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Executive Summary

This deliverable reports on the technical and technological progresses achieved in WP4 during the
Phase 3 of the project, spawning from m19 to m30. In particular, this report captures the
advancements and final outcomes of WP4 tasks T4.1-T4.4 (including refinements and support
activities under T4.5) by MS3 hence covering further developments of SAFEXPLAIN solutions at
hardware (HW) and software (SW) level and their consolidation and integration on top of the
SAFEXPLAIN execution platform to support the activities of other work packages and enable the
evaluation of the case studies. As this deliverable is a natural extension and update to D4.1,
whenever possible we will reference the latter to avoid redundancies.

Similarly to the approach followed for D4.1, we provide an assessment on the achievement of the
main objectives for each WP4 task and relate them to respective outcomes (technologies and tools
and integration in the execution platform).

This deliverable does not provide a detailed description of the specific integration of WP4 solutions
with WP5 use cases and their evaluation. These activities are still ongoing, with WP4 activities
falling in the scope of T4.5.
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1 Introduction

This document reports on the progress achieved in the scope of WP4 during the third phase of the
project. This work package brings together all platform-level aspects that are relevant for the
supporting both performance and FUSA requirements on top of the platform. The overarching goal
of WP4 is to support the development, execution, and analysis of the solutions proposed by this
same work package (WP4) and other technical work packages (WP2 and WP3) and supporting the
deployment of SAFEXPLAIN case studies (WP5) on top of SAFEXPLAIN execution platform.

1.1 Scope

The scope of WP4 consists in intercepting all platform-level requirements and constraints and
offering a FUSA-compliant and high-performance execution platform. To this extent WP4 develops
through 4 main tasks and a higher-level meta-task to support the integration of WP2 and WP3
solutions in the case studies. Additionally, in the final phase 4 of the project, the support task T4.5
is deployed in order to capture further refinements and adaptations emerging in the final tailoring
and evaluation phase. Therefore, WP4 has strict relations with all SAFEXPLAIN work packages and,
in fact, facilitates their alignment. Figure 1 below, taken from D4.1, captures the main tasks in WP4
and how they support SAFEXPLAIN technologies and integration by capturing explicit and implicit
requirements from other WPs.
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Figure 1 - WP4 role and relation with other WPs [1].

We recall below the scope and objectives of the main technological tasks in WP4:

e T4.1 Timing interference control, covering the hardware analysis of the target platform to
identify the sources of interference and the available support for segregation and
partitioning. This task is critical to support FUSA aspects, and particularly the deployment,

4
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under the supervision of WP2, of FUSA architecture and patterns presented in [2]. T4.1
finished at m24.

T4.2 Observability channels, dealing with available means of collecting hardware-level
information on program execution on top of the target platform, and providing an
integrated tool to configure those means and access extract the relevant information at
both run and analysis time.

T4.3 Timing prediction methods and Tools, providing support for the analysis of the timing
behavior of the deployed functionalities, building on timing interference mitigations
enabled by T4.1 analysis and SAFEXPLAIN FUSA solutions (WP2) and exploiting timing
information gathered on top of T4.2 outcomes.

T4.4 DL libraries integration and validation in the industrial toolset, facilitating the
integration of SAFEXPLAIN DL libraries and solutions in a partially automated setup
supporting FUSA tasks through offline V&V activities and run-time monitoring.

T4.5 Refinements and integration updates, capturing final refinements and tailoring of
WP4 solutions in order to closely support the execution and assessment of the project use
cases. T4.5 started at m25, right after T4.1 termination.

1.2 Structure of the Document

In the following sections we provide a review of WP4 activities and progresses up to MS3. Large
part of the hardware analysis and conceptualization of SAFEXPLAIN software solutions have been
already captured in D4.1. The reader is encouraged to refer to that document, especially for all
aspects related to the SAFEXPLAIN target hardware platform (NVIDIA AGX Orin [3]) and system
software stack.

The structure of the document will follow the task structure of the WP. Each section will include a
short recap of the task objectives, the strategy followed, the obtained results, and an assessment
thereof with respect to integration on the execution platform and adaptations to the project case
studies.
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2 Updates to the hardware and software stack

The NVIDIA AGX Orin [3] has been selected as the common target platform for the case studies
project, for its representativeness from the FUSA perspective and its capability to sustain the
execution of performance intensive Al-based applications, hence providing support for general-
purpose and Al-specific hardware accelerators. Relevant details on the target features are
extensively covered in D4.1 [1].

Below we summarize the changes/upgrades on the hardware setup and software stack.

2.1 NVIDIA AGX Orin setup

The NVIDIA Jetson AGX Orin is a family of heterogenous MPSoC (Orin 32/64 Nano) developed by
NVIDIA to cover the emerging requirements from diverse markets, all sharing the need for high-
performance to support Al-based functionalities at reduced SWaP (Size, Weight, and Power). In
SAFEXPLAIN, the AGX Orin Dev Kit has been selected.

The Orin comprises 3 clusters of 4 Arm Cortex-A78AE CPUs [4] each, a NVIDIA Ampere GPU, ad-
hoc Al-oriented accelerators such as NVDLA and PVA, as well as a video encoder and a video
decoder (see Figure 2). The system also exploits a high-speed 10, with 204 GB/s of memory
bandwidth, and 32GB of DRAM (in the Dev Kit version). The Orin can deliver up to 275 TOPS which
enable the execution of multiple concurrent Al applications.

4x Cortex-A78

2 MB L3

4x Cortex-A78

2MBL3

4x Cortex-A78

2MB L3 VIDEO DECODE

Lockstep R52s VIDEO ENCODE
3 MB SRAM

4 MB System Cache SYSRAM

256-bit LPDDRS

Figure 2 - Block Diagram of our target platform (from [5]).

The amount of DRAM memory provided by the selected 32GB AGX Orin Dev Kit, while adequate
for the deployment of WP4 software solutions and user applications, resulted to be quite limited
for a flexible and efficient development environment. For this reason, we extended the memory
capability of the board by connecting a 1TB Non-Volatile Memory express (NVMe) module. The
addition of such module is not a stringent requirement for the execution of the SAFEXPLAIN stack
and solutions.
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2.2 Default software stack

The NVIDIA AGX Orin [3] comes with tailored OS support and libraries. The software stack includes
a specific version of a Linux-based Operating System as well as a score of dedicated libraries to
support the development and execution of Al applications. To favour homogenization and
coordination across development environments in the different WPs, WP4 promoted the early
identification of a shared software stack configuration to guarantee inter-compatibility of tools.

* NVIDIA reference SW stack

* Jetson Linux 36.3 (Ubuntu 22.04) @
¢ Linux Tegra 5.15
JetPack 6.0.1 SDK

Supports the development and execution of Al applications

o % ? s . e
> [ ‘-F@—— cuDNN
NVIDIA.

Vuilkan. O PyTorch

Figure 3 - NVIDIA AGX Orin

The specific support for the target hardware was not fully consolidated at the beginning of
SAFEXPLAIN and many software libraries were only provided in older versions. We were therefore
expecting changes to the setup to happen during the project. After checking the compatibility of
the updates with the partners assumptions and requirements, we opted for moving to the latest
release of the Jetson Linux and JetPack, which also involved an update to the supported Al libraries.
Figure 4 illustrates the latest versions for the low-level software layer in the SAFEXPLAIN stack.

AFEDL + Use €
? FEDL + Use Cases EXPLAINABLE DL

Use Case
(with Safety Pattern)

Ubuntu (Linux Tegra)
Hardware

Jetson Linux 36.3 (Ubuntu 22.04) + JetPack 6.0 5DK
NVIDIA Jetson AGX Orin 326E Dev Kit

Figure 4 - Updated SW stack.
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Updated SAFEXPLAIN setup consists in the following elements and versions:

e Jetson Linux 36.3 (Ubuntu 22.04)
e Linux Tegra 5.15
e JetPack 6.0.1 SDK

Specific libraries

e TensorRT: 8.6.2

e CuDNN: 8.9.4.25

e CUDA: 12.2.12-1
e OpenCV python: 4.10.0-dev
e Python3: 3.10.12

e PyTorch: 2.5.0

e Vulkan: 1.3.204

e Vulkan SC: 36.0
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3 Timing Interference Control (T4.1)

During the third phase of the project, Task 4.1 kept focusing on timing interference related aspects,
refining the results from the analysis of interference channels and available support in the
execution platform. The work led to the identification of a set of HW/SW level solutions for limiting
timing interference either by construction, in alignment with WP2 strategy [2], or by deploying ad
hoc run-time mechanisms. It is worth noting that T4.1 has been active for just 6 months in this
phase of the project, hence half of the time allocated for T4.2-T4.4.

In terms of the contents of this section, Section 3.1 reports on the results from applying kernel-
level solutions on the underlying OS in order to reduce the OS-related variability and guarantee
more predictable execution times. Section 3.2, instead, focuses on hardware and software related
aspects and reports on the updates on the HW/SW configurations for supporting the required
degrees of segregation while meeting the performance requirements.

3.1 Software Sources of Timing Interference

The Orin software stack builds on Linux Tegra, which consists in the tailoring of a full Ubuntu
distribution. The use of a Linux-based, general-purpose operating system as opposed to real-time
ones, introduces some interference or jitter in the execution of tasks stemming from the variability
incurred by the many system calls and background activities the OS is undergoing. As real-time
OSes were not ready and available on the target platform at the beginning of the project, we opted
for a middle ground solution consisting in exploiting two complementary approaches: (i) applying
the real-time (RT) patch to the Linux kernel and (ii) exploiting the capability to force system calls
and interrupts to a subset of the cores. It is noted that the RT patch [6] (recently accepted in the
mainstream development branch) is at the basis of the many commercial real-time Linux
distributions.

3.1.1 Kernel interference mitigation

The Linux OS kernel can become a source of interference that may affect the execution time of
other software running in the system. This is always true, but it can become especially apparent
when the system is under heavy workloads, as the kernel will schedule out some tasks if there are
not any free cores available.

The Linux kernel provides a patch [6] to replace the default scheduler with PREEMPT_RT, which is
better suited to run critical tasks as it is intended to reduce latency and hence execution time
variability. NVIDIA provides instructions for kernel customization!? that can be followed in order
to replace the default kernel for one with PREEMPT_RT enabled.

However, even when using a patched kernel, critical tasks may become affected by OS noise when
the system is under heavy loads. A simple improvement is to configure such tasks as high priority.
This can be done, for instance, using pthread attr_setschedparam and setting the
sched_priority to a high value, but this is insufficient if the kernel still needs to interrupt our
critical task.

In parallel, the impact of the kernel can be mitigated by configuring it to force some cores to be
isolated and configuring some others to take care of interrupt requests. To this end, we can
leverage the clustered architecture of the Orin AGX board and reserve a single cluster for all OS

L https://docs.nvidia.com/jetson/archives/r36.2/DeveloperGuide/SD/Kernel/KernelCustomization.html
2 https://docs.nvidia.com/jetson/archives/r36.2/DeveloperGuide/AT/JetsonLinuxToolchain.html#at-
jetsonlinuxtoolchain
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related activities, while keeping the other two for critical tasks. This can be achieved by adding the
following parameters to the kernel boot extlinux. conf configuration:

isolcpu=4-11 irqgaffinity=0-3

In principle, different cpuisol sets can be configured but the above setup is the one providing
better isolation, if the overall load of the system allows reserving the full cluster 0 to system
services.

We performed an assessment of the effectiveness of these measures in reducing the OS impact.
We applied the Linux kernel RT patch using the instructions provided by NVIDIA and configured
the boot options with isolcpu and irqaffinity as described.

3.1.1.1 Experimental setup

To evaluate the proposed mechanism, we use the cyclictest tool®. Cyclictest s a Linux kernel
tool that accurately and repeatedly measures the difference between a thread's intended wake-
up time and the time at which it actually wakes up in order to provide statistics about the system's
latencies. It can measure latencies in real-time systems caused by the hardware, the firmware, and
the operating system.

The installation can be performed with the following set of commands:

apt-get install buiTld-essential Tibnuma-dev

git clone git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
cd rt-tests

git checkout stable/v1.0

make all

make install

Output Explanations:

e T:(Thread Number): This indicates the thread number.

e (PID): The Process ID (PID) of the thread.

e P: (Priority): The priority of the thread. The higher the number, the higher the priority

e |: (Interval): The interval at which the thread wakes up, in microseconds. Here, it is set to
1000 microseconds (1 millisecond), as specified with the —interval option.

e C:(Count): The count of wakeups or iterations that the thread has performed.

e Min (Minimum Latency): The minimum latency observed, in microseconds, for the
wakeup.

e Act (Actual Latency): The actual latency observed for the most recent wakeup, in
microseconds.

e Avg (Average Latency): The average latency observed over all wakeups, in microseconds.

e Max (Maximum Latency): The maximum latency observed, in microseconds, for any
wakeup.

Interpreting the Output:

e Min, Act, Avg, and Max Latencies: These values are crucial for understanding the real-
time performance. ldeally, these should be as low as possible and close to each other.

3 https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

10
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Significant differences between the minimum and maximum latencies can indicate

variability and potential issues in meeting real-time deadlines.

e Consistency Across Threads: Consistent values across different threads (T: 0, T: 1,

etc.) suggest that the system handles real-time scheduling uniformly. Significant
discrepancies might indicate CPU affinity issues or uneven load distribution.

e Max Latency: The maximum latency is particularly important in real-time systems, as
it represents the worst-case scenario. This value helps determine if the system can

meet the most stringent real-time requirements.

We run cyclictest in four separate scenarios: for high and low priority tasks, and for the regular

kernel provided by NVIDIA and a custom kernel with the RT patch applied. We run cyclictest
with the following parameters and let it collect 4000 samples or more for wakeups for each thread:

cyclictest
cyclictest

-a -t -n -p99 # For high priority tasks
-a -t -n # For normal priority tasks

3.1.1.2 Results

We analyse the results and chart the maximum latency, as the latter is the metric that better

identifies execution time variability. In the tables below we present the complete results for the
non-RT and the RT kernels, then we proceed to present the most relevant differences.

