B8 Ref. Ares(2025)8253895 - 30/09/2025

SAFEXPLAIN

Safe and Explainable
Critical Embedded Systems based on Al

D3.4 Final DL components, libraries and the DL
interface

Version 1.0

Documentation Information

Contract Number 101069595

Project Website www.safexplain.eu

Contractual Deadline : 30.09.2025

Dissemination Level PU

Nature OTHER
Author BSC CNS

Axel Brando (BSC), Roger Pujol (BSC), Jokin Labaien (IKR), Robert Lowe
(RISE), Gabriele Giordana (Aiko), Maria Ulan (RISE), Ana Adell (IKR)

Reviewer Thanh Hai Bui (RISE)

Contributors

Keywords Artificial Intelligence, Explainable Al, Functional Safety

This project has received funding from the European Union's Horizon Europe programme
under grant agreement number 101069595.

http://www.safexplain.eu/

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

Change Log

Version Description Change

V0.1 First draft

V0.2 Second draft

V0.3 Final draft sent to internal reviewer

V0.4 Internal reviewer feedbacks

V0.5 Final draft with revision

V0.9 Revised final draft confirmed by internal reviewer
V1.0 Final version

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

Table of Contents

Lo INTFOTUCTION .t h et et e s b e sh e s bt e s bt e s st e ebe e s be e sabesanesateemeeemeeemeesanesanesane 6
R - 7= ol €= o1V I« ISR 8
3. RealiZation @nd [Oraries.t sttt e 7
IR O = {2 X TP SRR 7
I 0 O o T = T VS o T PSPPSR 7
3.1.2. GUIdEliNES @aNd EXAMIPIESeiieiiiie ittt e e st e e s s e e e s e e s s bbe e e e b ee e e e areeeenares 8
3.1.3. Libraries Of XAIT0OIScccuutiiiiiieeie ettt st ettt e s e s e e ne e e saneenaeeas 13

20 3 1V T Yo 1= LSS PO P PP PRRPRR 14
I T D = = 111 PP 15

B2 DLLID ettt b et bbbt b e r e sheesaeesaresaeennees 15
3.2.1. Integration with ROS2 (MIddIEWAIE).......ccceeuiieiiiiiee ettt et 16
3.2.2. Supervision Function & Decision FUNCLIONuiiiiiiiiiiiiic e e e e 18

4. DISCUSSIONS ...veeiiiurieiiiiiies it ettt ettt e e sttt e e s et e e s et e s s et e e s abe e e s saba e e s s sb e e e s saba e e e s ba e e s s eabe e e s sanaeessaaraeesearas 16
REFEIEINCES ...ttt ettt ettt et e bt e bt et e et e et e et e e be e b e et e et e e te e beesbeenbeenbeenbeenbeens 17

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

List of figures

Figure 32: EXPLib - example notebook of Data Profiling within PADMccociiiiiiiiiiiiie e 9
Figure 33: Latent distributions (of VAE descriptor) projected onto 3 dimensions computed using UMAP (left)
0o IR Y N o (=4 oY I g V=] o T Yo [RSP 10
Figure 34: PCA analysis of latent space (of VAE-based data descriptor). Accumulated eigenvalues of the first
R =Y F= 02T oY= Tol do] T PP PPPU TP 10
Figure 35: Experiments of using PCA reconstructed latent vector of data descriptor to identify anomalous
ArCA IN TNE INPUL IMAEE .. e it e et e e et e e e e bt e e e e aba e e eeabteeeesbeeeeassseseeasesesansaeesennteeeennsens 11
Figure 36: Contrastive LRP saliency map generated for YOLOV8 (Railway UC).......cccceeveevceeecerecieenreeeenen, 11
Figure 37: LRP saliency map generated for YOLOV8 (RAilWay UC)cccueevueieiieeeiiiieciee et evee e 12
Figure 38: LIME heatmap computed for MVP model, using superpixel segmentation method Watershed as
Yo 1V o o T ol Y ST 12
Figure 39: Model performance (loU metric) vs input parameters: bounding box location and area 12
Figure 40: Example usage of Epistemic uncertainty aware MVP model..........cccceevvvieeiiiieeeniciee e, 13

file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055092
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055093
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055093
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055094
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055094
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055095
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055095
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055096
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055097
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055098
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055098
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055099
file://///VBOXSVR/shared_folder/projects/safexplain/D3.4_Final_DL_components_libraries_and_the_DL_interface_updated.docx%23_Toc203055100

