output predictions for a given input data point. 

 Supervision components: We propose three types of supervision components, which practitioners 
can apply in various ways depending on their specific requirements. These component types 
include: 

o Anomaly detectors: The anomaly detectors are designed to identify deviations in the 
model's operating environment that may compromise its certified safe performance 
(within AI-FSM). These deviations can occur due to various factors, including: 

o Input anomalies: Unusual input data can cause the DL components to behave 
unexpectedly, often due to uncertainty about the data distribution (i.e., newly 
encountered data that differs from the training datasets). Examples of input 
anomalies include: 

 Data corruption (e.g., sensor noise, environmental interference, or 
adversarial attacks) 

 Missing or incomplete data, object occlusions 
 Changes in the sensor field of view or object distribution 

o Model internal anomalies: The model's internal behaviour may deviate from its 
expected and certified patterns, as logged during the AI-FSM PhLM phase. These 
anomalies can be: 

 Unusual neural activation patterns or feature extractions 
 Abnormal gradient computations (in reinforcement learning scenarios) 

o Output prediction anomalies: Unexpected predictions can occur in various aspects 
of the output, including: 

 Object type or classification 
 Distribution or probability estimates 
 Temporal consistency or coherence 
 Object size, shape, or position 

o Safe surrogate models: Interpretable surrogate models are trained to approximate the 
predictions of the main DL component. Their transparency allows domain and safety 
experts to verify and certify a safe, albeit less robust, alternative for critical operations. 

o Uncertainty-aware models: These models estimate the uncertainty of the main DL 
component for a given input/situation, enabling risk quantification for hazardous scenarios 
and informing safe decision-making. 

 Decision function: This component aggregates predictions from diverse redundant DL components 
and supervisory monitors to generate a final output consisting of a consolidated prediction and a 
corresponding trustworthiness score. 

3.5.2. Reference safety components 
3.5.2.1. Diverse redundant AI/ML constituent 
The AI/ML constituent consists of 2 DL components (SSDLite and Faster R-CNN, both are using MobileNetV3 
as their CNN backbone to extract visual features) acting as object detectors, predicting the existence of the 
satellite object and its position within the input image frame (bounding box coordinates). The pre-
processing steps are mainly converting input data into the required format (320x320 pixels), and the post 
processing step is formatting predictions into a triplet {object class, bounding box coordinates, detection 
score}. 
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3.5.2.2. Uncertainty-aware models 
Although anticipated uncertainties have been mitigated throughout the various AI-FSM phases and steps, 
residual uncertainties may remain, resulting in need of real-time monitoring during operation to maintain 
an acceptable level of safety risk of encountering hazardous situations.  

Uncertainty-aware models refer to a set of design approaches that aim to enhance the target DL 
component(s) with extra capability to quantify the uncertainties associated with in-distribution data, as well 
as potential out-of-distribution scenarios. These techniques provide real-time estimates of uncertainties 
alongside the model's predictions, thereby furnishing the decision-making module with the necessary 
additional information to make safe and informed decisions.  

Typical methods that can be used to provide uncertainty estimates include: 

 Model epistemic uncertainty estimate: 
o Ensemble methods: Using multiple models with different settings (training data subsets, 

model architectures, training hyperparameters). These can be combined with 
bootstrapping techniques, which create bootstrapped sub-datasets by resampling the 
original dataset. 

o Monte Carlo dropout: Applying random dropout to neuron activations creates a 
distribution over the model weights, capturing epistemic uncertainty. 

o Bayesian Neural Networks (BNN): Adding a prior distribution over the model weights and 
updating it using Bayes' theorem. Variational inference can be used to approximate the 
posterior distribution over the model weights. 

 Aleatoric uncertainty estimate: This type of uncertainty represents the irreducible uncertainties 
that are inherent to the stated problem itself, arising from the natural variability and noise present 
in the labelled ground truth data. A modification is applied to add an additional prediction head to 
estimate the parameters characterizing the output distribution, such as the mean and standard 
deviation, assuming a specific distribution (e.g. Gaussian or Gaussian mixtures) 

For the MVP, two uncertainty-aware models have been developed as prototypes providing qualifications 
for these two types of uncertainties: Aleatoric uncertainty and Model epistemic uncertainty. 

The following subsections will provide more details of the implementation details. 

3.5.2.2.1. Aleatoric uncertainty aware model 

The standard SSDLite model from the Torchvision model zoo has been modified to incorporate a custom 
prediction head, providing the estimated aleatoric uncertainty of the predictions. 

The following assumptions have been made:  

 Safety related performance metrics: The accuracy of predicted bounding box coordinates (e.g., 
object position and orientation) serves as a key performance metric related to safety. 

 Aleatoric uncertainty quantification definition: Aleatoric uncertainties are quantified as the 
expected variation in predicted coordinates around their predicted values. This provides a measure 
of the uncertainty associated with each prediction. 

 Input dependent: The uncertainties are dependent on the characteristics of the input image and 
are computed individually for each of the four bounding box coordinates (x1, y1, x2, y2).  

 Normal distribution: The regression head, optimized using the L1 norm, predicts bounding box 
coordinates that form a normal distribution around the ground truth values. This assumption 
enables the estimation of aleatoric uncertainties using statistical methods. 

Key modifications are as follows: 
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 Uncertainty estimation head: An additional head has been introduced, which inherits the 
architecture of the regression head. This uncertainty estimation head takes the backbone features 
corresponding to proposed anchor bounding boxes as input and generates uncertainty estimates 
for each anchor box as its output. Figure 17 illustrates the modified architecture of SSDLite model 
for this purpose. 

 Modified Loss Function: The original loss function has been augmented with a Gaussian Negative 
Log Likelihood (NLL) term. This modification encourages the model to not only accurately predict 
bounding box coordinates but also to provide reliable uncertainty estimates that reflect the true 
distribution characteristics of the predictions. Readers consult [138] for a comprehensive overview 
of probabilistic models and concepts. 

 

The modified model (namely Aleatoric uncertainty aware model) had been trained with the MVP dataset 
and will provide uncertainties together with the predictions.  

The modified loss function is an weighted sum of classification loss (entropy loss), bounding box regression 
loss (L1 loss) and uncertainty loss (NLL), computed as follows: 

𝐿 =
1

𝑁
(λ௕௕௢௫𝐿௕௕௢௫ + λ௖௟௦𝐿௖௟௦ + λ௨௡௖𝐿௨௡௖) (1) 

Where NLL loss for uncertainty is provided as: 

𝐿௨௡௖ = ෍ ቆ
(𝑥పෝ − 𝑥௜)ଶ

σ௜
ଶ + log൫σ௜

ଶ൯ቇ

ே

௜ୀଵ

(2) 

Figure 17: Modified SSDLite model to estimate aleatoric uncertainty 
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Figure 18 visualizes the prediction results of the aleatoric uncertainty aware model, showing two bounding 
boxes corresponding to the lower and upper bounds at 95% confidence interval (CI95). 

3.5.2.2.2. Epistemic uncertainty aware model 

We employed the Monte Carlo (MC) dropout technique to develop an epistemic uncertainty-aware model. 
This approach simulates multiple models by randomly dropping out units during inference and utilizes the 
variability in the resulting predictions as an estimate of the model's uncertainty. 

The MC dropout is implemented as follows: 

 Modify model inference with dropout: We ran the model inference multiple times while keeping 
the dropout layers active. During each iteration, a random subset of neurons was dropped out, and 
the output prediction was recorded. 

 Generating a distribution of predictions: By repeating the model inference with dropout, we 
generated a distribution of output predictions for the detected objects' bounding boxes. 