Non-RT kernel

High T: © (52671) P:99 I:1000 C: 28099 Min: 1 Act: 3 Avg: 3 Max: 41

priority T: 1 (52672) P:99 1:1500 C: 18732 Min: 2 Act: 2 Avg: 2 Max: 38
T: 2 (52673) P:99 I1:2000 C: 14049 Min: 2 Act: 2 Avg: 3 Max: 38
T: 3 (52674) P:99 1:2500 C: 11239 Min: 2 Act: 2 Avg: 3 Max: 34
T: 4 (52675) P:99 1:3000 C: 9366 Min: 2 Act: 3 Avg: 3 Max: 15
T: 5 (52676) P:99 I:3500 C: 8028 Min: 2 Act: 5 Avg: 3 Max: 12
T: 6 (52677) P:99 I1:4000 C: 7024 Min: 2 Act: 3 Avg: 2 Max: 10
T: 7 (52678) P:99 1:4500 C: 6244 Min: 2 Act: 5 Avg: 3 Max: 13
T: 8 (52679) P:99 1:5000 C: 5619 Min: 2 Act: 3 Avg: 3 Max: 18
T: 9 (52680) P:99 I:5500 C: 5108 Min: 2 Act: 7 Avg: 4 Max: 17
T:10 (52681) P:99 1:6000 C: 4683 Min: 2 Act: 3 Avg: 3 Max: 14
T:11 (52682) P:99 1:6500 C: 4322 Min: 2 Act: 4 Avg: 3 Max: 11

Normal T: © (52686) P: © 1:1000 C: 26910 Min: 13 Act: 54 Avg: 52 Max: 99

priority T: 1 (52687) P: @ I:1500 C: 17940 Min: 19 Act: 52 Avg: 52 Max: 324
T: 2 (52688) P: @ I:2000 C: 13454 Min: 40 Act: 52 Avg: 53 Max: 2357
T: 3 (52689) P: @ I:2500 C: 10764 Min: 51 Act: 52 Avg: 53 Max: 60
T: 4 (52690) P: © 1:3000 C: 8968 Min: 24 Act: 54 Avg: 54 Max: 7051
T: 5 (52691) P: © I:3500 C: 7688 Min: 52 Act: 53 Avg: 52 Max: 198
T: 6 (52692) P: 0 I1:4000 C: 6727 Min: 51 Act: 55 Avg: 52 Max: 68
T: 7 (52693) P: © 1:4500 C: 5980 Min: 18 Act: 56 Avg: 54 Max: 497
T: 8 (52694) P: © 1:5000 C: 5382 Min: 6 Act: 56 Avg: 53 Max: 373
T: 9 (52695) P: © I1:5500 C: 4892 Min: 20 Act: 53 Avg: 54 Max: 67
T:10 (52696) P: 0 1:6000 C: 4485 Min: 18 Act: 52 Avg: 53 Max: 87
T:11 (52697) P: © 1:6500 C: 4140 Min: 5 Act: 53 Avg: 53 Max: 61
RT kernel

High T: © ( 2554) P:99 1:1000 C: 102510 Min: 1 Act: 7 Avg: 5 Max: 36

priority T: 1 ( 2555) P:99 I:1500 C: 68340 Min: 1 Act: 8 Avg: 13 Max: 219
T: 2 ( 2556) P:99 I:2000 C: 51255 Min: 1 Act: 6 Avg: 6 Max: 32
T: 3 ( 2557) P:99 I:2500 C: 41003 Min: 1 Act: 2 Avg: 6 Max: 32
T: 4 ( 2558) P:99 I:3000 C: 34170 Min: 2 Act: 3 Avg: 2 Max: 6
T: 5 ( 2559) P:99 I:3500 C: 29288 Min: 1 Act: 2 Avg: 2 Max: 5
T: 6 ( 2560) P:99 1:4000 C: 25627 Min: 2 Act: 2 Avg: 2 Max: 7
T: 7 ( 2561) P:99 I:4500 C: 22780 Min: 2 Act: 2 Avg: 2 Max: 7
T: 8 ( 2562) P:99 1:5000 C: 20501 Min: 2 Act: 2 Avg: 2 Max: 8
T: 9 ( 2563) P:99 I:5500 C: 18638 Min: 2 Act: 3 Avg: 2 Max: 6

11
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T:10 ( 2564) P:99 1:6000 C: 17084 Min: 2 Act: 3 Avg: 2 Max: 6
T:11 ( 2565) P:99 I1:6500 C: 15770 Min: 2 Act: 3 Avg: 2 Max: 6
Normal T: @ ( 2571) P: © I:1000 C: 42203 Min: 4 Act: 54 Avg: 58 Max: 1356
priority T: 1 ( 2572) P: @ I:1500 C: 28137 Min: 10 Act: 55 Avg: 75 Max: 1276
T: 2 ( 2573) P: © I:2000 C: 21103 Min: 3 Act: 55 Avg: 60 Max: 293
T: 3 ( 2574) P: © 1:2500 C: 16882 Min: 5 Act: 69 Avg: 61 Max: 236
T: 4 ( 2575) P: © 1:3000 C: 14068 Min: 52 Act: 52 Avg: 53 Max: 63
T: 5 ( 2576) P: @ I:3500 C: 12059 Min: 52 Act: 53 Avg: 53 Max: 62
T: 6 ( 2577) P: © I1:4000 C: 10551 Min: 52 Act: 53 Avg: 53 Max: 62
T: 7 ( 2578) P: © I1:4500 C: 9379 Min: 52 Act: 54 Avg: 53 Max: 60
T: 8 ( 2579) P: © 1:5000 C: 8441 Min: 52 Act: 53 Avg: 53 Max: 59
T: 9 ( 2580) P: @ I:5500 C: 7673 Min: 52 Act: 53 Avg: 53 Max: 61
T:10 ( 2581) P: © 1:6000 C: 7034 Min: 52 Act: 53 Avg: 53 Max: 62
T:11 ( 2582) P: © I1:6500 C: 6493 Min: 52 Act: 53 Avg: 53 Max: 56

Next, we plot the maximum latency in microseconds and compare the RT kernel vs the non-RT
kernel, high vs normal priority tasks, and isolated vs non-isolated cores.

First of all, we evaluate the effectiveness of setting task priority to a high value when we apply the
RT kernel patch. In Figure 5 we can clearly see the difference between normal priority (left) which
causes latencies between 56 us and 1356 us, and high priority (right) which only causes latencies
between 5 us and 219 us.

RT Kernel. High vs normal priority

1600
1400
1200
1000
800
600
400
200 I .
0 1 71 I -
NormPr HighPr
RT kernel

HO N1 W2 "3 M4 5 H6E7 HES HO 10 m11

Figure 5 — RT kernel latency, high vs normal priority tasks, all cores.

Even when configuring high priority tasks, it can be clearly seen in Figure 6 that isolcpu and
irgaffinity settings have a notable effect on task latency. Latencies for isolated cores in clusters
1 and 2 experience latencies of up to 8 us, while high priority tasks running in cluster 0 (not isolated
and devoted to irq management) still exhibit latencies of up to 219 us. These results confirm our
expectation on the complementarity of the two approaches.

12
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RT kernel. High priority

250
200
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HighPr

RT kernel

HO N1 W2 W3 W4 M5 H6E7 HE B9 H10 m11

Figure 6 — RT kernel latency, isolated cores vs non-isolated clusters, high priority tasks.

Last, we assess the effectiveness of using a custom kernel with the real time patch applied,
compared to the default kernel provided by NVIDIA consistently with an isolcpu and
irgaffinity configuration. In Figure 7 we show latencies for high priority task in cores 4 to 11
(the isolcpu set) for each kernel. We observe latencies of up to 18us when running on the default
kernel and always below 8 us in the RT-patched kernel.

Isolated cores. RT vs non-RT kernel. High priority

HighPr HighPr

20
18
16
14
1
1

[T S

(e LS I o NI+

Non-RT kernel RT kernel

H4 W5 m6m7 mE8 9 m10 m11

Figure 7 — RT vs non-RT kernel latency, isolated cores, high priority tasks.

The main conclusions that can be extracted from this data are:

e Tasks need to be configured as high priority. Reduces at least 10x, even in non-isolated
cores.

e Tasks in non-isolated cores may suffer wake-up latencies up to 37x higher than on isolated
cores. Critical tasks should always be configured in isolated cores

e We observe wake-up latencies between 25% and 3.6x higher in non-RT kernels. The RT
patch should be applied and used when running critical tasks in this platform.

13
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3.2 Configurations for interference mitigation

The SAFEXPLAIN execution platform combines the NVIDA Orin [3], as target hardware, and system
software layer, comprising a tailored Ubuntu distribution. One of the main objectives in
SAFEXPLAIN consisted in the identification of hardware and software support for controlling the
sources of timing interference arising from contention on shared hardware resources in MPSoCs.

In this phase of the project, we consolidated the results obtained from the analysis of the Orin
hardware architecture and its constituents. Interested readers may refer to [1] for more details on
relevant hardware components and their expected impact on timing interference.

As an incremental contribution to the previous phases, we concluded the empirical assessment of
hardware and software support for interference mitigation by experimenting with the impact of
two main Orin configurations affecting both performance and segregation.

3.2.1 Platform level support and configurations

3.2.1.1 Power model impact

The Orin platform provides practical tools for configuring and enforcing a specific power model
among those supported in the hardware. Power models are generally defining minimum and
maximum frequency of execution for each computing element (core, gpu, etc.). They are also
responsible for selectively enabling/disabling components in the platform. For example, power-
modes determine how many core clusters are active on the boards, or how many SP are enabled
in the GPU. Besides affecting performance, power models also configure the level of parallelism
supported by the platform.

Power-modes can be selected or enabled via simple command line tool nvpmodel that allows to
select among the available power configurations. The Orin AGX provides 4 pre-configured power
models with different energy consumption caps (from 15W to 50W). Power models’ main features
are summarized in Table 1 below. Power model ID=0 is the default power model.

ID=0 ID=1 ID=2 ID=3

POWER_MODEL (MAXN) (MODE_15W) (MODE_30W) (MODE_50W)
CPU_ONLINE CORE_O 1 1 1 1
CPU_ONLINE CORE_1 1 1 1 1
CPU_ONLINE CORE_2 1 1 1 1
CPU_ONLINE CORE_3 1 1 1 1
CPU_ONLINE CORE_4 1 0 1 1
CPU_ONLINE CORE_5 1 0 1 1
CPU_ONLINE CORE_6 1 0 1 1
CPU_ONLINE CORE_7 1 0 1 1
CPU_ONLINE CORE_8 1 0 0 1
CPU_ONLINE CORE_9 1 0 0 1
CPU_ONLINE CORE_10 1 0 0 1
CPU_ONLINE CORE_11 1 0 0 1
TPC_POWER_GATING TPC_PG_MASK 0 248 240 0
GPU_POWER_CONTROL_ENABLE | GPU_PWR_CNTL_EN on on on on
CPU_A78_0 MIN_FREQ 0 0 0 0
CPU_A78_0 MAX_FREQ -1 1113600 1728000 1497600
CPU_A78_1 MIN_FREQ 0 0 0
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CPU_A78_1 MAX_FREQ -1 1728000 1497600
CPU_A78_2 MIN_FREQ 0 0
CPU_A78_2 MAX_FREQ -1 1497600
GPU MIN_FREQ 0 0 0 0
GPU MAX_FREQ -1 420750000 624750000 828750000
GPU_POWER_CONTROL_DISABLE | GPU_PWR_CNTL_DIS auto auto auto auto
DLAO_CORE MAX_FREQ -1 614400000 1369600000 1369600000
DLA1_CORE MAX_FREQ -1 614400000 1369600000 1369600000
DLAO_FALCON MAX_FREQ -1 294400000 729600000 729600000
DLA1_FALCON MAX_FREQ -1 294400000 729600000 729600000
PVAO_VPS MAX_FREQ -1 704000000 704000000 704000000
PVAO_AXI MAX_FREQ -1 486400000 486400000 486400000

Table 1 - AGX Orin supported power modes.

Power models lead to different hardware configurations by limiting the subset of hardware
elements that are enabled at run time. Also, the model defines the operational frequency interval
for each component, that is the min and max frequency at which a core, a GPU, or a specific
accelerator (e.g., PVA) may operate. It is worth noting that the power model does not set up a
specific operational frequency but just an interval: this might not be desirable in time critical
scenarios where timing variability arising from dynamic frequency regulation is discouraged.

It is still possible to configure a fixed frequency by using another command line tool:
jetson_clocks. This tool allows to immediately overwrite the frequency of operation of all
components to the maximum. Of course, this choice, while removing unwanted execution time
variability, has clear implications on the power consumption profile.

In the following we report the results from an empirical assessment of the impact of power models
and frequency on the execution (in isolation) of selected benchmarks. We consider an
implementation of a matrix multiplication function, a common building block for many data-
intensive functionalities, as those deployed in Al-based functions for image recognition, as an
example. We execute the benchmark in isolation on the different cores and clusters in the AGX
Orin under the different power modes. We measure cycles, not time, which makes observation
agnostic on the CPU frequency. In fact, we are interested in understanding how each core may
provide different execution conditions.
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Figure 8 - Execution cycles in isolation per core under different power models.

As reported in Figure 8, the Cortex A78 cores show a similar behavior across cores and across
power models. While the number of active cores varies across power models, the provided
behavior in terms of execution cycles is homogeneous, as expected. It should be noted that the
results are filtering the impact of the OS as observations were captured by configuring the PMULib
to retrieve user-level hardware events only.

In terms of execution time, the impact of the power model is instead evident as shown in Figure 9
below, the execution time is correlated to the maximum frequency defined for each model. In the
experiments, variability coming from dynamic frequency is removed by forcing the Orin to stick
always to the maximum frequency.

%)
]
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0.000
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Power models (active cores)

Figure 9 - Power models impact on execution time.

Results confirm that execution frequency is heavily affecting performance. The execution time
under PMO is much lower than that required under PMO, and also lower than that required under
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PM3, due to the lower frequency bound for PM3. Instead, frequency upper bound for PM2 is closer
to that obtained under PMO, as confirmed by the results.

It is worth noting that better performance comes at the cost of a higher energy profile. It may be
worth considering further trade-offs between performance and power by defining custom power
models that meet the timing requirements but with the minimum energy profile.

3.2.1.2 Review of platform config options

SAFEXPLAIN platform aims to support the FUSA and performance requirements emerging from
WP2 and WP3 work. The concept itself of FUSA (software) architecture builds on the assumption
that the underlying layer (hardware and software) can be configured to guarantee variable degrees
of segregation among components. Segregation in the first stance can be provided by exploiting
architectural features that need to be enabled and properly configured.

Table 2 below summarizes the main hardware level features and configurations that have been
considered to promote segregation and mitigate interference at hardware and system-software
level. For each feature, we identify what Layer in the execution platform is directly affected, the
corresponding module (if HW), the main affected dimension (performance, interference,
predictability, FUSA), the scope at which the feature operates, the available options and a high-
level assessment of the impact expected when the configuration is enabled.

Table 2 - Summary of relevant deployment configurations.