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

Acronyms and Abbreviations

- ADAM - Adaptive Moment Estimation
- Al — Artificial Intelligence

- AI-FSM — Artificial Intelligence Functional Safety Management
- CNN — Convolutional Neural Network
- CAM — Class Activation Map

- DL-Deep Learning

- DNN — Deep Neural Network

- DT - Decision Tree

- EDA - Exploratory Data Analysis

- FUSA - Functional Safety

- GLM —General Linear Model

- GMM - Gaussian Mixture Model

- loU —Intersection over Union

- L1 norm — Manhattan distance

- L2 norm — Euclidean distance

- ML - Machine Learning

- MLP — Multilayer Perceptron

- MSE — Mean Squared Error

- MVP — Minimum Viable Product

- OF — Optical Flow

- OM - Operation and Monitoring stage
- ODD — Operational Design Domain

- 00D - Out of Distribution

- PCA —Principal Component Analysis

- PhDM — Data Management phase

- PhLM - Learning Management phase
- PhIM - Inference Management phase
- RF—=Random Forest

- RelLU — Rectified Linear Unit

- SGD - Stochastic Gradient Descent

- V&V — Verification and Validation

- XAl - Explainable Al

- YOLO - You Only Look Once

D3.3 Final proofs-of-concept, arguments, and DL components and libraries

SAFEXPLEN

Executive Summary

This report presents the final results (as of M36) of SAFEXPLAIN’s FUSA-aware dependable Deep Learning
(DL) solutions within WP3. The document contains an overview on the code included in the deliverable.

The source code and libraries (for proprietary artifacts) for WP3 SW have been archived and
uploaded to the B2DROP repository maintained by BSC, It can be accessed through the following
link: https://b2drop.bsc.es/index.php/s/D9eteoH5fcYPaq2

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

1. Introduction

This document reports the final results of tasks “T3.4 - Implementation of DL components” and “T3.5 - DL
ibraries” within the SAFEXPLAIN project.

It constitutes the culmination of the libraries involved in the deployment of embedded Deep Neural
Networks (DNNs).

The proposed strategy for achieving dependability in Deep Learning (DL) components designed for safety-
critical applications is predicated on the comprehensive characterization and systematic mitigation of
uncertainties inherent in Al systems (that are connected to hazardous situations). This approach is
rigorously aligned and supports compliance with the Al-FSM development lifecycle (detailed in D2.1[1]) and
implements the Safety Patterns deployment architecture (as described in D2.2[2]).

The report explores explainability, traceability, and robustness within the context of a Minimum Viable
Product (MVP) and provides a practical handbook guiding the development of DL components for Critical
Autonomous Al-based Systems (CAIS).

This document is organized as follows:

e Section 2: This section describes two software libraries

e EXPLib: Python library of XAl techniques and practices that support AI-FSM lifecycle
compliance, and

e DLLib: Python and low-level language library (optimized for embedded platform) for
deploying the safety architecture and its components in OM stage.

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFE} PL‘»\Q

2. Realization and libraries
2.1. EXPLib

EXPLib is an open-source Python library designed to facilitate the development and deployment of
dependable DL components, leveraging Explainable Artificial Intelligence (XAl) techniques to ensure
transparency, accountability, and reliability. The library provides a comprehensive framework for building,
testing, and deploying DL models, with a focus on safety enabled by explainability.

By utilizing XAl tools and methods, EXPLib empowers users to gain valuable insights into the decision-
making processes of their DL models, enabling the identification of potential safety-related risks and
vulnerabilities. This facilitates the creation of more dependable and trustworthy DL components that
compliant with the AI-FSM guidelines and safety architecture patterns. The library's modular and flexible
architecture allows users to seamlessly integrate their own XAl methods and tools, as well as customize the
library to suit their specific needs and requirements. Practitioners can focus on building high-quality DL
models that not only achieve accuracy but also adhere to safety-critical practices and guidelines, provided
by AI-FSM and Safety Patterns, ensuring the development of reliable and trustworthy Al systems.