Figure 18: Aleatoric uncertainty aware model (modified SSDLite 
model) 
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 Estimating epistemic uncertainty: We computed the uncertainty estimates of the generated 
distribution. The uncertainty can be quantified using metrics such as Mean and Standard Deviation 
or Entropy. For this specific prototype, the standard deviation and derived CI95 lower/upper 
bounds of bounding boxes are computed. 

Figure 19 illustrates the output of the epistemic uncertainty aware model, displaying two bounding boxes 
that represent the lower and upper bounds of the 95% confidence interval (CI95). The true object bounding 
box is likely to locate in between these two bounds with 95% confidence. 

The probability density functions (PDF) associated with the prediction distributions for each of the bounding 
box coordinates (x1, y1, x2, y2) are shown in Figure 20. 

Figure 20: Toymodel epistemic uncertainty estimates PDF functions 

Figure 19: Epistemic uncertainty aware model (modified SSDLite model) 
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3.5.2.3. Out Of Distribution Detector 
Out-of-distribution (OOD) detectors or anomaly detectors are used identify data points that do not belong 
to the distribution of the datasets managed by AI-FSM Data Management. These detectors are required to 
ensure that the model safely operate within its certified safe boundaries and avoid risk getting into 
hazardous situations resulted from the epistemic type of uncertainties including domain uncertainties and 
part of model epistemic uncertainty. 

Techniques that can be used as candidates for OOD detectors include: 

 Statistical methods 
o Distance based methods: Compute distance between the input data point in runtime to the 

known/certified datasets. Examples include Mahalanobis distance or traditional statistical 
tests. 

o Clustering methods: These methods provide unsupervised clusters of data (e.g. KNN, LOF, 
SVM), thus can be used to detect anomalous input data as if it does not belong to any of 
the known clusters. 

o Gaussian Mixture Models: GMM can be used to model the distribution of the known 
dataset, and thus a data point that has low probability under this model can be considered 
anomalous. 

o Kernel Density Estimation: Non-parametric approach that estimates the underlying density 
of the known dataset, and thus data points with low density values are likely anomalous. 

 ML based methods  
o Auto Encoder or Variational Auto Encoder (VAE): These models can be trained to 

reconstruct a known dataset by first mapping the input data into a lower-dimensional 
representation (a latent space with a Gaussian or Euclidean structure) using an encoder 
network. The encoded data is then reconstructed back into the original input space using a 
decoder network. The reconstruction errors can be used as the anomaly scores, based on 
the assumption that the trained models learn to effectively represent the underlying 
structure of the valid data space. This allows the models to act as a descriptor of valid data 
points, where the anomaly scores are expected to follow a known distribution (often 
assumed to be Gaussian).  

o GAN approaches: GAN models typically consist of a generator and discriminator. The 
trained discriminator can be used as an anomaly detector, identifying data points that are 
unlikely to be generated by the generator. 

o One-class classification models: These models are trained to classify in distribution data 
points as belonging to a single class, thus can be used to identify data points that do not 
belong to this class and considered as anomalous data point. Examples of such classifiers 
include SVM and Isolation Forest. 

Within the SAFEXPLAIN OM safety architecture, Out-of-Distribution (OOD) detectors are further 
categorized into three distinct groups based on the specific checkpoints at which they extract input data 
and evaluate anomalies. These groups are described as follows. 
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3.5.2.3.1. Input data anomaly detector 

To manage the domain uncertainty, input data anomaly detectors can be designed and deployed using 
different techniques: 

 Statistical methods: Statistical techniques can be used to monitor various data/feature 
distributions and compare them against logged/expected distributions. This includes leveraging 
traditional statistical distance measures such as Mahalanobis distance or Kullback-Leibler (KL) 
divergence. 

 Data descriptor techniques: Utilizing data descriptors (such as VAE based descriptor) to identify 
the anomalous input data based on reconstruction loss or out of distribution pattern in latent space 
(See figs) 

 Temporal consistency checks: Methods to detect anomalies in temporal patterns such as Optical 
Flow[139] 

 Adversarial attack detectors: Methods to detect adversarial attacks (adversarial noises added with 
intention to degrade the system performance) 

Figure 21: Anomalous region with VAE latent anomaly 

Figure 22: Anomaly detector highlighting anomalous region from the latent space anomaly (PCA 15 
dims). ufo dataset rgb_0134.png 
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Figure 21 and Figure 22 illustrate how a trained VAE model can be used to detect anomalous data. In this 
example, the input data has been modified with an anomalous region (unknown concepts to the model). 
By analysing the latent space with PCA, the anomalies (PCA reconstruction errors) were projected back to 
the reconstruction space and can highlight the anomalous area. 

3.5.2.3.2. Model anomaly detector 

Model internal working anomalies can be considered as anomalies in the patterns of neuron activations. 
Similar techniques as input anomaly detectors can be applied here, considering the input data is now 
neuron activations at a selected key layer(s) of the model (recommended to use the key conv blocks). Key 
techniques are thus described as follows: 

 Internal feature anomaly detector: Anomaly detectors working with input from the model 
extracted internal features, represented by the extracted activation patterns at the model’s 
backbone. To this end, similar methods as of those presented in input anomaly detectors can be 
used including statistical methods and data descriptor-based methods. 

 CAM-based pattern anomaly detector: Methods such as GradCAM/eigenCAM can be used to 
generate heatmaps representing how the DL component focus on different spatial regions of the 
input. Several metrics can be computed from the heatmaps for anomaly assessments:  

o Sum of heatmap values within object bounding boxes 
o Distance of different CAM heatmaps generated by different CAM methods 
o Other metrics such as heatmap variance or entropy 

Figure 23 visualizes example inputs of model’s activation patterns corresponding to a specific input image 
in the MVP dataset. The VAE-based anomaly detector has been trained using this as its new input types and 
thus can detect the anomalous neuron activations during runtime. 

3.5.2.3.3. Output anomaly detection  

The predictions of model themselves form a new data space, with expected characteristics that have been 
logged during AI-FSM lifecycle. These characteristics can be used as a baseline for output anomaly 
detection. Techniques can be used including: 

 Statistical methods: Using predefined metrics as output data dimensions and analyse the 
anomalous patterns with that space. The dimensions are 

o Object size: width, height 
o Object distribution within a scene 

Figure 23: Extracted model neuron activation patterns (right) and model gradient map (left), used as input for anomaly detector 
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o Object distribution over time, measured by IoU of the same detected object bounding 
boxes across consecutive frames  

o Object shape: bounding box ratios width/height  
o Object position within a scene 

 Distribution of the model prediction confidence scores over time 

3.5.2.3.4. Adversarial attack detector 

Adversarial attacks are of intention, it tends to minimize the difference in altered input comparing to the 
original input, while maximizing the impact of failing the model detection. 

The detector of such attacks thus can be designed, for example with the following approaches: 
 Use the reconstructed data from the input anomaly detector as a new input to feed into the DL 

model and verify the differences of the model predictions comparing to incoming input 
 Measure the anomalous neuron activations (anomalous values of neuron activations that have not 

been observed during AI-FSM lifecycle). Example of monitoring unusual pattern of logit values (as 
suggested by [140]) is provided in Figure 24. 

 Train a classification model to classify adversarial data and original data.  
 
 

Figure 24: Box plots of logit values over all 4 data examples displayed in Figure 6.  
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3.5.2.4. Surrogate models 
Safe surrogate models are simplified, interpretable models that learn to mimic the behaviour of the main 
DL models by being trained on the same input data (the MVP dataset) and the main model corresponding 
predictions. Although the surrogate model's predictions may not be as accurate, its internal logic is 
transparent and explainable, enabling safety experts to certify it within the AI-FSM development lifecycle. 
The predictions generated by the surrogate model are considered a safe rule-based, where the rules have 
been pre-certified by experts within the AI-FSM lifecycle. 