Layer | Module | Dimension Scope Options Impact
HW | Power Performance System- Power mode | Largely affects performance and
module level energy consumption. Fixing the

power mode avoids inconsistent
timing behavior.

HW | DL1 Interference Intra-core Partitioning Reduce interference  between
applications running on same core

HW | L2 Interference Intra-core Partitioning Reduce interference  between
applications running on same core

HW | L3 Interference Intra- Partitioning Not enough information available
cluster on AGX Orin. Would possibly reduce
interference between applications
running on same cluster

HW | L4 Interference System- Partitioning Unsupported or not enough
level information available on AGX Orin.
Would possibly limit interference
on L4 cache accesses. Expect limited
interference  anyway as most
workloads should fit in L3.

HW | SFC Interference System- - Interference to be captured with
level interference characterization and
control strategy. Expect limited
interference as most workloads
should fit in L3.

HW | RAM Interference System- - Interference to be captured with
level interference characterization and
control strategy. Expect limited
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interference as most workloads
should fit in L3.

HW | GPU Interference System- - AGX Orin current JetPack does not
level support GPU partitioning. Potential
interference to be captured with
interference characterization and
control strategy. Expect limited
interference as GPU use in use cases
is serialized (also according to case
study questionnaire).

HW | PVA Interference System- - Not used according to case study
level questionnaire.

HW | DLA Interference System- - Not used according to case study
level guestionnaire.

HW | CPU FUSA Core Lockstep Adds lockstep functionality to

mode CCPLEX cluster. No particular
implication on analyses.

HW/ | SPE Predictability System- Free-RTOS Not considered in SAFEXPLAIN.

SW level on SPE

SW | - Predictability System- RT patch Can be configured to reduce
level variability suffered by critical tasks.

Requires kernel patch.

SW | - Interference System- CPU Strategic  application to ore
level Mapping mapping allows exploiting inherent
architectural  segregation, for
example, among CCPLEX clusters.

SW | - FUSA System- Hypervisor Unsupported on AGX Orin. Could
Predictability level allow segregation and isolation
among SW partitions.

The features in Table 2 summarize the spectrum of supported mechanisms in the AGX Orin
platform. The coverage these features can provide for WP2/3 requirements is not necessarily
exhaustive and, as a matter of fact, it is not in the Orin case. Therefore, starting from this set of
features, WP4 goal consisted in facilitating a mapping between WP2 and WP3 requirements into
concrete features and configurations (Figure 10).

The main focus of WP2 requirements [2] is on

segregation, to mitigate the impact of
Application SW interference, and predictability. Obtaining full
segregation on the AGX Orin is not possible

SAFEXPLALN - -
e e e @ without renouncing completely to

— performance. However, several degrees of

Ubuntu (Linux Tegra) isolation can be achieved, contributing effective
means to mitigate the potential impact of

Support interference. It is worth noting that the
Safety Meet performance . s .

Patterna reairements architectural level clusterization, with the 3 CPU

Figure 10 - Requirements steering platform configuration. clusters, already provides a good degree of

18



D 4.2 Platform Technologies Report SAFl:

Version 1.0

inter-cluster segregation: this means that the impact a software component executing on a cluster
can incur on other components executing on other clusters is somehow limited by the resource
sharing level. In particular, clusters benefit from cluster-private L3 cache. Intra-cluster
interference, on the other hand, can be mitigated by enabling partitioning on the same L3 level (L1
and L2 are private per core).

On the performance side, the main driving elements are the power model, the execution
frequency, and, clearly, the load on computing elements. With respect to the power model, the
selection of the most appropriate configuration depends on the overall system design. As the
power model defines what computing elements are enabled, it is important to consider the
computational requirements of the use case: how many SW components use CPU, GPU, other
accelerators and dependencies among them. In fact, the AGX Orin does not allow the sharing of
the GPU among applications in parallel (i.e., no Multi-Process Service — MPS support?) and
therefore all applications using the GPU will be necessarily serialized. As part of our work in
analyzing the benefits of GPU partitioning, we analyzed the Multi-Instance GPU (MIG) feature
provided by NVIDIA. While this feature offers in theory many benefits for execution time
determinism, it is paradoxically only implemented for high-end GPUs used in data centers. The
result of our analysis in fact shows that MIG offers important benefits on execution time
determinism, while the impact of performance can be controlled via its flexible configuration
options. Hence, this is an interesting feature to add to future embedded GPUs like that in the Orin
architecture [7].

Execution frequency clearly impacts the time it takes for a function to execute. While power
models define ranges of frequency for each mode, the actual frequency at operation for the
different devices depends on the dynamic regulation mechanism. This is not well perceived in
safety-critical systems where variability in execution time is negatively affecting timing
predictability. The AGX Orin supports the overriding of the frequency setting and makes it possible
to force the components to execute at the max frequency in the range. All experimental results
and analysis in WP4 were performed under the assumption that the system operates at a fixed
frequency for all scenarios and use cases.

Finally, the load on computing elements determines the response time of each software
functionality (either a single function or a full functional chain). It is not uncommon, in time critical
systems, that functionalities are executed uninterrupted, following a run-to-completion semantics.
This is even more true for functional chains that are deployed to process external inputs (e.g., from
sensors) and generate an action in response, through a sequence of elaboration steps. It is
suggested to promote cohesive assignation of functions to computing elements so that the
execution model can be also leveraged to avoid interference.

While mapping considerations are generally done on an application basis, the SAFEXPLAIN
architectural patterns permit the definition of generic mapping guidelines and patterns, where
software components are assigned to computing elements (i.e. clusters) based on cohesiveness
and criticality.

4 See https://forums.developer.nvidia.com/t/mps-on-agx-orin/219157
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Figure 11 - Example of architectural pattern and mapping.

As an example, Figure 11 presents the software components’ view of a WP2 Safety Pattern.
Colored frames hint at possible mapping scopes where a mapping scope defines a set of elements
that can be mapped to the same architectural cluster due to semantical or criticality affinities. In
the example,

e Scope 1 comprises the Al component together with the Supervision block (taking care of
both generic and ML specific monitoring and diagnostic tasks).

e Scope 2 groups the decision function and safety control, as they share the maximum
criticality level.

e Scope 3 includes L2 and L3 diagnostic and monitoring services. Non-Al function and
Actuators share two independent Scopes 4 and 5, but they can be eventually merged into
a single scope.

By conveniently mapping Scopes to core clusters, it is already possible to limit the interference
each scope may incur on each other, taking advantage of architectural clusterization. Ad hoc
configurations are eventually required to meet performance requirements within the same
cluster. This is generally obtained by finer grain control over execution (processes, scheduling
algorithm, priorities, etc.).

3.2.2 Mapping of software components

Complex Al-based applications typically consist of several software modules that cooperate to
manipulate external inputs and to produce an action. The type of systems targeted in SAFEXPLAIN
are not an exception to that. It is also the case that these systems rely on complex heterogeneous
platforms to provide the necessary computational power to deliver the intended functionalities in
a timely manner. In the presence of multiple and possibly heterogeneous computing elements,
the way each software component is concretely executed on the platform can make the difference
between adequate and poor performance.
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Inthe AGX Orin platform an application can be deployed on three different clusters and, depending
on the specific Al problem at hand, can be assigned to a different accelerator within GPU, PVE,
DLA. Ad hoc deployment schemes may be adopted depending on the number of components,
dependences, as well as performance and segregation requirements.

Mapping and timing interference. We conducted an empirical study to assess how cluster-level
deployment options may impact on execution time, with special focus on exposure to timing
interference. To this extent, we have collected a large set of results executing the same matrix
multiplication function used to assess power mode impact in Section 3.2.1.1, in multicore
scenarios to observe the impact of timing interference. We executed an extensive set of
experiments with different representative benchmarks characterized by a different degree of use
of shared memory resources. In the following we report the results for a representative scenario,
where the matrix multiplication function is executed in parallel multiple instances of a synthetic
benchmark with large amount of L2 misses, but hitting the L3. Since the L3 cache is shared within
the same cluster, the benchmark can be used to explore the impact of cluster sharing.
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Figure 12 - Impact of core mapping in timing interference.

Figure 12 show the impact of the combination of mapping and power models on the execution
time of the matrix multiplication function when run against a variable number of copies of the
synthetic benchmark (generating L2miss/L3hits). The number of explored scenarios changes with
the power model as the latter determines the number of active clusters and cores in the platform.
As expected, when the benchmark is executed in the same cluster, it incurs larger timing
interference due to the contention arising on the L3 cache (including potentially additional
evictions caused by the contenders). In our experiments we focused on the changes affecting the
execution cycles to isolate the impact of interference: results are relative to the execution in
isolation when the matrix multiplication function is executed in core 0.

Under Power model 1 (PMO) only one Cortex A78 core cluster is enabled, which provides a nice
power profile ~15W. In this scenario, contention mainly arises when requests access the cluster
shared L3 cache, as L1 and L2 ones are core-private. We observe the impact of contention within
the same cluster. Contention varies depending on the characteristics of the running applications.
However, we notice how L3 is indeed a source of contention, and the impact is dependent on the
number of contenders sharing the cache (max observed impact at ~16%), following an apparently
linear relation. PM1,2,3 allows for a larger number of deployment scenarios where the system
level decisions on task (node) to core mapping can make the difference in limiting the potential
impact of contention. The amount of interference across PMs changes consistently with the
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number of clusters enabled. In general, under all PMs, it is noted that the impact of contenders
running on other clusters is negligible, which is explained by the characteristics of the task under
analysis (high L3 hit ratio) and by the role of Orin architectural clusterization in supporting naturally
segregation. It is interesting to observe the impact of contention in PM3: despite it shares the same
set of enabled clusters PMO the impact of contention is relatively lower, which seems to be related
to the impact of max frequency on how frequently contending requests actually clash in accessing
the L3. This conclusion is consolidated by the observation that PM2 (which configures middle way
frequency of execution) compared to 2-cluster scenarios in PM1 and PM3 provides middle way

results.

Results obtained with other benchmarks confirmed the trend. In general, the obtained results
support our expectations on the importance of architectural level clusterization in the Orin to
shape and limit the potential amount of timing interference suffered at run time. In turn, this
conclusion motivates the need for an informed approach for fine-grained mapping of software
components to the platform.

Mapping, Safety Patterns, and Middleware. The guiding principles for mapping the software
components on the platform are not limited to interference reduction but also include minimum
performance, predictability, and indirect requirements stemming from (software) architectural
constraints.

In the SAFEXPLAIN approach, the Safety Patterns [2] bring a set of requirements on the set of
mandatory elements to be deployed on the platform (for example to provide Diagnostic and
Monitoring support) and on the interactions among them. These requirements translate into
constraints on the feasible mapping scenarios. Furthermore, the SAFEXPLAIN Middleware [1], by
introducing an additional layer, is also impacting the way software modules are deployed on top
of the platform. Figure 13 shows the multiple layers involved in the mapping of software
components to the execution platform: The Middleware layer, embedding a ROS2 [8] layer, and a
Linux layer.
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Figure 13 - Multilayered mapping from Middleware components to Linux threads.

At the middleware level, the mapping problem reduces to the problem of finding a mapping of
application functionalities onto safety pattern elements and middleware nodes (abstraction and
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extension of ROS2 nodes). As a preliminary step, at application level, software components need
to be framed within the FUSA architecture and specifically on the Safety Pattern that better fits
the role of the ML component in the system and the FUSA implications. As anticipated in Section
3.2.1.2, the mapping is partially determined by the relation between the mandatory building
blocks in the Safety Patterns (e.g., Supervision Function, Decision Function, etc.). The architectural
pattern can be extended/replicated to model larger systems with multiple software components,
still abiding by the implicit and explicit rules dictated by the specific safety pattern. After
middleware mapping is decided, we identify 2 further layers in the mapping problem.

At the ROS2 level, the mapping problem focuses on mapping (middleware) nodes to ROS2 run-
time entities. ROS2 exploits the concept of executors for execution management to identify the
run-time entities that are responsible for executing the callbacks, timers, and servers of a node.
Three types of executors are supported: Multi-Threaded Executor, Single-Threaded, and Static
Single-Threaded. The multi-threaded executor deploys a configurable number of OS threads to
enable parallelism in processing messages and events. The single-threaded executor, instead,
deploys one single thread so that the processing of all messages and events is serialized. The static
single-threaded is a variant used when services and callbacks are fully statically defined.

Executors can be associated to (multiple) callbacks explicitly and, more importantly, can be shared
across nodes. For a fine-grained control of nodes to core mapping it is therefore necessary to
control explicitly the set of executors for each node in a consistent way with cohesive software
functions and intended segregation objectives. In this respect, some blocks are meant to be
deployed in the same core or, at least, same cluster in reason of the cohesive nature of the
provided set of functionalities. This is the case, for example, of the L1IDM and Supervision
components concurring in the Supervisor Block. On the other hand, some other blocks need to be
kept apart due to mixed-criticality concerns or to keep the controller and controlled blocks
sufficiently segregated.

At (Linux) Thread level, executors are associated to one or multiple threads in the OS (in this case
Linux) layer. Ultimately, it is at thread level where mapping and execution order of functions
(through priorities) are determined. It is therefore important that the last layer before the actual
thread execution is configured consistently with the middleware and ROS2 mapping. At this stage,
it is possible to define a precise mapping of executors to threads and a mapping of threads to
specific cores in the platform. The mapping must be consistent with the software architectural
constraints (e.g. need of parallelism in processing messages/events) and the platform
configuration (e.g. power model).

We will discuss, in Section 5.3, how this fine-grained control is instrumental for supporting specific
technology for timing interference control and monitoring.

3.2.3 Timing interference control

Timing interference is a deeply studied problem in embedded critical systems as the incurred
variability makes it more difficult to provide tight and trustworthy bounds on timing requirements
of time-critical applications. As is well known in the state of the art, when it comes to real
platforms, sources of interference cannot be completely removed. First, even if there are
partitioning approaches for hardware shared resources, aggressive segregation might require
renouncing completely to performance. Second, and more importantly, modern platforms lack
support to prevent contention in hardware shared resources, which are growing in number and
complexity in every new platform generation [9].
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With respect to the SAFEXPLAIN setup, at architectural level, multicore timing interference in the
Orin mainly arises from sharing the cache and memory hierarchy and the interconnect. The
architectural clusterization in the platform allows to easily achieve some degree of isolation from
interference already by design through an informed mapping of software elements to clusters and
cores within same clusters. Multicore execution results provided in Section 3.2.2 confirm that,
despite the aggressiveness of the contenders, private per-core L1 and L2 caches and the
clusterization make that the observed impact of interference is not dramatic in the Orin. This is
also the case for compute-intensive applications like those addressed in SAFEXPLAIN characterized
by a high degree of reuse in the data path.
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Figure 14 - Potential sources of timing interference in the Orin.
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In line with the empirical evidence discussed in Section 3.2.2 , the potential timing interference
impact one application can suffer can be heavily reduced by selecting and enforcing an appropriate
mapping of software components and underlying threads to platform islands defined by clusters
and cores. Interference arising on L3 accesses affects only those software components that share
the same cluster. Arguably, a mapping strategy should be collapsing to the same cluster those
applications that are not executed in parallel (e.g. because they are separate steps in a functional
pipeline). Whenever the mapping strategy does not allow to exploit architectural clusterization
then it is possible to resort to other mechanisms to mitigate the impact of interference.