Upon completion of the project, the EXPLib library will be made publicly available through open-source
repositories such as GitHub (https://github.com/RI-SE/EXPLib), ensuring widespread accessibility and
facilitating community engagement and contributions.

2.1.1. Library structure
The EXPLib library structure (Table 1) is organized as follows:

e UCs: contains some specific files related to the 3 use cases of SAFEXPLAIN: Automotive, Railway
and Space.

o aifsm_phases: holds example Jupyter notebooks showcasing how the library can be used to
support AlI-FSM phases and steps compliance (generating artifacts or assisting practitioners with
relevant explanations).

e configs: stores configuration files for the library.

e datasets: provides datasets used in the library.

e dl_component: Typical DL components, especially those included in the Demo MVP model and the

UGCs
e xai_library: contains explainable Al (XAl) library resources to support both AI-FSM and OM
compliance

Table 1: EXPLib structure

EXPLib/

UCs

aifsm phases
configs
datasets

dl component

TTTTT

xai library

https://github.com/RI-SE/EXPLib

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAF:) ‘

2.1.2. Guidelines and examples

2.1.2.1. Overview

Practitioners can use the library with the example usages provided via different Jupyter notebook scripts
available and grouped into Al-FSM phases (Table 2).

e data_management: contains example notebook scripts demonstrating how to use the library to
support various steps within the PhDM-Data Management phase.

o Data Profiling and Data mining: Statistical reports and mining examples on dataset, both
raw data and annotations statistics.

o Data prototypes: Representative data prototypes extracted from the dataset, along with
criticisms describing the dataset. Example representations include prototypical square
patches extracted from an image dataset.

o Data descriptors: Example implementations of VAE (Variational Autoencoder) based data
descriptors to help describing the perception and conceptual features of the dataset. This
descriptor will also be used later in OM stage as anomaly detector.

e learning_management: contains example notebook scripts demonstrating how to use the library
to support various steps within the PhLM-Learning Management phase.

o Intrinsic interpretable model design (integrated gradCAM)

o Posthoc interpretable surrogate model

o MVP uncertainty aware models: Aleatoric uncertainty aware model and MC dropout
epistemic uncertainty model.

e Epistemic uncertainty aware model.

e Model explainers applied for MVP model and YOLO model

e inference_management: contains example notebook scripts demonstrating how to use the library
to support various steps within the PhIM-Inference Management phase.

o Performance assessments: Plots of model performance wrt different input parameters

o Scenario generators using metaheuristic searches

o Uncertainty aware model

e XAl for model (similar to PhLM)

e operational_xai: contains codes related to safety components for OM stage (to be transferred to
DLLib for porting into the project NVIDIA ORIN platform).

o 0O0D: MVP anomaly detectors (trained for detecting anomalies from input image, model’s
neuron activations patterns and model output). Anomaly detectors for UCs are not hosted
within this library but are maintained by UC partners.

o Uncertainty aware model: MC model providing epistemic uncertainty estimate and
Aleatoric uncertainty aware model. The MC model is implemented with preloaded MC
dropout models in a mix parallel/sequential architecture to support trade-off mechanism
(memory, speed and model performance)

o Surrogate models: Safe and interpretable surrogate models, train on the MVP dataset and
the MVP model output

o Ensemble model: Decision function using ensemble methods to aggregate outputs from
different components and provide consolidated output of prediction and trustworthiness
score

Table 2: Structure of aifsm_phases sublibrary

— aifsm phases

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFI:

| |— data management

| — inference management
| L— operational xai

| — oop

| |— ensemble method
| |— surrogate model
|

L uncertainty quantification

2.1.2.2. Example scripts and resulting figures in AI-FSM phases
2.1.2.2.1. PhDM Data Management

output_folder
image_path="EXP
ground_trut
bbox_ file=

rse_json(bbox_file)
boxes(bboxes, target object_name='g

ready for heatmap?

Center Position Heatmap (ground truth satellite)

g -
Figure 1: EXPLib - example notebook of Data Profiling within PhDM

A screenshot of Data Profiling script is provided in Figure 32.