When the main model's predictions diverge from those of the safe surrogate model, it indicates that the 
main model may be relying on unverified internal mechanisms to produce its outputs, compromising the 
required level of trustworthiness. During operation, if the discrepancy between the two models' predictions 
exceeds a predetermined acceptable limit, the main model's prediction will be rejected for use in safety-
critical decisions. These rejected data points will then be considered in the next development cycle to 
potentially improve the system, and a new corresponding safe surrogate model will be derived, 
incorporating additional logical rules that can accommodate the new data or situations. 

Figure 26: Extracted input features (keypoints and LBP pattern) to serve as input for MVP surrogate model 

Figure 25: Statistical description of the set of key points and their importance on surrogate model 
prediction 
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This iterative approach enables the safe surrogate models to evolve alongside the main model throughout 
multiple development lifecycles while maintaining the required functional safety standards.  

The MVP surrogate model has been developed as follows: 

 Compute traditional image features: Traditional image features including key points and positions 
of prototype patches representing the LBP texture map (see Figure 26)  were computed. 

 Fixed-Length Vector Representation: Aggregated key point and matched prototype pattern 
features into a fixed-length vector composed of statistical descriptors. The specific statistical figures 
used to construct this vector, and their relative importance are illustrated in in Figure 25. 

 Surrogate Model: A Random Forest (RF) model was trained to predict object bounding box 
coordinates from the input feature vectors. Feature importance is visualized in Figure 25. 

 Usage in OM: Use the trained surrogate model to predict bounding box from input image in OM, 
with the first step is to prepare the feature vector. Figure 27 shows how the surrogate model 
detects the object bounding box from the computed features and also visualize extracted key 
points. 

 

Figure 27: Surrogate model prediction 



 
 

 

 

53

D3.3 Final proofs-of-concept, arguments, and DL components and libraries 

 

Figure 28 illustrate the surrogate model accuracy (predictions vs ground truth) 

3.5.2.5. Decision function 
The decision function aggregates outputs from both diverse DL components and other components within 
the supervision component container, including anomaly detectors, surrogate models and uncertainty 
aware models. It generates a consolidated prediction, together with trustworthiness score and relevant 
explanations which are provided in the event of a rejection. 

3.5.2.5.1. Combining anomaly scores into trustworthiness score using z-scores  

To combine a set of anomaly scores (provided by anomaly detectors within the OM architecture), we 
assume that these scores follow normal distributions. We then use z-scores to normalize the anomaly 
scores of different types as the foundation for combination. The z-scores is calculated as follows: 

𝑧 =
𝑥 − μ

σ
(3) 

Where x is the value of an anomaly score of a specific type (input, model or output), µ and σ are the mean 
and standard deviation of such anomaly scores computed from the MVP dataset respectively. 

Z-scores within the range [-r, r] indicate how likely a new anomaly score can be accepted as falling within a 
certain population coverage percentage of the corresponding anomaly scores computed for the known 
situations, i.e. MVP dataset. For example, a z-scores range of [-2,2] represents a 95% confidence level that 
the computed anomaly score for a specific input is within the known value ranges. 

The input for z-scores for the MVP are derived from two main sources: 

 Anomaly detectors: Input anomaly score, Model anomaly score, Output anomaly score 
 Predictions: bounding box area and bounding box ratio 

3.5.2.5.2. Combining detections from diverse DL models with interpretable model 

Diverse redundant DL components will provide corresponding set of predictions (a set of objects bounding 
boxes as exemplified in the MVP). To combine these predictions into a single consolidated prediction, an 
interpretable model can be used. The interpretable model will be trained to predict the ground truth 
bounding boxes from the predictions and related confidence scores from a set of DL models. For MVP, we 
adopted supervised regression model XGBoost[141] for this purpose. XGBoost (eXtrem Gradient Boosting) 

Figure 28: Groundtruth vs predicted bbox coordinates 
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is a scalable tree boosting framework, known for its speed and performance, thus is a suitable candidate 
for deployment component. 

A XGBoost model has been trained taken input as a tuple of bounding boxes from the parallel models and 
corresponding scores to provide prediction as consolidated bounding box. Figure 29 visualizes the 
prediction results from the two MVP DL models (SSDLite and its backup model FasterRCNN) together with 
the consolidated prediction provided by the ensemble method. 

 

Figure 30 illustrates feature importance of how different input parameters influence the ensemble model 
consolidated output. 

Figure 31 illustrates an example of a detected anomaly, with the explanation provided by the ensemble 
with z-test results. The detected bounding box ratio is considered unseen. 

Figure 29: Consolidated prediction by XGBoost 

Figure 30: Importance of input parameters contributing to the final consolidated predictions 
of trained XGBoost model 
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3.6. Relevant metrics 
Different sets of metrics are employed at various stages of the development lifecycle to ensure multiple 
perspectives are considered. This section outlines the key sets of metrics used to evaluate the following 
aspects: explainability, traceability, safety, robustness, failure rate, and ease of implementation, as defined 
in the success criteria (WP1). 

3.6.1. Explainability 
Several metrics have been identified for evaluating explainability quality for machine learning including 
neural networks (and deep learning) models. Such metrics include: (i) fidelity - how well the explanation 
aligns with the underlying model (e.g.[142]), (ii) stability - whether similar inputs yield consistent 
explanations (e.g.[99]), (iii) faithfulness - how accurately the explanation reflects the true behaviour of the 
model, (iv) monotonicity - whether more of a certain feature lead to a stronger explanation, and (v) 
complexity - how easily the explanation can be understood, e.g. number of features and rules used in 
explanation. A subset of these approaches is discussed below and with reference to our own modelling.  

Model fidelity metrics are important when evaluating surrogate interpretable models. Surrogate models, 
as simpler models that often have intrinsic explainability built in, e.g. for decision trees, enhance 
explainability of the black box deep learning model whose inner workings are required to be explained. In 
order for those explanations to be trusted, metrics for comparing surrogates to the original model are 
needed. Simple metrics have been provided by [143] for classification and regression problems. For 
classification, the metric is defined as follows:  

𝐹classification =
1

𝑛
෍ 𝐼

௡

௜ୀଵ

൫𝑦pred,௜ = 𝑦surrogate,௜൯ (4) 

which provides a measure for the number of matching classifications of the two models the evaluation of 
this metric being subject to domain experts (i.e. what is considered an acceptable degree of matching or 
not). Fclassification provides simply the proportion of instances (images in our case) that are correctly classified. 
For object detection problems it does not, however, take into account the number of false positives or false 

Figure 31: Example output of decision function 
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negatives being calculated. Furthermore, with respect to the MVP image dataset used to train our MVP 
model where only a single object of the same class is present, an adaptation of the above could concern 
the extent to which the object confidence score for the located object is correct for the surrogate with 
respect to the benchmark model. The simplest form of this would label the model or surrogate classification 
as '1' if the confidence is above a pre-specified threshold.  

For regression problems, relevant, for example, when evaluating bounding box accuracy, the following 
equation ([143]) can be used for calculating the normalized relative error:  

𝐹regression = 1 −
1

𝑛
෍

ห𝑦pred,௜ − 𝑦surrogate,௜ห

max൫ห𝑦pred,௜ห, ห𝑦surrogate,௜ห൯

௡

௜ୀଵ

(5) 

where in this case n might be considered the number of bounding box coordinates for a given 
detected/located objected. The closer the score is to 1, the higher the fidelity. Alternatively, n can be 
considered the number of data samples, and an additional internal loop can be applied to compare 
coordinates of the bounding boxes.   