First, at hardware architectural level, hardware and software cache partitioning solutions could be
deployed to ensure each core in the cluster obtains its own share of the shared (L3) cache. As
reported in Table 2, the Orin is meant to support hardware-level partitioning of the L3 cache.
However, the way the cache should be configured is not adequately documented, as often
happens for embedded targets and as it happens for L4 in the Orin. Despite the reverse
engineering efforts, it was not possible to obtain a working configuration. It seems that the
partitioning scheme, while partially effective, will eventually keep some cache ways shared among
cores in the same cluster, thus essentially defeating our purpose (as we are not interested in
average case performance). On the other hand, software-level partitioning would have required
the introduction of an additional complexity layer in the software stack.

The embraced solution has been suggested by most recent works in the state of the art [10] [11]
[12] where approaches are increasingly building on the combination of hardware and software
architectural features with some kind of monitoring or regulation mechanism to keep the residual
interference under control. This is mainly motivated by the necessity to have an agnostic approach
that does not excessively depend on the platform level support and can ensure interference
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mitigation in the realistic scenarios where, despite full segregation mechanism exist, performance
cannot be renounced.
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Figure 15 - High-level view of interference control scheme.

Several interference control schemes have been proposed [10], [13], [14]. The main concept they
embrace is that interference can be monitored at run-time by tracking the activity on the shared
hardware resources (source of interference) so that, when generated interference exceeds a
predefined threshold, some applications are prevented from accessing the source of interference.
Figure 15 illustrates how a generic interference control mechanism can affect the execution of the
application on Core 1: the blue segment corresponding to the unrestricted execution and the green
one showing how the exceedance of the threshold caused Core 1 to pause its execution until Core
0 is done and Core 1 execution can be resumed. These mechanisms typically build on two main
aspects: monitoring and control/mitigation policy. The latter can vary depending on the scope and
timing requirements.

In SAFEXPLAIN we build on a holistic approach for interference control where we combine:

(i) architectural level segregation offered by the Orin architecture, with (ii) an interference-
aware software-level mapping strategy, and

(ii) a run-time interference monitoring and control mechanism (CGuard tool, described in
Section 5.3).

All the above aspects depend on the specific application requirements.

At L4 level, the sharing involves all the CPU clusters and the GPU. Again, in the Orin no explicit
support for partitioning the cache is documented [1]. Other larger and more powerful models of
the same manufacturer are indeed providing better support for partitioning which hints at the
possibility of having similar support in the target type of platform.

Regarding interference arising on the GPU side, when multiple software components are exploiting
the GPU, the Orin is not supporting GPU time sharing scheme, which is instead supported in other
platforms from NVIDIA. We do not consider this to be a huge issue in the operational scenarios we
foresee for the type of applications we are considering in SAFEXPLAIN where some degree of
serialization in the GPU is not detrimental to the overall performance. When the application can
benefit from a high degree of parallelism in accelerators, it is possible to resort to specialized
accelerators in the Orin (PVA, DLA) that are designed for specific problems and need porting to
specialized API.
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4 Observability Channels (T4.2)

In the third phase of the project, the main goal of this task consisted in the refinement of the
bespoke observability library, PMULib, and its tailoring and integration with the project
technologies. In particular, we focused on (i) refining the observability scope, to support different
use cases for the library, and (ii) finalizing the integration of the library with the middleware
framework and technologies.

In this section, we cover the design and validation of PMULib extended scope and discuss the main
directions followed for the integration of PMULib within the SAFEXPLAIN middleware to support
the analysis and run-time monitoring objectives.

4.1 Multiple instantiation support

A first important modification on the observability support has been focusing on relaxing some
constraints on the use of PMULIb in terms of the number of supported instances at the same time.
PMULib has been improved to allow multiple instances of it being in use simultaneously. This
allows different processes to configure and collect data for different events and scopes. To this
end, the library keeps track internally of the current processes using it and maps each one to their
own subset of data, keeping track of the file descriptors used to access the perf subsystem. To that
end and to keep critical sections thread-safe the library protects system calls with
pthread_mutex_lock. Thisis done internally and transparently for the user.

4.2 Specialization of PMULib scope

In the course of the project, it became evident that there were different use case scenarios for
PMULib. These scenarios differentiate on the observability scope of interest: in some cases, we
can be exclusively interested in collecting hardware events for a given process or thread, while, in
some other cases, we can be more interested in all events happening on a given core. The way
those scenarios map to SAFEXPLAIN technologies will be discussed in Section 4.3.

We extended PMULib functionalities to support multiple observability scopes by exposing to the
user a means for selecting a specific PMULib mode. The PMULib provides some parameters that
enable the configuration of different features in the library, allowing the user to fine-tune event
collection to their needs. There are three dimensions that can be configured:

e Collect counters Per Process/Per thread
e Collect Own counters/System wide events
e Collect events occurring in Any cores/Individual core

Process|ID ProcessAll

- -
ThreadID @ Thread All
-
Core ID Core All

Figure 16 - PMULib configurable scopes.

26




D 4.2 Platform Technologies Report SAF: ‘

Version 1.0

Figure 16 illustrates the configurable operational scopes for the PMULib. Blue paths are
representing feasible options for tracking process/thread level events, whereas red paths are
relative to global events triggered by any process, which cannot be collected system wide but only
for a specific core.

The configuration parameters are configured in groups of three:

/* Defines in a78ae-pmu.h */

#define PMU MODE PER THREAD 0
#define PMU_MODE_PER_PROCESS (1<<8)
#define PMU MODE_SCOPE_OWN_COUNT 0

#define PMU MODE SCOPE_ALL PROCESSES (1<<9)
#define PMU MODE_CORE_ANY 0

#define PMU MODE CORE_FIXED (1<<10)

/* example configuration */

a78ae pmu configure (mask, events, PMU MODE PER THREAD | PMU MODE SCOPE OWN_ COUNT |
PMU_MODE_CORE_ANY)

Some combinations are not supported, such as collecting system wide events occurring in any core,
but most of them are. In this section we focus on the most useful configurations:

PMU MODE PER THREAD, PMU MODE SCOPE OWN COUNT, PMU MODE CORE ANY
PMU_MODE PER PROCESS, PMU MODE SCOPE_OWN_COUNT, PMU MODE CORE_ANY
PMU MODE PER PROCESS, PMU MODE SCOPE OWN COUNT, PMU MODE CORE FIXED, cpuid=X

PMU MODE PER PROCESS, PMU MODE SCOPE ALL PROCESSES, PMU MODE CORE FIXED, cpuid=X

In addition to the formal correctness validation of the PMULib carried out in the previous
subsection, we also have conducted additional tests to verify that the configurable parameters
behave as expected. This validation sits on the already validated PMULib, i.e. we assume in this
section that we can trust the PMULib results and then go on to test the different configurations.

4.2.1 Experimental setup and validation

The experimental setup is comprised of a process that sets up the PMULib, each test with different
configuration options, and then spawns two threads, waits for them to finish, and collects the
PMULIb results. The threads are the same for every test, although they are mapped to different
cores depending on the test. Each thread executes a loop performing some memory operations as
shown in the Figure 17 below:

void* threadFunction (void* arg) {
const int SIZE = 1024*1024;
unsigned char array[SIZE];
int threadId = *(int*)arg;
for(int i=1; i<SIZE; 1i++) {
array[i] = array[i-1]1+1i*3;
}

return NULL;

Figure 17 - PMULib feature validation thread code snippet.

We spawn the threads using the pthreads library. We iterate 1000 times for each test and collect
each iteration as a datapoint for the evaluation.
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4.2.1.1 Test 1: PMU_MODE_PER_THREAD, PMU_MODE_SCOPE_OWN_COUNT,
PMU_MODE_CORE_ANY

The main process spawns two threads but the PMULIb is configured to read counter per thread.
This means that the main process does not collect any events generated by the spawned threads.
The outcome matches the expected result, where we see less than 3000 instructions retired
(compared to the 25M executed by each thread).

Testl counters, 1000 runs

25000
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15000
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e [NST_RETIRED s CPU_CYCLES == L2D_CACHE L2D_CACHE REFILL emmm=]3 CACHE_RD =====13D_CACHE LMISS RD
Figure 18 - Events collected with per-thread scope, own count, and any core.

The events observed, as reported in Figure 18, are very low and are related to the few instructions

run by the main process to control the experiment and use the PMULib.

4.2.1.2 Test 2: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT,
PMU_MODE_CORE_ANY

In this test the main process spawns the threads after configuring PMU_MODE_PER_PROCESS, which
causes the PMULib to also capture the events generated by the threads.

Test2 counters, 1000 runs
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Figure 19 - Events collected with per-process scope, own count, and any core.
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In Figure 19, we observe 50M instructions retired, which match the 25M per thread that we
expected.

4.2.1.3 Test 3: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT,
PMU_MODE_CORE_FIXED, cpuid=4

We repeat the same experiment with a subtle change: in this test we force the mapping of the
threads to cores 4 and 5 using the pthread_setaffinity np() function. Then, we configure the
PMULIb to, instead of collecting all counts regardless of the core, collect only the results generated
in core 4.

Test3 counters, 1000 runs
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Figure 20 - Events collected with per-process scope, own count, and fixed core.

Once again, the results reported in Figure 20 match our expectations, as the number of instructions
retired went down to 25M, the amount executed by a single thread.

4.2.1.4 Test 4: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_ALL_PROCESSES,
PMU_MODE_CORE_FIXED, cpuid=4

Test 4 is very similar to Test 3, but we collect the results for any process running on core 4, not just
the one configuring the library. This is a subtle difference with respect to Test 3, as we are mapping
each thread in that core, but the objective of this test is to ensure that we can configure
PMU_MODE_SCOPE_ALL_PROCESSES and collect the results we expect. Note that this test requires
root privileges, as it is reading other process data.
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Test4 counters, 1000 runs
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Figure 21 - Events collected with per-process scope, all processes, and fixed core.

As expected, Figure 21 reports the same results as in Test 3.

4.2.1.5 Test 5: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_ALL_PROCESSES,
PMU_MODE_CORE._FIXED, cpuid=11

This test complements Test 4, and its objective is to check if the PMULib reads low values when a
core which is not running any thread is configured. We have set the same flags, so we are collecting
system wide events (count for any process), and we require root access. We map our threads as
in the rest of the tests to cores 4 and 5, and we collect PMULib results for core 11.

Test5 counters, 1000 runs
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Figure 22 - Events collected with per-process scope, all processes, and fixed core (unused core).

In Figure 22, we can see that most of the time core 11 is idle, sometimes a sporadic task seems to
be mapped there (likely an OS thread), but the values are extremely low (always less than 500
instructions retired).
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4.2.2 Conclusion

We have tested the most useful PMULib configuration parameter combinations and we have
proven that the outcome matches the expectations. In the figure below we see a summary of all
tests, showing the CPU_CYCLES accounted in each of them. We see tests 1 and 5 counting very
close to zero, as they are not counting any thread activity; we see test 2 counting activity for both
threads; and we can see tests 3 and 4 counting the same activity, for a single thread.

CPU_CYCLES , 1000 runs per Test
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Figure 23 - Recap and overview of test results.

4.3 PMULIb Integration

Additionally, in this phase of the project, we have focused on achieving the necessary degree of
integration to support the case studies and to support the deployment of other technological
elements in the SAFEXPLAIN ecosystem. First of all, the PMU Library has been closely integrated
with the Middleware and in particular with the BaseApplication class (representing the baseline
middleware component) to enable automatic monitoring of the component functionality. This
integration has been designed to make the instrumentation transparent to the application
designer and simply configurable (enabled/disabled) at deployment time. Furthermore, the
integration also allows the user to explicitly and manually select which part of the application must
be monitored and what hardware events are deemed relevant.

4.3.1 PMULIib configuration for use in the middleware

Before using the library in the SAFEXPLAIN middleware, the user has to configure it in the machine
that will run the application. The PMULib can be deployed as a shared library (*.so file), or using
the source files directly. While implemented in C, the library also supports Python implementation
of the middleware itself and applications. In this case, the user must set an environment variable
(as exemplified below) so the library’s Python wrapper will be able to use the PMULib.

export A78AE_PMU_LIBRARY=/path/to/the/lib.so
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The monitoring library sends the values collected from the PMCs to a specific Middleware topic
a la ROS2 (that the user can configure). The collected values can be read/accessed by the user
using the PMULogger, a ROS2 compatible Middleware node, that receives the messages from the
monitoring library, shows them in the console and stores them in a memory location. To set up

the file’s location, the user should modify the following environment variable:

export A78AE_PMU_OUTPUT=/path/to/the/output.txt

4.3.2 Enabling node-level monitoring

The Middleware-level integration provides the capability to monitor one node without setting
additional code or pragmas but just by setting a configuration value. The library is included in all
instances of the BaseApplication class (i.e. all nodes in the Middleware and Application), but the
monitoring is disabled by default. To enable it, the user needs to create or modify the existing
node’s configuration file to set the following parameters:

e enable_performance_monitoring: enables or disables the node’s monitoring.
e performance_monitoring_mode: selects which monitoring mode to use. We currently
support three modes:
0. Timing: collects basic timing metrics (CPU cycles).
1. Contention: collects contention metrics
2. Manual: collects custom set of metrics.

Mode 0: is the default mode, collecting instructions executed and cycle counts, which are the
baseline for measurement-base timing analysis (See Section 5).

Mode 1: is the specific mode used to intercept and model contention impact. The tracked events
are those hardware events with high correlation with interference. See Section 5.3 for the
definition of the concept of hardware event correlation and how this is exploited for contention
modelling and prediction.

Mode 2: is the custom model, fully configurable by the user. The specific set of tracked hardware
events can be modified to allow the collection of all supported events in the PMULib. The user is
responsible for selecting which area of the code wants to monitor using the libraries directives,
already explained in [1].