An example of latent space investigation is provided in Figure 33. The latent space is populated with
datapoints from the MVP dataset using a VAE-based data descriptor. Initially, the latent space has a
dimensionality of 256, which is then reduced to a three-dimensional representation using UMAP and t-SNE
techniques to facilitate better human understanding.

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

3D UMAP projection of mu_array

3D t-SNE projection of mu_array

20 10
4 10
s 5
* -10 9
-20 =
s
e 20 -i6
LA Accumulated Variance 1
9
10 ,/.__.—4'.--—'—— o & =15,
0.9 e
Figure 2: . 08 omputed using
T
UMAP (lef & 07 >
w
T /
!_1 0.6
=1
E 0.5
5 ¢
g /
0.4 /
0.3
0.2

0 2 4 6 8 10 12 14
Number of Principal Components

Figure 3: PCA analysis of latent space (of VAE-based data descriptor).
Accumulated eigenvalues of the first 15 eigenvectors

Figure 34 presents the results of a Principal Component Analysis (PCA) on the 256-dimensional latent space
of the VAE-based data descriptor. Our analysis reveals that the first 15 eigenvectors can effectively capture
the underlying structure of the high-dimensional latent space, allowing for accurate representation with a
significantly reduced dimensionality. This insight led to the development of concept-based anomaly
detection methods, which enable the identification of anomalous regions within an image (even in cases
where the overall L2 reconstruction error is minimal) by leveraging the PCA error vectors and the VAE's
deconvolutional layers for reconstruction.

10

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFE} PL‘»\Q

Figure 35 demonstrates the performance of the "descriptor latent" anomaly detector using a varying
number of eigenvectors (ranging from 1 to 12). Notably, even with as few as 2 eigenvectors, the accidentally
removed antenna of the satellite is successfully identified as an anomalous region.

2.1.2.2.2. PhLM Learning Management

Examples of using LRP and Contrastive LRP for generating attention heatmaps for different classes (Person
and Bicycle) are shown in Figure 37 and Figure 36 respectively.

Original Image Explanation for Class "Person” Explanation for Class "Bicycle"

G

Figure 5: Contrastive LRP saliency map generated for YOLOVS (Railway UC)

k=9 k =10 k=11 k=12

Figure 4: Experiments of using PCA reconstructed latent vector of data
descriptor to identify anomalous area in the input image

11

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFE y

LIME Heatmap generated for MVP model is illustrated in Figure 38. The supported segmentation methods

include SLIC and Watershed.

Original Image LIME Heatmap

Figure 7: LIME heatmap computed for MVP model, using superpixel segmentation method Watershed as input for LIME

2.1.2.2.3. PhIM Inference Management

Figure 39 demonstrates how XAl tools in the EXPLib can be utilized to support performance assessment.
The plots illustrate the relationship between safety-related performance metrics (loU in this case) and input
data parameters, specifically object location (represented by bounding box centre coordinates) and
appearance size (translated into distance to the sensor and represented by area).

loU vs x-center loU vs y-center loU vs bbox-area

1.0 4 1.0 4

0.8 + 0.8 +

0.6 4 064 s

. .
0.4 + 0.4 0.4 +

0.2 4 0.2 4 0.2 4

Pod =

.
0.0 4 . . . - . 0.0 e see® o o 0.0

T T T T T y T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250 0 20000 40000 60000 80000 100000

Figure 8: Model performance (loU metric) vs input parameters: bounding box location and area

12

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFI:

2.1.2.2.4. Operational XAl

Figure 40 presents a screenshot illustrating an example usage of the library, where practitioners can create
an uncertainty-aware model for deployment to the OM stage. In this example, MC dropout models are pre-
loaded into a mix structure, comprising 100 parallel runs of 5 sequential models, resulting in a total of 500
models in the ensemble. The configurable selection of number of parallel models and number of sequential
models enables trade-off mechanisms between three key factors: (1) accuracy of uncertainty estimates
(measured by the number of samples in the prediction distribution), (2) RAM usage (influenced by the
number of parallel models), and (3) execution time (affected by the number of models in the sequential
path).

outputs = predict_with_parallel models(toymodel MC, image, 5)

Figure 9: Example usage of Epistemic uncertainty aware MVP model

More figures and examples can also be found in Section Error! No s'ha trobat I'origen de la referéncia..