Model stability concerns the extent to which features are consistently applied across different samples 
rather than just comparing performance. Metrics here can also be considered with respect to surrogate 
models, i.e. surrogate feature stability [99]. An example metric is provided here:  

𝐹ௌ =
1

𝑘
෍

ห𝐹orig ∩ 𝐹resampled,௜ห

ห𝐹orig ∪ 𝐹resampled,௜ห

௞

௜ୀଵ

(6) 

where Forig represents features taken from the original model and Fresampled represents features from the 
surrogate model. K could concern the number of features (local) or number of samples for a particular 
feature (global). A score close to 1 indicates higher stability for the surrogate model's feature selection.  

Feature consistency between models, which could be surrogates or potentially quantized version of original 
more complex models (e.g. optimized inference model in PhIM) can also be assessed through feature-by-
feature comparisons. A way to quantify differences in explanations (featural representations) can be to 
compare feature by feature differences in feature importance (e.g. Shap) /relevance (e.g. LRP) using simple 
distance-based metrics, e.g. Euclidean or through cosine distance ([144]).  

ShapGAP(𝐷, 𝑑) =
ଵ

௡
∑ 𝑑൫𝑆௕௕(𝑥௜), 𝑆௪௕(𝑥௜)൯௡

௜ୀଵ (7)

The referred technique ShapGAP can in principle be applied not just to SHAP feature importance distances 
but to other feature importance or relevance algorithms potentially. Given that the models to be compared 
are architecturally the same, it may also be possible to calculate distances with respect to targeted layers 
of feature maps (where convolutional layers are used).  

Naturally, what a feature consists of is important. Single pixels in an image are unreliable determinants of 
features. For input data as an image, SHAP practitioners utilise "super pixels" ([145]), which provide more 
semantically meaningful features with which to compute distances over. Explanatory consistency provides 
an important measure of model similarity and potential to generalise across new data instances that the 
model has not been trained on.  

This approach can be used to compare, for example, how well the surrogate model provides consistent 
explanations with respect to the fuller DL model.  

Model complexity can be measured by the Jensen-Shannon Divergence (JSD), which measures the extent 
to which the sum of feature distributions diverges from a uniform distribution (where all features, e.g. in 
the input, are equally important): 
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𝑆஽(𝐹) = ෍
1

2

ி

௝ୀଵ

𝐷௄௅൫𝑃௝ ∥ 𝑀௝൯ +
1

2
𝐷௄௅൫𝑈 ∥ 𝑀௝൯ (8) 

where P represents the normalized feature importance distribution, U is the uniform distribution, and M is 
the average of P and U, given by M = 1/2 (P + U). The JSD is symmetric, allowing it to capture both the 
deviation of P from U and U from P. This symmetry is achieved through the introduction of M, which enables 
the comparison of both directions of divergence. The SD value ranges from 0 to 1, with lower values 
indicating that the feature distribution is closer to uniform, implying lower model complexity. The use of 
JSD provides a more nuanced measure of model complexity compared to simply comparing the KL 
divergence of feature distributions. 

Above is a global based approach, rank consistency, based on SHAP, provides a global approach based on 
consistency of local feature importance ranking (to predictions). Features can be ordered by consistency 
across data instances as a means to ascertain reliable explanations of model predictions.  

3.6.2. Traceability 
Traceability is an important aspect to ensure the reliability and maintainability of complex systems. It can 
be measured from two distinct perspectives: process-based traceability and system-based traceability:  

3.6.2.1. Process-based traceability 
This refers to the ability to establish and maintain transparent relationships between various input/output 
artifacts throughout the AI-FSM development process. Effective traceability involves creating a 
comprehensive pair of connections between key artifacts, including: 

 Safety goals: The overarching objectives that ensure the system's safe operation. 
 System safety requirements: Allocated system requirements to achieve the safety goals within the 

defined scope (ODD, operational scenarios and intended functionalities) 
 Data requirements: requirements allocated to datasets, including those properties as 

recommended by AI-FSM PhDM 
 Model requirements: requirements allocated to DL model, including performance and robustness  
 Model designs: Including arguments of why specific model architecture and parameters are chosen 
 V&V results (of Data and Model): The verification and validation activity outcomes for different 

phases of AI-FSM. This includes XAI generated evidence to support safety arguments. 
 Implementation codes: The final DL software implementations, including development codes, 

deployment codes, and configurations 

The traceability metric can then be defined as a measure of the percentage of artifacts that have established 
relationships with other relevant artifacts throughout the AI-FSM lifecycle.  

Denote the metric as Artifact Traceability Coverage (ATC), we can provide the following computation: 

𝐴𝑇𝐶 = ෍ 𝑤௜

௜∈𝒜

⋅
|𝑅௜|

|𝑃௜|
 (9) 

Where 𝒜 denotes the set of all artifact types, Ri is the set of established relationships for artifact type i, and 
Pi is the set of possible relationships for artifact type i. The weight wi is defined for each artifact type upon 
its importance within AI-FSM process. 

Specific traceability coverage metric can also be defined e.g. for Safety Argument Coverage: SAC = (Number 
of safety arguments with sufficient evidence / Total number of safety arguments) 

Change Impact metric: To measure the impact of changes on the DL development project following AI-FSM, 
we define the following metrics: 
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 Change Impact Ratio (CIR): Number of affected artifacts / Total number of artifacts 
 Change Impact Index (CII): (Number of affected steps / Total number of steps) × (Number of 

affected artifacts / Total number of artifacts) 

3.6.2.2. System-based traceability 
For the system-based traceability, the following metrics can be defined: 

 System Traceability Coverage Ratio: Number of tracing steps that have access to supported XAI 
explanations/Total number of tracing steps needed for diagnosis. 

 Root Cause Identification Rate: Number of errors with identified root causes/Total number of 
errors. 

For instance, to diagnose a specific case of malfunctioning Object Detector model, the following steps may 
be necessary to trace from the misdetections back to the captured data: 

 Verify neuron activations: Confirm that the activations at different layers of the neural network 
are as expected. 

 Identify influential input features: Determine which specific input features or regions in the input 
image are driving the detection results, including any potential biases or anomalies. 

 Assess sensor/data quality: Verify that the sensors have correctly captured the relevant features 
and/or regions that influences the detection, taking into account data confidence levels, noise, and 
other sources of uncertainty. 

3.6.3. Safety 
Safety related metrics are metrics that are derived from the safety goals and allocated into different 
requirement specifications at relevant AI-FSM phases: 

 Safety metrics related to data requirements: Data quality metrics (as mentioned in D3.1) with 
focus on how well the datasets represent the ODD, operational scenarios, intended functionalities 
and safety goals. Metrics regarding availability of data to support V&V strategies are also of 
importance. Note that the V&V strategy employed by SAFEXPLAIN is scenario-based, which requires 
flexibility in selecting iterative sets of scenario parameters and corresponding data based on the 
results of metaheuristic searches. 