Below we report an illustrative example of PMULib configuration for enabling the monitoring of a
middleware node. The example shows how the d/_02 model node from the smw_ml constituent
is configured to enable the timing monitoring. The file providing the configuration is a simple yaml
file.
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/**'.
dl_02:

ros__parameters:
reference_cycle_ms: 1000
enable_alive_monitoring: true
enable_health_monitoring: true
enable_performance_monitoring: true
performance_monitoring_mode: 0
model_file: "path/to/the/model "

The most relevant entries in the configuration snippet are those setting the PMULib mode to 0 and
setting to true the monitoring flag. Other entries in the configuration, which will be exhaustively
covered in the middleware user manual, are instead related to configure basic execution features
(i.e. execution frequency), platform level features (i.e. health and alive monitoring), or parametric
component (i.e. ML models path).

4.3.3 Manual monitoring

The manual monitoring allows the user to monitor a particular piece of code of the application and
not the full functionality provided by the node (as in the node-level monitoring). This mode is
normally paired with PMULib mode 2. To enable this PMULib usage scenario, the user has to
enable performance monitoring and set the mode to 2 (manual). Then, in the code, the user has
to set which parts of the code to monitor. Next, there is an example of how to use the library to
set the starting and end points of the monitoring:

def run(self) -> bool:
#...
if self.pomu:
self.omu.reset_and_start()
#...

if self.pomu:
read = self.pmu.stop_and_read()
self.omuPublish(read)

The self.pmuPublish(read) directive is used to feed the PMU Logger (see below), but it is not
mandatory if the user does not plan to use it as the output can be processed similarly to any ROS2
topic.

4.3.4 PMU Logger

The PMU Logger is the node that receives the messages from the PMU library with the values
collected for the tracked events. Its main functionality is to print the collected values to the
terminal (e.g., the number of cycles each run() instance takes from start to end), and, by default,
stores the values in the file located in $A78AE_PMU_OUTPUT. There is a PMULogger prototype
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already configured for the smw_ml_constituent. The user can execute it by launching it as a ROS2
node, running the following command:

ros2 launch smw_util pmu_logger.launch.py

The topic to which the logger is subscribed and the logger’s output path can be changed through
parameters (pmu_topic and output_path, respectively) within the launch. The monitoring of
multiple applications simultaneously is also supported, so multiple loggers reading and writing
from and to different sources can be deployed.

4.3.5 PMULib and CGuard for contention control

PMULIb is also at the art of CGuard, the contention monitoring and control solutions designed and
deployed in SAFEXPLAIN. While the mechanism design and principles are discussed in Section 5.3,
in the following we discuss the requirements imposed on PMULib and how the PMULib integration
meets them.

As discussed in Section 5.3, CGuard mechanism builds on monitoring a certain set of hardware
events that are strongly correlated to multicore timing interference and use these events to model
the impact of non-critical functions on the timing behavior of critical ones. The modelling is
exploiting the correlation between events and the potential delay suffered by the critical task. A
linear formula for modelling such impact can be derived from empirical observations and applying
the methodology described in Section 5.2.

In this context PMULib is used both at analysis time and run-time. At analysis time, PMULIib is used
to collect a wide set of events on specific multicore execution scenarios where the critical task is
executed in parallel with a set of contenders to assess its sensitivity to contention and to derive
the linear contention formula by exploiting the observed correlation between events and
contention impact. The target operational scenario for PMULib in this case is thread level and does
not require tailoring PMULib integration as it is easily achieved by configuring the PMULib
accordingly (we can assume thread level events as we are controlling the mapping of threads to
core in the middleware configuration).

Configure

Reset

Start monitoringwindow

o)™

Figure 24 - PMULib state transitions in CGuard.

End monitoring
window

At run-time, PMULib is used to monitor the non-critical tasks by collecting the selection of
hardware events (correlated to contention impact) and sending them to the CGuard module,
which is responsible for processing the information and reacting in case the predefined threshold
for the predicted contention is exceeded (see Section 5.3). In this case, the PMULib is pre-
configured within the non-critical application class in the middleware, extending the base
application class with specific functionalities to support the CGuard logic. The PMULib is involved
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in the gathering and sharing of the set of events happening on the middleware node executing the
non-critical task. In this case, the selected scope is the Core-level one as we enforce by construction
that if one core is executing a non-critical node then it can only be executing non-critical nodes.
This is justified by mixed-criticality considerations and to guarantee minimal separation between
critical and non-critical functionalities. In this case, we are therefore interested in capturing all the
impact coming from the core executing non-critical nodes in the contention monitoring interval.
The PMULIb is pre-configured accordingly, taking care of the set of events that need to be tracked
and supporting CGuard logic on when to enable, disable and reset hardware event counters. The
PMULIib state transitions within the scope of CGuard is provided in Figure 24.
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5 Timing Prediction Methods and Tools (T4.3)

The overall approach for timing validation was identified in the previous phase of the project and
consisted in the deployment of a probabilistic timing analysis based on Markov’s inequalities that
resulted to be well equipped to deal with the complexity of the heterogenous MPSoC target and
the type of execution time distribution exhibited by Al-based complex functionalities. We also
identified the need for run-time monitoring of some non-functional aspects, with particular
interest in the impact of multicore timing interference.

During the third phase of the project, this task has mostly focused on the integration of the timing
analysis solutions and on supporting the deployment of a comprehensive, consistent strategy for
timing verification and validation. In particular, the efforts have been devoted to three main
objectives:

1. tailoring of the timing analysis approach to better capture the inherent traits of the type of
systems we are addressing in SAFEXPLAIN;

2. complementing the timing verification strategy with implementation and integration of
CGuard, a contention monitoring and control mechanism; and

3. improving on the automation of the timing characterization approach with the middleware
environment, to allow a streamlined application of the RestK [1] timing analysis tool.

5.1 Detecting Low-Density Mixture Component Distributions in
High-Quantile Tail

The execution of complex Al-based functionalities on top of cutting-edge heterogeneous MPSoC
devices leads to highly variable execution times which are complex to analyse and to exploit for
resource allocation and optimization. Those highly variable execution times are challenging the
application of consolidated timing analysis approaches [15] and have justified an increased interest
in probabilistic timing analysis approaches. Within the spectrum of probabilistic timing analysis
approaches, the complexity of the analysed distribution may affect and impair the obtained
results.

One challenge we addressed in this task is the presence of low-density mixtures in the tail of the
execution time samples and their potential impact on probabilistic WCET (Worst-Case Execution
Time) estimation. These mixtures arise from intricate interactions between cutting-edge hardware
and software, leading to complex execution time distributions. Hardware-related variability
patterns (due to uncountable stateful resources like multi-level caches, interconnects, on-core
resources, ...) and coexistence of multiple operational scenarios contribute to this variability.

To conduct a detailed analysis of this problem, we studied several parametric mixture models,
proving that WCET estimation can be misleading if the mixtures are not properly detected,
exemplified by a Gaussian mixture with one component having w; = 0.99 of the weight with
mean w; = 10 and standard deviation g; = 1 and the second component having weight w, =
0.01, mean u, = 20 and standard deviation o, = 3.
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Figure 25 - Example mixture distribution and EXP, GPD results.

As exemplified in Figure 25, in the case of the GPD (General Pareto Distribution), it produces heavy
tails, as the threshold selection detects that the tail begins before the second component of the
mixture, which produces a heavy tail because the rest of the extreme points are further apart,
leading to pessimistic upper-bounds. In the case of the EXP, the threshold has been selected before
the second component, so the pWCET (probabilistic Worst-Case Execution Time) estimate is
optimistic.

As addressing the presence of mixture distributions in high-quantiles does not fall within the
specific scope of any existing IID (Independence and Identical Distribution) test in the state of the
art, we developed an automatic algorithm for testing ID (Identical Distribution) on the tail.

This algorithm, named TaillD, is based on the confidence interval (Cl) computation for the EVT
(Extreme Value Theory) EVI (Extreme Value Index) parameter ¢ . Assuming that the excesses of
the execution time observations for a given threshold follow a GPD, the Maximum Likelihood
method can be conducted to find an estimator for the parameter £ . To assess the uncertainty
around this estimation, the Central Limit Theorem shows that the difference between the true
value & and the parameter’s estimator & converges in distribution to a Gaussian, this is
Vn(é — &) - N(0,£2). The Cl can be derived from this result.

TaillD algorithm analyses iteratively the extreme values that may be triggering a change in the EVI,
called candidate points. To achieve this, the algorithm first computes the Cl for the EVI parameter
without any candidate points, then reintroduces the first candidate and recalculates. If the
recomputed EVI falls outside the Cl, the candidate point (along with all more extreme candidates)
is flagged as an inconsistent point, violating the ID assumption. If the recomputed EVI remains
within the Cl, the process continues with the next candidate until all candidates are examined or
one is detected as inconsistent.

Given the number of Inconsistent Points Detected (IPD) we defined 3 scenarios depending on IPD's
relation to the minimum number of samples (MoS) required for a proper EVI estimation.

1. Scenariol.IPD = 0 TaillD outcome provides more evidence on the robustness of the tail
estimations given the stability of the tail.

2. Scenario 2. IPD > MoS We are in the presence of multiple tail behaviours, then for
performing pWCET estimations we consider the threshold of the tail at the first inconsistent
value found with TaillD, which would be on the last mixture component.

3. Scenario 3. IPD < MoS More samples are needed to make a better estimation. If after
performing more runs IPD > MoS we are in Scenario 2, while if one reaches the
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maximum number of runs that can be performed and still IPD < MoS, tail prediction
should not be done, otherwise the uncertainty in the estimation can be high.

TaillD has been evaluated not only on synthetic mixtures but also on real data collected from an
Al-based application running on an NVIDIA AGX Orin, a reference embedded heterogeneous
platform for Al applications in the automotive domain. Figure 26 below illustrates an example of
TaillD’s performance on a specific workload.
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Figure 26 - TaillD improvement over EXP and GPD.

The leftmost diagram shows the sample where points targeted as candidates by the algorithm are
marked with distinct shapes and colours and the red-shaded area highlights the points ultimately
detected as inconsistent. As many inconsistent points are detected, we fit Scenario 2.

In the plot in the middle of Figure 26, the horizontal grey line represents the GPD EVI of the
sample's extreme set without including the candidate points, while the dashed line indicates the
upper bound of its Cl. Each point corresponds to the GPD EVI when the candidate point
(represented with the same colour in the first figure) is added to the extreme set, with each dashed
line representing the upper bound of the CI. TaillD iterates this process until a candidate point is
found to be above the Cl, which will be used as the new threshold from where to estimate the
pWCET.

Finally, the pWCET estimates are shown in the rightmost plot, confirming that detecting a low-
density mixture in the tail and, hence, choosing the appropriate threshold, produces a tighter
upper-bound with the GPD and EXP models.

5.2 Contention Modelling with Linear Regression

During this project we have gathered enough evidence of the correlation between HEMs and the
Execution Time of an Analysis Task under contention, as seen in the Table 3. With that information
we can construct a linear regression to model the contention as a function of the HEMs. Said
models can incorporate more than one HEM if needed to decrease modelling error. However, the
evidence points towards heterogeneous relationships between HEMs and ET depending on the
AT, i.e. a fixed HEM can have a different correlation with the ET depending on the AT. Therefore,
a single general linear regression cannot cover satisfactorily the modelling of contention for any
AT. This creates the necessity of building a linear regression model for each AT. Our experimental
setting is a set of AT kernels and a set of contending benchmarks. An experiment consists of the
tuple (AT, CT, CTn, CPUMap), where AT is the task under analysis, the CT is the contender, the CTn
is the number of contenders (all of which are copies of CT), and CPUMap indicates in which core
these contenders are located. To construct a model for each AT, we gather all possible
combinations of CT and CTn, with the CPUMap indicating that all contenders are within the same
cluster.
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Table 3 - Correlation, Magnitude and Variability of selected HEMs.

L2w ADJ_VAR  MAG COR
0x17 244% -2.22 0.74
0x18 373% -2.26 0.93
0x19 372% -1.29 0.93
0x23 687% -3.04 0.28
0x26 423% -3.1 0.14
0x29 382% -2.26 0.92
0x2b 384% -1.89 0.92
0x36 314% -2.15 0.91
0x52 240% -2.22 0.67
0x56 371% -2.27 0.92
0x60 375% -1.54 0.91
0x61 375% -1.67 0.91
0xa0 320% -2.14 0.91
0x4005 211% -1.2 0.86
0x4009 240% -2.22 0.68

5.2.1 Modelling Approach

In our experiments we read 119 HEMs including the Execution Time. For a fixed AT, we can reduce
the number of variables by filtering through low correlation HEMs with the Execution Time.
Example classification of HEMs wrt correlation is reported in Table 3 where we summarize
Correlation, Variability, and Magnitude for the L2 Write benchmark. Even after the filtering, we
still need to find out which combination of HEMs produces the best contention model with the
linear regression. In order to exhaustively find the best model, we perform the next two steps.

1. LASSO: standing for Least Absolute Shrinkage and Selection Operator, LASSO is a
variable selection algorithm suited for linear regression models. LASSO is a more
sophisticated approach than simply filtering through correlation, LASSO forces the
sum of the coefficients in a linear model to be less than a fixed value, therefore, in
an effort to construct the best model, only the most important variables will have a
coefficient different than 0.

2. Best Subset Selection: once the most important HEMs are selected, we still need to
find out which combination of HEMs produces the best model. In order to ensure
finding the best one, the Best Subset Selection algorithms iterates through all
possible combinations of HEMs, starting from a one HEM model, up to p HEMs,
outputing for each case the best model, that is the one with highest R*2, the
coefficient of determintation, which indicates the variability explained by the
model. In our experiments, setting the maximum amount of HEMs in a model to p
=5is enough to produce satisfactory models.

5.2.2 Data Gathering

HEM data readings are limited to the number of available PMC in the platform. In the Orin, we are
limited to 6 HEM readings at once, although we are able to read both the HEMs of the AT and the
contenders. The contender HEMs are aggregated upon reading, thus only one aggregated count
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per HEM is used on the models. It is crucial to remember that two groups of HEMs read in two
different runs cannot be compared, due to different execution conditions. Therefore, constructing
linear regressions with the Best Subset Selection algorithm requires all HEMs to be read with every
other HEM in order to input them to the algorithm. This is too time consuming, therefore a more
sophisticated approach is used in this project. We resort to using HRM [16] (Hardware Reading
and Merging) which merges different HEM readings using an anchor HEM as reference. In this case,
because we want to maintain the relationship between ET and the rest of the HEMs, we use ET as
an anchor. The output of HEM is a dataset where for each execution time value, we have the
corresponding values of HEMs as if they had been read together by using order statistics.