2.1.3. Libraries of XAl tools

The core functionalities, classes, and utilities within EXPLib are organized in the “xai_library” module (Table
3), which is structured into three primary categories:

e data_explainers: This module provides XAl tools related to data and datasets, including:
o Data descriptors
o Prototypes and criticisms
o Similarity and distance metrics
o Data profiling
e model_explainers: This module offers XAl tools focused on model analysis, such as:
Saliency maps
Surrogate models
Various types of plots
Utilities for extracting neuron activations and computing gradients
o Building uncertainty-aware models
e supervisor: This component provides XAl tools and training scripts for Al-based components
intended for deployment as supervision components within the OM stage. Notably, these
components are trained on the "Known" area, which is represented by the datasets and related
results, including model activations, gradients, predictions, and other relevant outputs.
e metric_extractors: Several metric computation utilities are provided within this submodule,
including e.g. model performance metrics (loU, F1), structural coverage (NBC, NC...), similarity and
distance metrics.

(0}
[0}
o
o

Table 3: Structure of xai_library

L xai library
— data explainers
| I— data descriptors

13

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

| L prototypes

F— metric extractors

F—— model explainers

DT

anchors

cam
extract layer activation
lrp

model utils

plots

search algorithms

shap

TTTTTTTTTT

|
|
|
|
|
|
|
|
|
| surrogate
| L— uncertainty models
— supervisor

|— anomaly detector

|— ensemble method

|—— surrogate model

L— uncertainty models

2.1.4. Models

This module contains implementations of DL models utilized within the project. The current models
included are categorized by type, as reflected in the following library structure (Table 4):

e AEs: Various Variational Autoencoder (VAE) models used within SAFEXPLAIN.

e CNN: Scripts and weights for visual-based Convolutional Neural Networks, including image
classification and object detection models (SSDlite, FasterRCNN, and associated backbones).

e MLP: Placeholder — Multilayer Perceptrons have been integrated directly into CNN models.

e RNN_LSTM: Memory-based models (RNN, LSTM) constructed with simple Torch layers.

e Transformers: Standard BERT models.

Table 4: Structure of dI_component submodule

'— dl component

| b 2Es

| B on

| | |— Image Classifiers
| | L Object Detectors
|

|

F— mrp

— RNN_LSTM

14

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAF:) ‘

| L — Transformers

2.1.5. Datasets

This subfolder contains datasets used to test and demonstrate the various XAl methods employed within
the project. For publicly available datasets, we provide references to the data owners rather than hosting
the data directly.

The two main datasets hosted within this library are the MVP dataset (together with annotations) and a
supplementary dataset containing added UFO objects, which is used to evaluate different safety
mechanisms.

2.2. DLLib

Building on EXPLib, we focus on the integration of DL software components for OM stage into DLLib. To
support the complex models and large datasets previously discussed, high-performance computing is
essential, requiring optimizations for hardware architectures like NVIDIA GPUs and Arm-based CPUs. The
corresponding source code, including DLLib, has been archived and uploaded to the B2DROP repository
maintained by BSC, it can be accessed through the following link:
https://b2drop.bsc.es/index.php/s/D9eteoH5fcYPaqg?2.

2.2.1. Library structure
DLLib is structured (Table 5) as follows:

e SEMDRLIB: Contains multiple redundant versions of image-based DL models.

e toy_model_v1: It's the baseline model, and the folder includes a standalone way of running
the base model with most of the supervisor function features enabled.

e uncertainty_models: Contains multiple diverse redundant versions of image-based DL
models and applies a number of user-selected transformations in input images to perform
multiple diverse inferences intended to provide semantically identical, yet not bit-identical,
results. Two main approaches are used the first one based on aleatoric uncertainty and the
second one on parallel uncertainty.

e DLETLIB: Includes several features that provide some degree of explainability to the base
Al models allowing to detect possible issues during their execution.

e anomaly_detection: Trained Variational Autoencoder (VAE) descriptors have been utilized
to identify data points or patterns that deviate significantly from the model's training
distribution. This component effectively flags potential outliers or novel scenarios that
require additional scrutiny, ensuring the system's robustness against unexpected inputs.
We have three different VAEs currently implemented:

e Input VAE: This component checks for outliers on the input image.