 Safety metrics related to model:  
o Failure detection rates (FDR) can be evaluated with respect to the Operation and 

Monitoring architecture, i.e. percentage of safety-critical failures (in relation to model 
predictions that lead to safety-critical outcomes) with respect to all failures (false positive 
or false negatives. 

o False alarm rates: measure of unnecessary interventions/rejections of predictions not just 
as false positives but in relation to their safety criticality. 

o Mitigation success ratio: number of false predictions that are mitigated through 
appropriate action, e.g. cleaning data that is identified as being subject to adversarial 
attack.  

o Adversarial attack detection: See 3.5.4 
o Diagnostics: Percentage of correct attribution of cause to the identified rejected model 

prediction, e.g. does the low confidence in the model’s prediction owe to the data being 
OOD or alternatively subject to an adversarial attack, which type of attack? 

o Conformance to safety standards: what is the % of compliance checks passed in relation 
standards such as SOTIF? 
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3.6.4. Robustness 
We define robustness within the context of SAFEXPAIN as the ability to maintain the DL component 
expected performance (relevant to safety goals) across different areas within its scope. 
 
The robustness measures are thus further broken down into: 

 Dataset robustness: Deep Learning model performance variations with respect to the 3 sub-
datasets (as defined in PhDM). 

 Robustness against noise/corrupted/perturbated input data (expected levels of acceptable noise 
or percentage of corrupted data).  

 Robustness against adversarial noise: Adversarial noise levels vs DL model performance 
degradation. 

 Robustness against Out of Distribution data (OOD): Metrics measure the performance of the 
Anomaly detectors being deployed within the OM stage. 

 Uncertainty robustness: Distribution of estimated DL uncertainties across dimensions of the 
dataset. 

 Robustness against training dataset distribution changes: Measure the performance differences 
of the DL component if new data points are added, or some data points are removed to/from the 
training dataset (examples include add new datapoints).  

 Training robustness: Measure the convergence rate of training process w.r.t. training 
hyperparameters (within a predefined ranges). 

Detailed metrics are discussed in the following subsections 

3.6.4.1. Dataset robustness 
In the PhDM phase of AI-FSM, datasets are split into training, validation, and verification datasets. 
Robustness against datasets reflects consistency of model achieved performance across these datasets, and 
can be measured by the following metrics: 

 Performance drops across datasets: 𝑃௠௔௫ − 𝑃௠௜௡. In most cases, the max performance is achieved 
with training dataset and the min performance is achieved with verification dataset. 

 Performance standard deviation: ටଵ

ଷ
∑ (𝑃௜ − 𝑃ത)ଶ

௜  

 Robustness ratio: 
௉ೡೌ೗೔೏ೌ೟೔೚೙ା௉ೡ೐ೝ೔೑೔೎ೌ೟೔೚೙

௉೟ೝೌ೔೙
 

Where P denotes average performance of the DL model w.r.t. a dataset 

3.6.4.2. Robustness against noise 
Model robustness against noise, corrupted or perturbated data measuring model’s ability to maintain its 
expected performance when trained, evaluated or operated on data that subject to a certain level of 
inaccuracy resulting from random noises, missing values or corruptions. Examples include sensor noises, 
partial occlusions, environmental noises, sensor contamination, label noise. 

Metrics to measure this type of robustness include: 

 Performance drop rate: calculates the difference in model performance when operating on clean 
data versus data that has been subjected to common and expected types of corruptions. 

 Noise to signal ratio (NSR): By introducing different levels of noise into the input data, NSR 
measures the subsequent variation in model performance, thus highlights model sensitivity to noisy 
conditions.  



 
 

 

 

60

D3.3 Final proofs-of-concept, arguments, and DL components and libraries 

 Label noise robustness: assesses the impact of noisy labelling on model performance by comparing 
the difference between training on clean data and data with intentionally introduced label noise, 
as exemplified in [146] 

 Alignment between confidence and performance: evaluates how well the model's confidence 
scores align with its performance when faced with noisy data, ensuring that the model is not 
overconfident or underconfident in its predictions. 

 Uncertainty rate: compares the model's uncertainty when processing noisy input data versus clean 
input data. 

 Performance over noise levels: measures model performance across a spectrum of noise levels. 

3.6.4.3. Adversarial robustness 
Robustness against adversarial noise refers to evaluation of how well the model can maintain its 
performance under adversarial types of input data perturbations. Adversarial attacks generally focus on 
minimal perturbations that can mislead the model (degrade its performance to certain level). 

Adversarial noise can be considered a special type of anomaly, which may or may not lead detectable OOD 
categorization depending on the sophistication of the attack. Thereby a means to promote defence against 
adversarial attacks is to provide a subset of training data that is perturbed according to a set of well-
used/known attacks enabling a higher degree of model/feature robustness to such attacks in an 
adversarially trained model. 

Metrics for robustness against adversarial attacks, when evaluated during development, i.e. in AI-FSM 
PhLM, typically take into account the proportion of failed attack attempts, relative to total numbers of data 
points perturbed by adversarial attacks (e.g. FGSM, PGD, BIM). This is compared against the proportion of 
clean data points that are correctly handled by the DL model with required level of performance (e.g. [147]). 
In this way relative decreases in model performance using adversarial data can be evaluated following 
training, i.e. in the PhIM phase of AI-FSM. Relative improvements to performance in PhIM, however, can 
be compared when evaluating a model trained using perturbed data and a model not trained with 
perturbed data on a dataset that contains data with adversarial perturbations.  

Another metric of adversarial robustness can consider model performance as calculated above, but with 
respect to degree of perturbations. In Section 3.4.2.1 it was shown the effects on model performance fgsm 
with respect to different levels of perturbation (epsilon values). Robustness to adversarial attacks should 
thereby provide a metric that considers: 

 Performance of (adversarially) trained model on new dataset that contains perturbed data with 
respect to performance of non-adversarially trained model on the same dataset. 

 Average performance of the adversarially trained model with respect to different levels of 
perturbations.  

For object detection models as in MVP, Bounding Box Perturbation Errors (BBPE) can be used, i.e. measuring 
the L2 distance between each bounding box on specific images before and after the adversarial 
perturbation. Again, examination of whether training the model on adversarial data can reduce such BBPE 
can provide a means for assessing robustness to adversarial attack of the trained model.   

3.6.4.4. Robustness against Out of Distribution data  
Handling Out of Distribution (OOD) data is done by the supervisory monitors in OM stage. The robustness 
against OOD data is thus related to the performance of the anomaly detectors and measured by basic 
metrics: false rejections (false negatives) and false acceptance (false positives).  More complex metrics can 
be derived from these metrics as follows[148]: 

 Area Under the Receiver Operating Characteristics curve (AUROC): the area under the plot of true 
positive rate (TPR) against false positive rate (FPR) at different anomaly score threshold settings. 
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 Area Under the PR Curve (AUPRC): Similar to AUROC but measures the area under Precision-Recall 
graph. This metric is better for imbalance data (valid data vs anomalous data) 

 True Positive Rate at 5% False Positive Rate (TPR05): provides a specific measure of the anomaly 
detector accuracy in rejection while limiting false acceptance. 

 Precision at 95% Recall (P95): measures the detector’s ability to accurately identify anomalies while 
maintaining a high recall rate. 

 False Negative Rate at 95% False Positive Rate (FNR95): assesses the detector's tendency to 
misclassify outliers as inliers, highlighting potential over-confidence in its predictions. 

 Coverage Breakpoint at Performance Level (CBPL): how restrictive the threshold must be to return 
to the original accuracy that was received based on test set. 

 Coverage Breakpoint at Full Anomaly Detection (CBFAD): If the supervisor can completely exclude 
outliers from the data, i.e., can we achieve full anomaly detection for some non-trivial (zero) value 
of coverage. 

OOD detectors can be susceptible to adversarial attacks whereby the perturbed data may remain in 
distribution and therefore not be detected ([149],[150]). Robustness to such adversarial is discussed below 
in relation to metrics to assess such robustness. 