5.2.3 Results

Let us show a snippet of the results we generated on the Orin. In Figure 27 below we show an
example of the best model found by the algorithm for the AT matmulbasic_mem. In this case, the
Best Subset Selection algorithm found that 3 HEMs were enough to model the contention, with an
R? = 0.976. In the picture we can observe the actual formula of the linear model, with the
regression coefficients for each HEM.
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Figure 27 - Example correlation model for mamulbasic_mem benchmark.
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In the Table 4 below, we observe the resulting performance of the models for each AT with the
R?. Note that the majority of the models have good performance, with 43% of the models having

an R? > 0.9.

Table 4 - Correlation model performance expressed as R*2.

Kernel

im2col_L2
im2col_I3
im2col_l4
im2col_mem
matmulbasic_l2
matmulbasic_l3
matmulbasic_l4
matmulbasic_mem
matmultiled_l2

R"2

0.874
0.848
0.552
0.69

0.737
0.901
0.975
0.976
0.122

Kernel

matmulttransp_l4
matmulttransp_mem
quicksort_l2
quicksort_l3
quicksort_l4
quicksort_mem
relu_l2

relu_L3

relu_l4

RA2

0.664
0.634
0.4
0.893
0.924
0.94
0.783
0.939
0.955
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matmultiled_L3 0.789 relu_mem 0.95

matmultiled_l4 0.859 vector_dotprod_L2 0.644
matmultiled_mem 0.962 vector_dotprod_L3 0.923
matmulttransp_L2 0.733 vector_dotprod_l4 0.924
matmulttransp_L3 0.689 vector_dotprod_mem 0.966

5.3 Timing interference control with CGuard

Multicore timing interference identifies the timing penalty or impact from contending requests on
the same hardware component, arising on multicore execution platforms with an increasing
number of shared resources. Timing interference is a well-known concern for timing analysability
and predictability. As such, it has been explicitly addressed in domain specific standards and
regulations [17] [18].

As timing interference is stemming from specific shared hardware components, the so-called
interference channels, it can be in principle avoided or at least mitigated by controlling the way
resources are shared across applications. The main sources of interference in the AGX Orin
platform have been identified and explained in [1]. Available mechanisms and configurations that
can be exploited to limit the amount of interference in the system have been discussed in
Section 3.2.

However, it is important to observe that it is practically impossible to remove all sources of
interference altogether unless we opt for a fully segregated setup, with evident drawbacks on
performance. More pragmatic approaches resort to a more holistic approach where the potential
amount of interference is minimized by resorting to the available support at platform and system
software level, and the residual potential interference is eventually captured at operation by
deploying a contention regulation mechanism [10] [13] [14]. The problem of guaranteeing freedom
form interference therefore is divided into two steps: minimization by design, and protection at
run-time.

In SAFEXPLAIN we embraced the same philosophy, and complemented the platform level
solutions, at design and configuration time, with a highly modular and portable on-line monitoring
mechanism for contention control. The tool we designed and developed in SAFEXPLAIN is called
CGuard, which stands for contention guard.

5.3.1 CGuard design

The CGuard mechanism is inspired by existing bandwidth regulation approaches [10] [13] [14] to
monitor and control the activity of non-critical tasks, which do not require protection from timing
interference, and prevent them from exceeding predefined utilization thresholds for shared
hardware resources (the source of timing interference). CGuard is used to temporarily pause the
execution of non-critical tasks when they generate more interference than allowed, hence
protecting the critical tasks to terminate its execution within the allocated timing budget.

CGuard differentiates from existing approaches in the fact that it does not rely on specific
hardware or system software support (with enhanced portability and modularity) while still
providing comparable performance. Further, the CGuard can deploy different contention
modeling approaches, including the one based on linear regression (see Section 5.2).
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Below we describe the process and mechanism we have defined to control the contention critical
tasks (CT) may suffer from non-critical tasks (NCTs). The process is partially automated, and it
encompasses a pre-operation phase and an operation phase. Each phase carries several steps.

In the pre-operational phase, the contention thresholds must be identified for each CT. Such
thresholds can be derived based on the quasi-final deployment scenarios or, alternatively, with
augmented scenarios, relying on synthetic benchmarks [19] to generate a configurable amount of
contention. The pre-operational phase may also include the test batches required for the
derivation of the linear contention formula (see Section 5.2).

In the operational phase, instead, the mechanism is instantiated by a set of specialized entities (or
components) that are deployed at the same time on the execution platform.

The CGuard mechanism builds on ROS2 support for ROS2 node or SE Middleware
callback_groups and executors, available starting from ROS2 romion /"
Humble version. These features allow two (or more) executors
with different priorities to be mapped to the same core. In o
practice, we can define a high-priority thread that can always pre- T p"°"wThread
empt the standard (low-priority) thread responsible for the node Oi—
nominal behavior of an NCT. The high-priority thread is associated =~ ™Y \
to a callback that can be programmed to perform critical and |
urgent actions such as sharing the core hardware event monitors 5é2§fu§2:e:§id “ o
(HEM) values read via Performance Monitoring Counters (PMCs)
collected through PMULib or preempt the low-priority thread,

obtaining the same effect as forcing the component into é::;r:;r.I
throttling. The latter state corresponds to pausing the NCT for the
necessary time to terminate the execution of the CT, or at least till
the next monitoring window in case the configuration allows.

Low- pruontyThread -

L

Figure 28 - Basic building block.

ROS2 concepts for multiple executors with different priorities on the same node are summarized
in Figure 28, relative to an NCT. As shown in the figure, we can define multiple executors and
associate them to different threads that, in turn, are associated to specialized callbacks in the NCT
ROS2 node. This allows the NCT to perform three main functions: (i) its nominal behavior, (ii)
sending the PMC data to the contention control module, and (iii) entering into a paused/throttling
mode.

The contention control mechanism is implemented by a dedicated node on a dedicated core. The
CGuard control node is responsible for:

- Collecting the NCTs PMCs in a centralized place

- Applying the formula or model to detect threshold exceedance
- React consequently by triggering the throttle state

- Re-enable the NCT nominal behavior when needed

We detail below the main functionalities required from the different entities in the CGuard
mechanism.

Enabling monitoring and control

The control is always on for NCTs but the controller needs to be enabled (by the CT upon each
activation) by publishing a special value to a dedicated topic (on/off on control node). Once
enabled, the controller can enable and disable the monitoring by publishing a special message to
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a critical topic for NCTs, associated to a high-priority callback executor in charge of setting the
status variable to ON. One topic can be used for all NCTs monitored by the CGuard module.

HEMs collection

When monitoring is enabled, each NCT provides values of relevant HEMs periodically by publishing
them to a topic to which the controller node is subscribed. NCTs periodic callback for PMCs is not
enabled if the monitoring is disabled. When enabled, the PMCs for each NCTs are reset or taken
as a reference for the next PMC read.

Contention model

When enabled, the controller applies the contention model (e.g. the linear formula defined
according to Section 5.2) to detect threshold exceedance periodically or after he receives all
updates from all NCTs (this is modelled with critical and non-critical topics or periodic activation
of the controller node). Updates will provide cumulative values for each HEM or the values for the
last monitoring period only. This is a design decision and can be configured.

Reaction

If the formula threshold is met, the controller publishes a special message to a critical topic on
NCTs. The topic is different from the one for enabling/disabling monitoring. One topic can be used
for all NCTs. The callback associated to this topic has high priority in the node and implements an
endless empty loop polling for the status variable to THR. The local variable is reset to OFF by
another high-priority callback, triggered by the controller node when the CT is done so that the
throttling task terminates and even the NCT resumes its nominal execution.

c —L Nominal behavior \
Update PMC [Prio:2] [

—. )—— Switch

. ) Throttle [Prio:1]
Throttle \‘\

Figure 29 - CGuard mechanism overview.

Configuration parameters

The CGuard mechanism offers several configuration parameters that have direct impact on the
effectiveness and overhead of the mechanism. The main parameters comprise the PMC callback
frequency (impacting the granularity at which the monitoring is enforced) and the monitoring
window (setting a trade-off between protection of the CT and progresses on the NCT).

5.3.2 CGuard integration

The CGuard mechanism has been prototyped in a clean ROS2 environment and later ported and
integrated in the SAFEXPLAIN middleware, for easy integration in the use cases.
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The integration of CGuard has been implemented by extending the BaseApplication class in the
middleware to provide the necessary control in terms of thread mapping to callbacks and their
priority of execution. The BaseApplication is extended to obtain specialized middleware nodes
for:

- the ContentionGuard class, responsible for the implementation of the monitoring and
control logic, including the contention modelling. The CGuard node keeps the
functionalities of a BaseApplication with respect to system-level Diagnostic and
Monitoring functionalities, including Alive monitoring, Health manager and Status
manager.

- the CriticalApplication class, which extends the standard middleware node with
specific support to set and reset the monitoring window and trigger the contention guard
mechanism. It also keeps the functionalities of a BaseApplication, such as Alive
monitoring, Health manager and Status manager.

- the NonCriticalApplication class, which models the NCT task by definingthe set of
callbacks to support the CGuard implementation, using PMULib to read PMCs and share
them with the ContentionGuard node. As for the other specialized node, the diagnostic
and monitoring features are still supported. A slight modification has been applied to make
sure that the Alive monitoring is not triggered when the NCT enters in throttling mode.

Figure 30 below provides a schematic view of the main integration concepts for an NCT node,
which is the most complex specialization node due to the additional number of callbacks and
associated threads.

Middleware

nodes N, / O~

e L pdate HEMs

Throttle

Coren

Figure 30 - CGuard integration with Middleware.

5.3.3 CGuard validation

We have performed an initial validation of the CGuard mechanism to assess its effectiveness and
accuracy in capturing the timing interference. To this extent we focused on high contention
scenarios as they represent the most critical operational conditions for the CGuard. In the scope
of the SAFEXPLAIN setup, we must consider that CGuard will be deployed in a controlled
contention scenario, thanks to the hardware and system software configuration. In that case,
CGuard will be instrumental to capture residual interference that may happen at operation and
that exceeds the interference thresholds considered acceptable at analysis time.

Experiments have been performed to assess CGuard overhead, effectiveness in protecting the CT,
and impact (slowdown) incurred on the NCT. As CT we used the same matrix multiplication
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function used to assess the impact of platform configuration in Section 3.2.1. As NCT, instead, we
used an aggressive benchmark [20] trying to saturate the memory bandwidth, resulting in a more
challenging scenario for CGuard.

PMC callback overhead

We measured the overhead of the PMC callback. We measured the cost of executing the PMC
callback on the NCT under different PMC callback frequencies. While we do not expect this to
largely affect the execution, we wanted to rule out hidden dependencies. Results, reported in
Table 5, show the PMC callback is incurring a negligible overhead, averaging 16 micro-seconds.

Table 5 - PMC callback overhead.

PMC Callback [us] 200 us 500 us 1000 us Overall
average 14.02 17.47 18.42 16.64
median 14 17 18 14
min 5 5 8 5
max 30 36 32 36

PMC callback cumulative impact on NCT

The cumulative overhead brought by the PMC measuring and callback on the NCT is reported in
Figure 31, showing the slowdown incurred on NCT execution in relation to the frequency of the
PMC callback execution. Clearly the cumulative impact is higher with higher frequency (left) and
diminishes as long we decrease the frequency at which the PMCs values are sent to the CGuard
module. It is worth nothing that starting from 1 ms, a reasonable target frequency on our setup,
the overhead on the NCT becomes negligible.

NCT slowdown ratio

1.600
1.500
1.400
1.300
1.200
1.100

SLowdown ratio

1.000

0.900
1000 1500

PMC callback frequency (microsecond)

2000 2500

Figure 31 - Cumulative impact of CGuard monitoring on NCT.

Effectiveness of CGuard

Despite the aggressiveness of the benchmark used as NCT, CGuard is extremely effective in
protecting the execution of the CT from unwanted interference arising from shared memory
accesses. It is worth noting that, to make things even worse, we deployed the NCT on the same
Cortex A79 core cluster in the Orin [3].

Results in Figure 32 show the relative increase in execution time of the CT (where 1 represents the
performance of the CT in isolation) with varying frequency of the monitoring, as implied by the
PMC callback frequency. Even under the looser frequency scenario (1 ms) the CT only incurs a 4%
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increase in execution time, which is in fact pretty low considering the aggressiveness of the
deployed NCT.

1.045
1.040
1.035
1.030
1.025
1.020
1.015
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Relative execution time increase

1.005
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PMC callback frequency (microseconds)

Figure 32 - CGuard effectiveness in protecting CT execution form interference.

5.4 Timing characterization integration and automation

In this third phase of the project, we worked towards an improved integration of the probabilistic
timing analysis solution. In particular, we focused on increasing the level of automation support
on the middleware. We aimed at providing a streamlined flow for collecting the (timing) profile of
a generic middleware application for which we want to compute an execution time upper bound.

We leveraged the available main elements in the PMULib integration (see Section 4.3) to support
not only the transparent collection of timing information on a target middleware node but also to
automate the use of the RestK probabilistic timing analysis script to derive probabilistic WCET
bounds.

As a main constraint, we wanted to ensure the timing analysis tool is not executed on the target
platform but on an external device, in order not to overload the execution on the Orin. In fact,
while the script itself is not excessively onerous in terms of computation, it also generates graphical
representations of the analysed sample, fitted distribution and alike.

We built on top of ROS2 DDS functionality to implement a standard ROS2 remote note that can
connect to the Middleware PMULogger to retrieve locally all the collected information (either on-
line or off-line at specific execution stages). The remote node is then responsible to filter and
preprocess the data obtained from the logger and call the RestK R script. A wrapper has been
provided for the RestK script that takes care of generating different statistical plots for the
computed distribution and the respective bounds. The plots are automatically rendered on screen
in the remote node.
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Figure 33 - Timing analysis automated flow with remote node.

Figure 33 shows the local and remote infrastructure for the analysis automation. The PMULib
automatically and transparently collects measurement data from the execution of the analysed
function on the middleware and logs the information on the PMULogger. The latter is directly
accessible from a remote ROS2 node through a VPN. Data is then processed locally to obtain the
timing distribution and bound for a reference exceedance threshold (see [1] for more details).

The automated framework has been already deployed to support the SAFEXPLAIN open
demonstrator, introduced in Section 6.3.
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6 Platform- and System-level V&V support (T4.4)

The main objectives of this task during the third phase of the project were mainly related to
finalizing the implementation of already agreed and emerging middleware required
functionalities, as well as improving the support for automated V&V tasks. Besides, we also
provided continuous support to facilitate the mapping of FUSA architectural elements (and Safety
Patterns) to middleware nodes and features, and to facilitate the porting of the case studies on
top of the middleware and platform. In line with its overall objective, the task aimed to provide
comprehensive support to all platform level requirements.