e Output VAE: This component checks for outliers on the output image of the main model.

e Activation VAE: This component checks for outliers during the inference of the main model
by looking into some of the activations from key layers.

e ensemble: Predictions from multiple models are combined with the supervisors' outputs
to validate their reliability and accuracy. This approach effectively leverages the strengths
of various models, achieving superior performance and robustness compared to any single
model alone.

e surrogate_model: A lightweight surrogate object detector that replaces a deep model with
handcrafted cues. It extracts Harris keypoint stats and LBP texture matches, summarizes

15

https://b2drop.bsc.es/index.php/s/D9eteoH5fcYPaq2

D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFE

them via GMM cluster features, and concatenates these descriptors. A trained
RandompForest regressor then maps this feature vector to the image’s bounding box.

Table 5: Structure of DLLib
— DLLib
— SEMDRLIB
| |— toy model vl

| L— uncertainty models

|— anomaly detector

I
| |— ensemble
I

|
|
|
| — DLETLIB
|
|
|

L— surrogate model

2.2.2. Integration with ROS2 (Middleware)

It is worth noting that we have successfully integrated all the VAE based anomaly detectors (input, model,
output, Uncertainty Models, Surrogate Models, and Ensemble Methods) into the Middleware, customized
to utilize ROS2 for efficient communication between various modules. These integrations are aimed at
enhancing the system's diagnostic and supervisory capabilities, which are critical for maintaining reliable
and adaptive real-time performance.

The integration process involves adapting and extending functionalities from EXPLib, organizing them into
reusable ROS2 nodes that encapsulate each feature. This modular design ensures seamless communication
and interoperability through RO0S2’s publish-subscribe mechanisms, supporting scalability and
maintainability. By structuring these modules as independent nodes, we enable flexible deployment and
dynamic updates without interrupting system operations.

Leveraging ROS2's real-time communication capabilities, alongside its robust support for distributed
systems, allows us to efficiently manage data flow between various components, including DL models,
Supervisors, Decision Functions, and other system elements. This architectural design ensures low-latency,
high-throughput communication, which is essential for real-time applications that demand rapid decision-
making and adaptive behaviour.

Additionally, the Middleware is architected to support asynchronous processing and dynamic model
updates, facilitating adaptive supervision and robust uncertainty management. This adaptability is
particularly crucial for real-time environments where conditions can change rapidly. The iterative
development approach enhances the system’s reliability and responsiveness while maintaining modularity
for future scalability. Ultimately, this design strategy ensures that the DL modules are seamlessly integrated
with the overall control and diagnostic framework, paving the way for advanced, intelligent supervision in
complex, distributed environments.

All ROS2 implementations of DLLib, are included in the core Demo of the SAFEXPLAIN project.

3. Discussions

This document presents the final outcomes of T3.4 and T3.5 within the SAFEXPLAIN project, providing a
comprehensive summary of the specification, design, and improvement of dependable deep learning (DL)
components.

16

L
D3.3 Final proofs-of-concept, arguments, and DL components and libraries SAFEXPLN

References

[1] SAFEXPLAIN, “D2.1: SAFEXPLAIN Safety Lifecycle Considerations.” Deliverable of the HEU
SAFEXPLAIN project, Grant Agreement No. 101069595, 2024.

[2] SAFEXPLAIN, “D2.2: SAFEXPLAIN DL safety architectural patterns and platform.” Deliverable of the
HEU SAFEXPLAIN project, Grant Agreement No. 101069595, 2024.

17

	1. Introduction
	2. Realization and libraries
	2.1. EXPLib
	2.1.1. Library structure
	2.1.2. Guidelines and examples
	2.1.2.1. Overview
	2.1.2.2. Example scripts and resulting figures in AI-FSM phases
	2.1.2.2.1. PhDM Data Management
	2.1.2.2.2. PhLM Learning Management
	2.1.2.2.3. PhIM Inference Management
	2.1.2.2.4. Operational XAI

	2.1.3. Libraries of XAI tools
	2.1.4. Models
	2.1.5. Datasets

	2.2. DLLib
	2.2.1. Library structure
	2.2.2. Integration with ROS2 (Middleware)

	3. Discussions
	References