We adopted an approach for using a trained VAE for anomaly detection in the OM stage (see Section 3.5). 
Where it is possible to compare model prediction performance on dataset distributions, i.e. the one on 
which the VAE model was originally trained, and that which is used either in the PhIM phase of AI-FSM or 
in deployment (Operation and Monitoring stage), standard techniques can be used to evaluate dimensions 
of the predictions (e.g. bounding box size or latent distributions). These techniques include KL divergence 
or Fréchet Inception Distance (FID) – see [151]. The robustness of the VAE to accurately predicting 
anomalous data can then be a function of the distance between the model performance on the training 
data and the model performance on the new, unseen data.  

3.6.4.5. Uncertainty estimation robustness 
For uncertainty aware model, the robustness shall be evaluated in terms of uncertainty estimate accuracy. 
This measures how well the estimation of uncertainty aligns with the model performance and confidence 
across the “known” datasets. 

Metrics that can be used include:  

 Negative Log Likelihood (NLL): How well the estimated uncertainty distribution aligns with the 
ground truth. 

 Variation Ratio: Measure disagreement across model predictions (for epistemic uncertainty aware 
model). If the distribution is assumed to be a Gaussian, standard deviation can be used. 

 Mutual information (MI[152]):  measuring information gain between the model parameters and 
the data, thus can distinguish between epistemic and aleatoric uncertainty types. High MI means 
the model is uncertainty because of lack of knowledge and can be improved by minimizing domain 
uncertainty. 

3.6.4.6. Robustness against training dataset distribution changes 
Measure the performance differences of the DL component if new data points are added, or some data 
points are removed to/from the training dataset. Data point influence metrics include: 

 Shapley value: compute Shapley value (contribution) of added/removed datapoint to overall model 
performance 

 Data point loss: measures the effect of new or removed data points on the model's loss function 
or gradients, indicating how much each point influences the model's behaviour. 
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 Performance drop curve: plots the model's performance as a function of the number of removed 
or added data points in the training dataset, revealing the sensitivity of the model to changes in the 
data distribution. Area under curve metric can be used here. 

3.6.4.7. Training robustness 
Different metrics can also be used to assess how well a neural network converges, generalizes and resists 
instability due to variations in hyper-parameters and initialization (weights) conditions. Training loss 
convergence can be measured in relation to how loss reduces over epochs (over a particular window of 
epochs) and can be evaluated in relation to hyperparameter changes – to evaluate how sensitive the model 
is to premature or late convergence based on small changes of the hyperparameters. Robust models must 
generalize well to the new data and apply various well-established techniques to limit the chances that the 
model is overfitting to the data it is trained on: comparing differences between validation and training loss 
periodically over epochs to see whether validation loss is increasing, applying regularization techniques, 
e.g. dropout and weight decay to reduce the prospect of model performance depending on artefactual 
features in the training dataset. Cross-validation, e.g. K-fold, can also be applied to assess variance in 
training performance and thereby sensitivity to particular hyperparameter settings or initialization of 
weights. High variability indicates that the trained model may not generalize well and thereby data 
augmentation techniques, or increased data diversity (e.g. targeting increased representation of particular 
features in the dataset) should then be applied in PhDM.  

3.6.5. Failure rate 
Traditional metrics can be used, however within SAFEXPLAIN the failure rates shall be measured for both 
Deep Learning components and corresponding supervisor monitors. 

3.6.6. Easy to implement 
Another necessary metrics concern measuring how easy it is to implement the Deep Learning component 
in order for it to be compliant with the AI-FSM lifecycle and engineering the required components for safety 
architecture patterns in Operation and Monitoring stage. 

Some possible metrics include:  

 Time-to-Competence: time spent in order to study the guidelines in the first place in order to be 
able to implement the deep learning component consistent with the requirements.  

 Learning curve time: Time for an average AI engineer to learn but also adopt this guideline for 
engineering a dependable DL component as measured by periodic assessments; frequency of 
mistakes in implementation practices can also be evaluated.  

 Total resources used to develop required safety components (supervisory monitors and other OM 
safety architecture’s components): Including human effort/time, computing power required for 
implementation, computational time for processing the component given requirements’ 
adherence. 

4. Realization and libraries  
4.1. EXPLib  
EXPLib is an open-source Python library designed to facilitate the development and deployment of 
dependable DL components, leveraging Explainable Artificial Intelligence (XAI) techniques to ensure 
transparency, accountability, and reliability. The library provides a comprehensive framework for building, 
testing, and deploying DL models, with a focus on safety enabled by explainability. 
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By utilizing XAI tools and methods, EXPLib empowers users to gain valuable insights into the decision-
making processes of their DL models, enabling the identification of potential safety-related risks and 
vulnerabilities. This facilitates the creation of more dependable and trustworthy DL components that 
compliant with the AI-FSM guidelines and safety architecture patterns. The library's modular and flexible 
architecture allows users to seamlessly integrate their own XAI methods and tools, as well as customize the 
library to suit their specific needs and requirements. Practitioners can focus on building high-quality DL 
models that not only achieve accuracy but also adhere to safety-critical practices and guidelines, provided 
by AI-FSM and Safety Patterns, ensuring the development of reliable and trustworthy AI systems. 

Upon completion of the project, the EXPLib library will be made publicly available through open-source 
repositories such as GitHub or GitLab, ensuring widespread accessibility and facilitating community 
engagement and contributions. 

4.1.1. Library structure 
The EXPLib library structure (Table 3) is organized as follows: 

 UCs: contains some specific files related to the 3 use cases of SAFEXPLAIN: Automotive, Railway 
and Space. 

 aifsm_phases: holds example Jupyter notebooks showcasing how the library can be used to 
support AI-FSM phases and steps compliance (generating artifacts or assisting practitioners with 
relevant explanations). 

 configs: stores configuration files for the library. 
 datasets: provides datasets used in the library.  
 dl_component: Typical DL components, especially those included in the Demo MVP model and the 

UCs 
 xai_library: contains explainable AI (XAI) library resources to support both AI-FSM and OM 

compliance 

 

Table 3: EXPLib structure 

EXPLib/ 

├── UCs 

├── aifsm_phases 

├── configs 

├── datasets 

├── dl_component 

└── xai_library 

 

4.1.2. Guidelines and examples 
4.1.2.1. Overview 
Practitioners can use the library with the example usages provided via different Jupyter notebook scripts 
available and grouped into AI-FSM phases (Table 4). 
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 data_management: contains example notebook scripts demonstrating how to use the library to 
support various steps within the PhDM-Data Management phase. 

o Data Profiling and Data mining: Statistical reports and mining examples on dataset, both 
raw data and annotations statistics.  

o Data prototypes: Representative data prototypes extracted from the dataset, along with 
criticisms describing the dataset. Example representations include prototypical square 
patches extracted from an image dataset. 

o Data descriptors: Example implementations of VAE (Variational Autoencoder) based data 
descriptors to help describing the perception and conceptual features of the dataset. This 
descriptor will also be used later in OM stage as anomaly detector. 

 learning_management: contains example notebook scripts demonstrating how to use the library 
to support various steps within the PhLM-Learning Management phase. 

o Intrinsic interpretable model design (integrated gradCAM) 
o Posthoc interpretable surrogate model 
o MVP uncertainty aware models: Aleatoric uncertainty aware model and MC dropout 

epistemic uncertainty model.  
o YOLOv8 epistemic uncertainty aware model. 
o Model explainers applied for MVP model and YOLO model: LIME, SHAP, CAM, LRP,… 

 inference_management: contains example notebook scripts demonstrating how to use the library 
to support various steps within the PhIM-Inference Management phase. 