In this third phase we kept consolidating our strategy around the concept of SAFEXPLAIN
Middleware as a common ground for deploying and integrating all technological elements
developed to support analysis and platform level concerns in general. Figure 34 provides a high-
level view, on an architectural example, of the large and diverse set of platform-level elements
and tools that are supported by the SAFEXPLAIN execution platform.

Diverse instance A > Decision

v Function
L1l Diag.&

Monitoring
L) P

Diverse i
2
L1l Diag.&
Monitoring

to Actuators

e L2 Diagnostic & Monitoring

SAFEXPLIAI o2
Middleware :iROS2

Hardware

Figure 34 - Summary of platform-level support.

All the elements in Figure 34 have been already introduced either in the previous Sections (e.g.
PMULib and CGuard) or are described in other project deliverables (e.g. RestK in [1]). The
interesting information we can draw form the picture is that the SAFEXPLAIN ecosystem includes
a set of tools and methodologies that operate on the platform configuration at hardware (HW
Config) and OS (SW Config) level and enable SAFEXPLAIN building blocks (FUSA Safety Patterns,
Explainable Al, V&V support, Predictability, and Performance). The concept of Middleware is a
critical enabler for the whole ecosystem.

49




D 4.2 Platform Technologies Report CVvD ' \
Version 1.0 SAFEX '
Besides improvements and refinements to the middleware to support SAFEXPLAIN tools and
methodologies, efforts have been devoted to realizing a concrete instantiation of the methodology
in the form of an open demonstrator, that can be used to showcase the methodology beyond the

scope of the consortium.

In the following, we report on the progress achieved in the Middleware functionalities to support
application requirements, FUSA patterns, and V&V task. Finally, we report on the specific
configuration and additional features deployed to support an open demonstrator, showcasing all
relevant SAFEXPLAIN results.

6.1 SAFEXPLAIN Middleware concept

The SAFEXPLAIN middleware has been designed to serve as a common abstraction layer to
accommodate all platform level requirements on top of the execution platform (hardware and
system software). This provides a consistent execution environment where all SAFEXPLAIN tools
and methodologies are naturally integrated and can be straightforwardly exploited by the platform
user at development, analysis, and operation.

Other non-functional

Performance requirements
Functional XAlon DLcomponents
reqU|rements

Application SW

Ubuntu (Linux Tegra)

Figure 35 - SAFEXPLAIN Middleware overview.

The middleware has been designed to capture both self-imposed requirements and all sorts of
requirements emerging from the other work packages on the execution platform. It positions in
between the execution platform and the user application, see Figure 35.

The Middleware has been instrumental to:

e Ensure compliance with AI-FMS and FUSA architectural patterns by design, avoiding the
complexities and the pitfalls of delegating the full design to the end user, and ensuring the
system is deployed following the selected safety pattern.

e Facilitate the integration of the use case on top of a simplified ROS2-based framework
where low-level configurations become transparent to the user, and the porting effort is
often reduced to move code snippets within predefined placeholder nodes in the
middleware.

e Provide automation support for recurrent V&V tasks, with special focus on providing an
efficient environment for SAFEXPLAIN verification and validation requirements and tools
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e Seamlessly support traditional software-level monitoring solutions, by collecting functional
and non-functional metrics at operation and support state-of-practice life-cycle monitoring
and management.

The Middleware has been designed and developed to support the execution of the use cases in a
consistent environment where FUSA and explainable Al concepts are implemented. The
middleware is also supporting the integration of DL and Explainability libraries on top of the
hardware and software stack and consistently with the FUSA architecture and the concrete Safety
Patterns.

Figure 36 below represents how the middleware, on top of the combination of hardware and OS
layer, integrates a set of tools (PMULib, CGuard, RestK, and DLLib) and methods (HW and SW
Config) to support a wide and diverse set of requirements and features, ultimately supporting the

whole SAFEXPLAIN methodology.
‘e
Patterns|
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Models | [ Monitoring] | SuPPort |  bility
Tasting oncemns|

v

SAFEXPLII)
Mlddleware

Target Hardware and System Software
Stack

Figure 36 - SAFEXPLAIN middleware embedded tools and methodologies.

PMULib, CGuard and RestK are specific tools developed within this same work package. DLLib is
the software library providing a concrete instance of EXPLib solutions; both have been developed
in WP3 and are described in [21].

In the next sections we will focus on the main updates and refinements to the Middleware layer
and will introduce the main features in the SAFEXPLAIN open demonstrator.

6.2 SAFEXPLAIN Middleware support

As introduced in the second phase of the project, the SAFEXPLAIN middleware provides several
libraries and services to standardize access to the core functionalities of the platform and meet a
wide set of platform-level requirements, as represented in Figure 35 and Figure 36. During the
third phase of the project, we devoted our efforts, on one side, to enriching the functionality (and
solve issues and bugs) of the already present features, and on the other side, to complete the
missing parts with respect to the requirements specified in WP1 and emerged during the project.
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Figure 37 - Middleware relevant features.

In the following discussion, we aim to present the main updates to the software packages
developed in the context of the SAFEXPLAIN project. To provide a complete picture of the platform
developed, the package description will recap and update the previous discussions developed
during the second phase of the project.

Base Application Class. In the SAFEXPLAIN Middleware, the safety-related applications shall be
ROS2 nodes derived from the smw_base_application::BaseApplication, which is a highly
specialized node that gives access to the user support to the platform features, such as IPC
communication, logging, reliable data persistency, timing analysis instrumentation, supervision,
etc. The main relevant features offered by the middleware BaseApplication are summarized in
Figure 37. All these features concur in the realization of a simplified design and deployment
environment for complex and modular Al-based applications.

Considering the typical need of a safety application of meeting strict timing constraints, the
BaseApplication sets up (out-of-the-box) a function initialize() called once to perform
setup of the application, callback function called run() that’s periodically called upon a user-
defined time expiration, and a terminate() function called to perform housekeeping / clean-up
during application shutdown. The effort of the user that aims to write a BaseApplication is
mostly towards defining those three functions.

The state of the BaseApplications (which can be Unconfigured, Inactive, Active and Finalized)
evolves over time thanks to the coordination of the lifecycle_manager (within
smw_lifecycle_manager package). The overall state of the platform instead is kept by the
state_manager (within smw_state_manager package).

Lifecycle management. The 1lifecycle_manager ensures synchronization across all tasks within
the platform, evaluating the preconditions required to configure, activate, and finalize an
application. During the initialization phase, it verifies that all processes are spawned by the
platform launcher. Before execution, it ensures that supervision mechanisms are up and running.

Health management. The platform health manager (implemented as the health_manager node
in the health_manager package) oversees the supervision of all BaseApplication instances,
providing both temporal and health monitoring. Each BaseApplication reports its status during
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the run() cycle, publishing an "alive" and "health" message. Upon publishing, an internal timer
within the ROS 2 DDS layer is triggered. If the elapsed time between two consecutive status reports
exceeds a user-defined threshold, DDS—via the ROS 2 RMW and RCL layers—activates a debounce
counter within the health manager to track the violation. If this violation persists for a predefined
number of run() cycles (also configurable by the user), the health manager initiates a predefined
reaction based on its configuration.

Given the target maturity of the platform software, two response mechanisms have been
implemented:

1. Triggering a platform state change — This instructs the state_manager to transition to
SAFE_STATE. Applications managing platform control output variables recognize this
state change, helping to prevent unpredictable behavior.

2. Terminating an application — This allows the supervision node to terminate a process that
may be disrupting resource access for other platform components or interfering with
their functionality.

Although not yet implemented, the current architecture is designed to support more advanced
response mechanisms in the future, such as coordinated actions across multiple applications or
automatic process restarts.

Data persistence. To enhance overall safety, two mechanisms have been implemented to improve
the detection of corrupted persistent data.

The first mechanism is based on image hashing, designed to protect and uniquely identify recorded
camera input data. During the build process, a hash is computed for each input frame using a
standard algorithm and stored in a text file. At runtime, whenever an image is broadcast, it is sent
along with its precomputed identifier. Upon reception, the hash is recomputed and compared to
detect any corruption.

The second mechanism ensures the integrity of configuration parameter files used by safety-
critical applications. During the build process, a Cyclic Redundancy Check (CRC) is computed for
each configuration parameter file and stored in a .crc file alongside the original file. At runtime,
during application startup, the user can invoke the safe_load_parameter method from
smw_persistency, which loads the parameter file, computes its CRC, and compares it against the
stored CRC value. If a mismatch is detected, an error is triggered.

Data communication support. Additionally, in the third phase of the project, the communication
library has been enhanced with the introduction of the SynchronizerServiceProxy. This service
enables the synchronization of multiple messages from different sources based on a numerical
attribute. It has been extensively deployed, with different objectives, across various applications,
such as to synchronize:

e Left and right camera frames according to their timestamps in the railway use case.

e Outputs of two redundant nodes according to the input image ID, as in the demonstrator.

6.2.1 Support to FUSA Architecture

Supporting FUSA architectural patterns by design is one of the main features of the SAFEXPLAIN
middleware. In this third phase of the project, we devoted our effort to improving and refining the
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modeling of the Safety Patterns in terms of components and connections between them, data
types, and functionalities.

In the following, we provide a high-level mapping between architectural components and
middleware nodes in a reference implementation. Considering that the functional-safety scenario
of the use cases closely matches that of Safety Pattern 2 [2] in terms of functionality and role of
the Al components, we will focus our review on the instantiation of that pattern.

We consider a reference setup which includes instantiations of the required software packages,
communication interfaces, instrumentation, and a standardized parameter configuration,
ensuring compliance with the selected safety pattern.
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Figure 38 - Reference safety architecture pattern for Safety Pattern 2 (from [2])

Figure 38 illustrates the reference safety architecture for Safety Pattern 2. The architectural
components (blocks) in the architectural design correspond to software packages and classes in

the middleware deployment view.
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Figure 39 - Reference template instantiation for Safety Pattern 2.

In the reference Safety Pattern template instantiation (see Figure 39), these packages and classes
can be considered as partially empty boxes that only need to be augmented with the specific
semantics of the concrete system. The main software elements in the middleware are the
following:
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smw_ml_constituent: contains the code for all Al/ML constituents, with multiple
instances meeting the LO diverse redundancy requirements. Each Al/ML constituent
(represented by the classes DLConstituent @1 and DLConstituent 02 in the provided
example) extends the ROS2 node concept with specific SAFEXPLAIN features and
functionalities, inheriting from smw_base_application::BaseApplication. The user is
expected to provide the semantics for the DL model, as well as the data pre-processing and
post-processing modules, within this package.

smw_decision_function: contains the DecisionFunction class, that shall be customized
according to the use case; it takes the output from all redundant Al/ML constituents and
supervision components to provide a unified decision to the safety control component.
smw_11 monitor and smw_supervision_function: accommodate the supervision
components that complement the DL model's diverse redundancy. The latter component
comprises Al-specific diagnostic functions, whereas the former provides standard FUSA
diagnostic and monitoring support. These components detect runtime errors, model
insufficiencies, anomalies in models and data, and other potential issues.
smw_health_manager: Implements platform-level diagnostics and monitoring (L2
mechanisms) through the health_manager daemon. The only requirement on the end
user is the definition of a configuration file for determining triggering conditions and
reactions to detected issues. Once configured, the health _manager is responsible for
triggering the necessary reactions to ensure system integrity.

smw_safety control: Containsthe code for implementing system control and actuation
logic. In the reference implementation, it simply forwards the output from the node that
spawns the DecisionFunction class. In a more complex instantiation of the pattern, the
safety control package is eventually connected to the traditional Non-Al subsystem, which
is use-case dependent.

Non-AI Subsystem: this component is stubbed in the reference middleware template for
Safety Pattern 2 but it will simply include the deployment of a set of nodes extending the
smw_base_application::BaseApplication and embedding a use case specific
semantics.

6.2.2 Support to Verification and Validation

The Middleware software architecture accommodates also standard Verification & Validation
concepts, in a consistent way with the Al-FSM concepts (see Figure 40). As already consolidated in
the second phase of the project, the middleware software architecture supports standard
verification and validation tests, classified as:

Unit tests: Focus on individual code components, such as functions or objects.

Component tests: Ensure that a module (e.g., a ROS2 node) behaves correctly by testing
its interfaces without examining internal implementation details.

Integration tests: Validate that multiple system modules work together, ensuring that
applications can effectively utilize the platform’s core functionalities.
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Figure 40 - Overview of the verification and validation process for the platform development (from [1]).

During the third phase of the project, we have increased the test coverage for all platform libraries,
but complete coverage was not feasible due to time constraints, and therefore we prioritized the
most critical components. Tests have been set up to be executed automatically within Docker
containers as part of the CI/CD pipeline before merging updates into the main stable branch.
Additionally, we conducted regular testing on the target hardware (NVIDIA Orin) following each
major update to ensure smooth operation. This is crucial since behavioral differences may arise
between the platform running on a standard desktop PC (x86-64 architecture) and the NVIDIA Orin
(ARM®64 architecture).

From a methodological perspective, we employed three primary types of testing: static code
analysis, requirement-based testing, and fault-injection testing.

Static code analysis involves reviewing the source code without execution to detect potential
issues and enforce coding standards early in development. An example of tool we’ve developed
and used for static code analysis was the smw_apicheck.py (located in the scripts/ folder), which
ensures that APl definitions remain consistent between Python and C++ implementations. This
verification helps prevent integration issues arising from function signature mismatches, given that
C++ and Python applications run concurrently on the platform.

Requirement-based testing was the primary methodology used during the project to verify
whether the libraries met their specified requirements. To enhance traceability, we’ve added a

56




D 4.2 Platform Technologies Report SAFl:

Version 1.0

detailed description, expected results, and a reference to the corresponding requirements for
those kinds of tests.

To support application developers in testing their packages within the platform context, the
smw_testing package provides valuable mocking tools and tailored testing utilities, such as:

e topic statistics_listener: Verifies the frequency of message publishing by an
application to ensure expected behavior and performance targets have been achieved.

e param_update_tracker: confirms that a specific application parameter holds the correct
value, useful, for example, to verify if the applications have been correctly configured by
the user and if the transitions into a safe state take place within a defined tolerance time
interval.

e utilities_from_cli: Exposes various command-line interface (CLI) utilities within test
scripts, facilitating testing automation.

Finally, fault-injection testing was conducted to assess the system's error-handling capabilities,
particularly focusing on the Platform Health Manager. By simulating faults, we evaluated the
platform's response to availability issues and health-related reporting, thereby increasing
confidence in the robustness of software module integration.