o Performance assessments: Plots of model performance wrt different input parameters 
o Scenario generators using metaheuristic searches 
o Uncertainty aware model 
o XAI for model (similar to PhLM): LIME, SHAP, CAM, LRP,… 
o Tradeoff mechanism. 

 operational_xai: contains codes related to safety components for OM stage (to be transferred to 
DLLib for porting into the project NVIDIA ORIN platform). 

o OOD: MVP anomaly detectors (trained for detecting anomalies from input image, model’s 
neuron activations patterns and model output). Anomaly detectors for UCs are not hosted 
within this library but are maintained by UC partners. 

o Uncertainty aware model: MC model providing epistemic uncertainty estimate and 
Aleatoric uncertainty aware model. The MC model is implemented with preloaded MC 
dropout models in a mix parallel/sequential architecture to support trade-off mechanism 
(memory, speed and model performance) 

o Surrogate models: Safe and interpretable surrogate models, train on the MVP dataset and 
the MVP model output 

o Ensemble model: Decision function using ensemble methods to aggregate outputs from 
different components and provide consolidated output of prediction and trustworthiness 
score 

Table 4: Structure of aifsm_phases sublibrary 

├── aifsm_phases 

│   ├── data_management 

│   │   ├── data_plot 

│   │   └── data_profiling_logs 

│   ├── inference_management 

│   │   ├── performance_assessment 
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│   │   ├── scenario_generator 

│   │   └── tradeoff 

│   ├── learning_management 

│   │   ├── model_election 

│   │   │   ├── intrinsic_design 

│   │   │   │   └── disentanglement 

│   │   │   ├── posthoc_surrogate 

│   │   │   └── uncertainty_aware 

│   │   ├── model_training 

│   │   └── model_verification 

│   │       ├── model_output_files 

│   │       └── supervisor_L1_output_files 

│   └── operational_xai 

│       ├── OOD 

│       │   ├── likelihood_ratios 

│       │   └── saved_vae_model 

│       ├── ensemble_method 

│       ├── queue_thread 

│       ├── splitter 

│       ├── surrogate_model 

│       └── uncertainty_quantification 
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4.1.2.2. Example scripts and resulting figures in AI-FSM phases 
4.1.2.2.1. PhDM Data Management  

A screenshot of Data Profiling script is provided in Figure 32. 

An example of latent space investigation is provided in Figure 33. The latent space is populated with 
datapoints from the MVP dataset using a VAE-based data descriptor. Initially, the latent space has a 
dimensionality of 256, which is then reduced to a three-dimensional representation using UMAP and t-SNE 
techniques to facilitate better human understanding. 

 

Figure 32: EXPLib - example notebook of Data Profiling within PhDM 

Figure 33: Latent distributions (of VAE descriptor) projected onto 3 dimensions computed using 
UMAP (left) and t-SNE (right) methods.  
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Figure 34  presents the results of a Principal Component Analysis (PCA) on the 256-dimensional latent space 
of the VAE-based data descriptor. Our analysis reveals that the first 15 eigenvectors can effectively capture 
the underlying structure of the high-dimensional latent space, allowing for accurate representation with a 
significantly reduced dimensionality. This insight led to the development of concept-based anomaly 
detection methods, which enable the identification of anomalous regions within an image (even in cases 
where the overall L2 reconstruction error is minimal) by leveraging the PCA error vectors and the VAE's 
deconvolutional layers for reconstruction.  

Figure 35 demonstrates the performance of the "descriptor latent" anomaly detector using a varying 
number of eigenvectors (ranging from 1 to 12). Notably, even with as few as 2 eigenvectors, the accidentally 
removed antenna of the satellite is successfully identified as an anomalous region. 

Figure 35: Experiments of using PCA reconstructed latent vector of data 
descriptor to identify anomalous area in the input image 

Figure 34: PCA analysis of latent space (of VAE-based data descriptor). 
Accumulated eigenvalues of the first 15 eigenvectors 
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4.1.2.2.2. PhLM Learning Management 

Examples of using LRP and Contrastive LRP for generating attention heatmaps for different classes (Person 
and Bicycle) are shown in Figure 37 and Figure 36 respectively. 

 

LIME Heatmap generated for MVP model is illustrated in Figure 38. The supported segmentation methods 
include SLIC and Watershed.  

Figure 36: Contrastive LRP saliency map generated for YOLOv8 (Railway UC) 

Figure 37: LRP saliency map generated for YOLOv8 (Railway UC) 

Figure 38: LIME heatmap computed for MVP model, using superpixel segmentation method Watershed as input for LIME
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4.1.2.2.3. PhIM Inference Management 

Figure 39 demonstrates how XAI tools in the EXPLib can be utilized to support performance assessment. 
The plots illustrate the relationship between safety-related performance metrics (IoU in this case) and input 
data parameters, specifically object location (represented by bounding box centre coordinates) and 
appearance size (translated into distance to the sensor and represented by area). 

4.1.2.2.4. Operational XAI 

Figure 40 presents a screenshot illustrating an example usage of the library, where practitioners can create 
an uncertainty-aware model for deployment to the OM stage. In this example, MC dropout models are pre-
loaded into a mix structure, comprising 100 parallel runs of 5 sequential models, resulting in a total of 500 
models in the ensemble. The configurable selection of number of parallel models and number of sequential 
models enables trade-off mechanisms between three key factors: (1) accuracy of uncertainty estimates 
(measured by the number of samples in the prediction distribution), (2) RAM usage (influenced by the 
number of parallel models), and (3) execution time (affected by the number of models in the sequential 
path). 

More figures and examples can also be found in Section 3.5. 

4.1.3. Libraries of XAI tools 
The core functionalities, classes, and utilities within EXPLib are organized in the `xai_library` module (Table 
5), which is structured into three primary categories: 

 data_explainers: This module provides XAI tools related to data and datasets, including: 
o Data descriptors 
o Prototypes and criticisms 
o Similarity and distance metrics 

Figure 40: Example usage of Epistemic uncertainty aware MVP model 

Figure 39: Model performance (IoU metric) vs input parameters: bounding box location and area 
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o Data profiling 
 model_explainers: This module offers XAI tools focused on model analysis, such as: 

o Saliency maps 
o Surrogate models 
o Various types of plots 
o Utilities for extracting neuron activations and computing gradients 
o Building uncertainty-aware models 

 supervisor: This component provides XAI tools and training scripts for AI-based components 
intended for deployment as supervision components within the OM stage. Notably, these 
components are trained on the "Known" area, which is represented by the datasets and related 
results, including model activations, gradients, predictions, and other relevant outputs. 

 metric_extractors: Several metric computation utilities are provided within this submodule, 
including e.g. model performance metrics (IoU, F1), structural coverage (NBC, NC…), similarity and 
distance metrics. 

Table 5: Structure of xai_library 

└── xai_library 

    ├── data_explainers 

    │   ├── data_descriptors 

    │   └── prototypes 

    ├── metric_extractors 

    ├── model_explainers 

    │   ├── DT 

    │   ├── anchors 

    │   ├── cam 

    │   ├── extract_layer_activation 

    │   ├── lrp 

    │   ├── model_utils 

    │   ├── plots 

    │   ├── search_algorithms 

    │   ├── shap 

    │   ├── surrogate 

    │   └── uncertainty_models 

    └── supervisor 

        ├── SMF 

        ├── anomaly_detector 

        │   ├── likelihood_ratios 

        │   ├── vae 

        ├── ensemble_method 

        ├── surrogate_model 
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        └── uncertainty_models 

 

4.1.4. Models 
This module contains implementations of DL models utilized within the project. The current models 
included are categorized by type, as reflected in the following library structure (Table 6): 

 AEs: Various Variational Autoencoder (VAE) models used within SAFEXPLAIN. 
 CNN: Scripts and weights for visual-based Convolutional Neural Networks, including image 

classification and object detection models (SSDlite, FasterRCNN, and associated backbones). 
 MLP: Placeholder – Multilayer Perceptrons have been integrated directly into CNN models. 
 RNN_LSTM: Memory-based models (RNN, LSTM) constructed with simple Torch layers. 
 Transformers: Standard BERT models. 

Table 6: Structure of dl_component submodule 

├── dl_component 

│   ├── AEs 

│   ├── CNN 

│   │   ├── Image_Classifiers 

│   │   └── Object_Detectors 

│   ├── MLP 

│   ├── RNN_LSTM 

│   └── Transformers 

 

4.1.5. Datasets 
This subfolder contains datasets used to test and demonstrate the various XAI methods employed within 
the project. For publicly available datasets, we provide references to the data owners rather than hosting 
the data directly. 

The two main datasets hosted within this library are the MVP dataset (together with annotations) and a 
supplementary dataset containing added UFO objects, which is used to evaluate different safety 
mechanisms. 

4.2. DLLib  
Building on the progress from EXPLib, we focus on the integration of DL software components for OM stage 
into DLLib. To support the complex models and large datasets previously discussed, high-performance 
computing is essential, driving the use of low-level C-based libraries such as cuBLAS and cuDNN (included 
in NVIDIA Jetpack), optimized for hardware architectures like NVIDIA GPUs and Arm-based CPUs. 

With the recent, albeit slightly delayed, inputs from T3.4 now available, the development of DLLib includes 
most of the supervision techniques and is actively advancing to incorporate the remaining techniques as 
detailed in Table 7. 

Since efforts have shifted towards working with ROS2 in the Middleware layer to optimize functionalities 
more effectively, as detailed in a later section, the current organization of DLLib has been aligned with the 
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Middleware’s structure. The updated DLLib can be found in the Middleware Git repository under the branch 
“feat_sp2_wp3.” 

Table 7: Porting status of OM components 

Component Status Notes 

DL Models In Progress SSD model ready; FasterRCNN model ready; 
Uncertainty Model ongoing optimization 

Input Data 
Management 

Awaiting 
Review 

Offline verification datasets prepared 

VAEs Completed All three VAEs are implemented 

Pre-processing Completed Optimization for NVIDIA platform ongoing 

Post-processing Planned Development to start post initial deployment tests 

Surrogate Model In Progress Recently received 

Ensemble Method In Progress Ongoing update to include the new models. 

This phase bridges theoretical frameworks and practical implementation by strategically selecting and 
designing DL models, data management protocols, and XAI methodologies tailored to the computational 
needs of the target hardware platforms. It involves adopting or re-implementing C and C++ libraries, 
including open-source alternatives, to optimize performance and efficiency while leveraging the AI4EU 
platform to promote reuse and minimize redundant development. 

Specifically, we focus on implementing DL software on the SAFEXPLAIN prototyping platform (NVIDIA AGX 
Orin) with the low-level middleware PMULib, keeping as a cornerstone the performance optimizations 
tailored to case studies. This involves adapting black-box libraries, optimizing data preprocessing, and fine-
tuning runtime metrics to enhance DL system capabilities while maintaining design integrity and achieving 
project goals. By strategically aligning these implementation efforts with the platform's hardware 
capabilities, we maximize computational efficiency and ensure robust, scalable solutions for real-world 
applications. 

4.2.1. Integration with ROS2 (Middleware) 
We have successfully integrated all the VAE based anomaly detectors (input, model, output) into the 
Middleware, customized to utilize ROS2 for efficient communication between various modules. Building on 
this foundation, we are now incorporating additional advanced features, including Uncertainty Models, 
Surrogate Models, and Ensemble Methods, into the ROS2-based Middleware layer. These integrations are 
aimed at enhancing the system's diagnostic and supervisory capabilities, which are critical for maintaining 
reliable and adaptive real-time performance. 

The integration process involves adapting and extending functionalities from EXPLib, organizing them into 
reusable ROS2 nodes that encapsulate each feature. This modular design ensures seamless communication 
and interoperability through ROS2’s publish-subscribe mechanisms, supporting scalability and 
maintainability. By structuring these modules as independent nodes, we enable flexible deployment and 
dynamic updates without interrupting system operations. 

Leveraging ROS2's real-time communication capabilities, alongside its robust support for distributed 
systems, allows us to efficiently manage data flow between various components, including DL models, 
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Supervisors, Decision Functions, and other system elements. This architectural design ensures low-latency, 
high-throughput communication, which is essential for real-time applications that demand rapid decision-
making and adaptive behaviour. 

Additionally, the Middleware is architected to support asynchronous processing and dynamic model 
updates, facilitating adaptive supervision and robust uncertainty management. This adaptability is 
particularly crucial for real-time environments where conditions can change rapidly. The iterative 
development approach enhances the system’s reliability and responsiveness while maintaining modularity 
for future scalability. Ultimately, this design strategy ensures that the DL modules are seamlessly integrated 
with the overall control and diagnostic framework, paving the way for advanced, intelligent supervision in 
complex, distributed environments. 

4.2.2. Supervision Function & Decision Function 
DLLib incorporates three different Supervisor systems, detailed in Section 3.5, which in turn are aligned 
with the reference architecture pattern outlined in Deliverable D2.2[2].This implementation significantly 
enhances the reliability and efficiency of deployed DL components through the integration of advanced 
supervisory monitor components, including: 

 OOD Detector Algorithms: Trained Variational Autoencoder (VAE) descriptors have been utilized 
to identify data points or patterns that deviate significantly from the model's training distribution. 
This component effectively flags potential outliers or novel scenarios that require additional 
scrutiny, ensuring the system's robustness against unexpected inputs. We have three different 
VAEs currently implemented: 

 Input VAE: This component checks for outliers on the input image. 
 Output VAE: This component checks for outliers on the output image of the main model. 
 Activation VAE: This component checks for outliers during the inference of the main model by 

looking into some of the activations from key layers. 
 Ensemble Methods: Predictions from multiple models are combined with the supervisors' outputs 

to validate their reliability and accuracy. This approach effectively leverages the strengths of various 
models, achieving superior performance and robustness compared to any single model alone. 

By integrating these supervisor monitor components with low-level libraries, DLLib has achieved a deep 
and nuanced understanding of the deployed system's performance. This integration enables effective 
monitoring and management of DL components by leveraging detailed performance and error metrics to 
make informed decisions about model adjustments, parameter tuning, and resource allocation. 

The comprehensive Supervision and Decision system has ensured that the deployed DL system remains 
efficient, accurate, and reliable. It dynamically adapts to evolving operational conditions, maintaining high 
standards of performance over time. This successful implementation demonstrates DLLib's commitment 
to delivering state-of-the-art solutions for advanced deep learning systems. 

5. Discussions 
This document presents the final outcomes of tasks T3.1, T3.2, and T3.3 within the SAFEXPLAIN project, 
providing a comprehensive summary of the specification, design, and improvement of dependable deep 
learning (DL) components. The report updates and finalizes the contents of D3.1 and D3.2, offering 
actionable recommendations for specifying dependable DL components in compliance with AI-FSM and 
recommended safety patterns. Furthermore, it provides in-depth discussions on explainability, traceability, 
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and robustness exemplified for a Minimum Viable Product (MVP), serving as a handbook on developing DL 
components for safety critical applications.  
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