In summary, during the third phase of the project, we focused on enhancing the SAFEXPLAIN
middleware by expanding its functionality, addressing existing issues, and implementing the
remaining features specified in WP1. Key additions include improved supervision and health
monitoring mechanisms, enhanced data integrity validation through image hashing and CRC
checks, the introduction of the SynchronizerServiceProxy for efficient message
synchronization, and extended testing tooling. With these developments, it has successfully met
all the requirements established during WP1 for the platform.

6.3 Demonstrator

The demonstrator aims to provide a simplified yet comprehensive representation of a reference
Al-based system, highlighting SAFEXPLAIN technologies and tools, together with the platform's key
resources. It was initially conceived as Proof of Concept (PoC) to facilitate the identification of
potential issues, strengths, and areas for improvement, and to guide the implementation of
platform features across three application domains: aerospace, automotive, and railway. During
the second and third phase of the project, it matured into a more robust and consolidated example
of application of the SAFEXPLAIN approach and is now considered as an open demonstrator that
can be exploited to share and promote the project results outside the consortium.

The demonstrator models an application scenario that meets Safety Pattern (SP) 2 [2]
specifications where the Al component is not exclusively responsible for the system behavior but
can contribute to the decision process and ultimately on the operation. The reasons for going for
SP2 were: first, that SP2 is the simpler pattern where the Al component inherits criticality
concerns; second, the SP2 was closely matching the operational scenarios of most of the use cases.
It was therefore natural to consider SP2 as the initial step for providing a reference setup. This
reference setup includes instantiations of the required software packages, communication
interfaces, instrumentation, and a standardized parameter configuration, ensuring compliance
with the selected safety pattern.
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The demonstrator includes a representative instance or prototype implementation of all the
building blocks of SP2 that are also tailored to the specific functional behavior. The demonstrator
was developed in close collaboration with WP2, WP3, and WP5. The resulting system, illustrated
in Figure 41, models a satellite position tracker sub-system, featuring the following components:

e Two diverse and redundant Al neural networks for object identification.

e A supervision function based on Variational Autoencoders (VAEs) to detect anomalies in
both input-output data and internal model behavior.

e An L1 Diagnostics & Monitoring module to verify the temporal consistency of input and
output data.

e A decision function implementing an ensemble method that synchronizes data from
different models, aligns detections, and produces a confidence-weighted output.

e A safety control module, which is meant to use the outcome of the decision function,
together with diagnostic information, and ideally the result of a non-Al algorithm, to
elaborate the command of be set to the system actuators (thrusters, gyroscopes, etc.). In
the absence of a real or simulated actuator, the control module elaborates the decision
function’s results as a simple validation step.

Details on the implementation of each component — particularly the Al-related modules and
supervisors — including an assessment of their maturity, obtained outcomes, and limitations, are
provided in the deliverables for WP3 [21] and WP5 [22].

The system has been configured to execute under PMO and to deploy a mapping that enforces a
clear separation between critical components (decision function and safety control operating
within a functional pipeline), monitoring components, and (segregated) diverse and redundant
instances of the ML component.

Clearly, all custom software modules within the demonstrator rely on platform resources for
execution control and monitoring. In particular, the L2 Diagnostics & Monitoring layer has been
configured to perform real-time monitoring of all safety-relevant platform nodes. This setup
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demonstrates how a monitoring violation can trigger a system-wide response designed to
transition the platform to a Safe State.

6.3.1 Demonstrator functionalities

The baseline system deployment and operation have been also extended to provide a set of useful
functionalities to support the showcasing of the internal information and events happening in the
system to an external audience.

To support the execution of the demonstrator, the following software components have been
developed:

e Camera Node (part of the smw_sensors package): This software component is designed to
replay data for the case studies, specifically tailored for use in the demonstrator. It enables
the platform's software modules to receive a continuous or step-by-step stream of input
data from a camera, with the ability to pause playback as needed. Additionally, the tool
allows users to switch the data source folder, which is particularly useful for automated
fault-injection testing and performance evaluation. Furthermore, applications can utilize
the ros2bag package for data recording, and other types of data may also be reproduced
as needed.

e Visualizer Node (part of the smw_visualizer package): This component is responsible for
displaying output and diagnostic data from the platform during execution. The visualizer
node can operate either locally on the AGX Orin board or remotely on a desktop connected
to the board through a private network. In the latter case, it leverages ROS 2's distributed
communication framework to minimize interference with the platform’s software
execution, particularly in terms of CPU load and memory consumption.

e Remote controller: remotely connects via VPN to the camera node and allows to control
the execution from a remote ROS2 node.

The visualizer node has been further generalized to allow overhearing all the information shared
among nodes through topics in the middleware, which is especially useful when deployed on the
remote host. The visualizer can be straightforwardly instantiated just by providing the topic
identifier.

We also developed a visualizer specialization for supporting the timing analysis flow in an
automated way, as discussed in Section 5.4, grouping on the same remote window both
measurements from the PMULogger and automatically generated plots for the probability
distribution and probabilistic bounds.

As an example, Figure 42 illustrates how the visualizer node aids in showcasing the demo results
while also providing insights into the platform software's operation. This figure presents the
synchronized output of the two redundant Al neural networks for a given input image, which is
subsequently used to elaborate the final result in the decision function. Clearly, the visualizer can
be tailored to each use case to display any internal variable of interest.
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7 Acronyms and Abbreviations

COTS Commercial Off The Shelf

CUDA Compute Unified Device Architecture
FUSA Functional Safety

GPU Graphics Processing Unit

HEMs Hardware Event Monitor

HW Hardware

(0N Operating System

PMC Performance Monitoring Counter
PMU Platform Monitoring Unit

ROS2 Robotic Operating System version 2
SwW Software

V&V Verification and Validation
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9 Annex 1 - Updated PMULIb interface

In this annex updated PMULib interfaces are described. The functional documentation refers to
the following custom types and constants:

typedef int pmu_result

static const pmu_result A78AE_PMU_RESULT_OK=0

static const pmu_result A78AE_PMU_RESULT_ERR =-1

9.1 Function Documentation
9.1.1 a78ae_pmu_init()

pmu_result a78ae_pmu_init ( void )

Initializes the library. Must be called before using any other library function. Must be called only
once.

9.1.2 a78ae_pmu_configure()

pmu_result a78ae_pmu_configure ( unsignedint mask,
const unsigned
int *
const unsigned
int

events,

mode

)

Configure the counters specified in mask to count the events specified in the events array.

Parameters
A mask of the counters to reconfigure in this call. If the nth bit is set, the nth will be
configured to count events[m]
Array of event IDs to count. It must contain exactly as many items as bits are set in
<mask>.
Contains the configuration mode. Should be the OR value of these three pairs of
configurations:
e PMU_MODE_PER_THREAD, PMU_MODE_PER_PROCESS: count per process or
per thread. Default: per process
e PMU_MODE_SCOPE_OWN_COUNT, PMU_MODE_SCOPE_ALL_PROCESSES:
count own (thread or process) events, or all cores. Default: own. Note all
requires root permission
e PMU_MODE_CORE_ANY, PMU_MODE_CORE_FIXED: count events in any core
or for a fixed core. Default: any core. Fixed core is configured in the lower bits,
or'ing the core if to the configuration.

mask

events

mode

Returns
A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.
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9.1.3 a78ae_pmu_counters_available()

unsigned a78ae_pmu_counters_available  (  void )

Number of counters available in the platform for simultaneous use.
Returns
The number of counters that can be used simultaneously in the platform.

9.1.4 a78ae_pmu_read_counters()
9.1.5

pmu_result a78ae_pmu_read_counters ( unsigned int mask,
uint32_t * values

Read the counters specified in mask and store its values in the supplied array.

Parameters
mask A mask of the counters to read in this call. If the nth bit is set to one, the value
of counter n will be written to values[m]
values Array where counter values will be stored. It must contain exactly as many
items as bits are set in <mask>.
Returns

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.
9.1.6 a78ae_pmu_reset_counters()

pmu_result a78ae_pmu_reset_counters ( unsigned int mask )

Reset the counters specified in mask.

Parameters
mask A mask of the counters to reset in this call.

Returns

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.
9.1.7 a78ae_pmu_start()

void a78ae_pmu_start ( unsigned int mask ) inline

Starts counters, causing them to increment when the configured event takes place. Callers MUST
NOT assume that all counters are started at the same time.

Parameters

mask Counters to start. Nth counter will be started if the nth bit is set.
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9.1.8 a78ae_pmu_start_global()

void a78ae_pmu_start_global ( void ) inline

Starts all counters globally, allowing all of them to increment. Whether this call is equivalent to
pmu_start with all bits set is implementation dependent, but its usage is preferred over the
latter, as most PMUs support a global enable/disable in hardware which will be used by this
function (if present) but never will for the non-global variant.

9.1.9 a78ae_pmu_stop()
void a78ae_pmu_stop ( unsigned int mask ) inline

Stops counters, preventing them from incrementing. Callers MUST NOT assume that all counters
are stopped at the same time.

Parameters

mask Counters to stop. Nth counter will be stopped if the nth bit is set.

9.1.10 a78ae_pmu_stop_global()

void a78ae_pmu_stop_global ( void )

Stops all counters globally, preventing all of them from incrementing. Whether this call is
equivalent to pmu_stop with all bits set is implementation dependent, but its usage is preferred
over the latter, as most PMUs support a global enable/disable in hardware which will be used by
this function (if present) but never will for the non-global variant.

9.2 Macro Documentation

The library provides definitions for event values and for configuration modes.

Macro Value
PMU_MODE_PER_THREAD 0
PMU_MODE_PER_PROCESS (1<<8)
PMU_MODE_SCOPE_OWN_COUNT 0
PMU_MODE_SCOPE_ALL_PROCESSES (1<<9)
PMU_MODE_CORE_ANY 0
PMU_MODE_CORE_FIXED (1<<10)

Library event values can be configured using the event ID as specified in the manual, or the macros
below.

Macro Value
PMU_A78AE_SW_INCR 0x0
PMU_A78AE_L1l_CACHE_REFILL Ox1
PMU_A78AE_L1l_TLB_REFILL 0x2

67



D 4.2 Platform Technologies Report SAFI:

Version 1.0

PMU_A78AE_L1D_CACHE_REFILL 0x3

PMU_A78AE_L1D_CACHE 0x4

PMU_A78AE_L1D_TLB_REFILL 0x5

PMU_A78AE_INST_RETIRED 0x8

PMU_A78AE_EXC_TAKEN 0x9

PMU_A78AE_EXC_RETURN Ox0A
PMU_A78AE_CID_WRITE_RETIRED 0x0B
PMU_A78AE_BR_MIS_PRED 0x10
PMU_A78AE_CPU_CYCLES Ox11
PMU_A78AE_BR_PRED 0x12
PMU_A78AE_MEM_ACCESS 0x13
PMU_A78AE_L1l_CACHE 0x14
PMU_A78AE_L1D CACHE_WB 0x15
PMU_A78AE_L2D_CACHE 0x16
PMU_A78AE_L2D_CACHE_REFILL 0x17
PMU_A78AE_L2D_CACHE_WB 0x18
PMU_A78AE_BUS_ACCESS 0x19
PMU_A78AE_MEMORY_ERROR Ox1A
PMU_A78AE_INST_SPEC 0x1B
PMU_A78AE_TTBR_WRITE_RETIRED 0x1C
PMU_A78AE_BUS_ MASTER_CYCLE 0x1D
PMU_A78AE_COUNTER_OVERFLOW Ox1E
PMU_A78AE_CACHE_ALLOCATE 0x20
PMU_A78AE_BR_RETIRED 0x21
PMU_A78AE_BR_MIS_PRED_RETIRED 0x22
PMU_A78AE_STALL FRONTEND 0x23
PMU_A78AE_STALL_BACKEND 0x24
PMU_A78AE_L1D TLB 0x25
PMU_A78AE_L1I_TLB 0x26
PMU_A78AE_L3D_CACHE_ALLOCATE 0x29
PMU_A78AE_L3D_CACHE_REFILL Ox2A
PMU_A78AE_L3D_CACHE 0x2B
PMU_A78AE_L2TLB_REFILL 0x2D
PMU_A78AE_L2TLB_REQ Ox2F
PMU_A78AE_REMOTE_ACCESS 0x31
PMU_A78AE_DTLB_WLK 0x34
PMU_A78AE_ITLB_WLK 0x35
PMU_A78AE_LL_CACHE_RD 0x36
PMU_A78AE_LL_CACHE_MISS_RD 0x37
PMU_A78AE_L1D_CACHE_LMISS_RD 0x39
PMU_A78AE_OP_RETIRED 0x3A
PMU_A78AE_OP_SPEC 0x3B
PMU_A78AE_STALL 0x3C
PMU_A78AE_STALL_SLOT_BACKEND 0x3D
PMU_A78AE_STALL_SLOT_FRONTEND 0x3E
PMU_A78AE_STALL_SLOT Ox3F
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PMU_A78AE_L1D_CACHE_RD 0x40
PMU_A78AE_L1D_CACHE_WR 0x41
PMU_A78AE_L1D_CACHE_REFILL_RD 0x42
PMU_A78AE_L1D_CACHE_REFILL_WR 0x43
PMU_A78AE_L1D_CACHE_REFILL_INNER Ox44
PMU_A78AE_L1D_CACHE_REFILL_OUTER 0x45
PMU_A78AE_L1D_CACHE_WB_VICTIM Ox46
PMU_A78AE_L1D_CACHE_WB_CLEAN 0x47
PMU_A78AE_L1D_CACHE_INVAL 0x48
PMU_A78AE_L1D_TLB_REFILL_RD OX4C
PMU_A78AE_L1D_TLB_REFILL_WR 0x4D
PMU_A78AE_L1D_TLB_RD OX4E
PMU_A78AE_L1D_TLB_WR OX4F
PMU_A78AE_CACHE_ACCESS_RD 0x50
PMU_A78AE_CACHE_ACCESS_WR 0x51
PMU_A78AE_CACHE_RD_REFILL 0x52
PMU_A78AE_CACHE_WR_REFILL 0x53
PMU_A78AE_CACHE_WRITEBACK_VICTIM 0X56
PMU_A78AE_CACHE_WRITEBACK_CLEAN_COH | Ox57
PMU_A78AE_L2CACHE_INV 0x58
PMU_A78AE_L2TLB_RD_REFILL 0x5C
PMU_A78AE_L2TLB_WR_REFILL OX5D
PMU_A78AE_L2TLB_RD_REQ OX5E
PMU_A78AE_L2TLB_WR_REQ OXSF
PMU_A78AE_BUS_ACCESS_REQ 0x60
PMU_A78AE_BUS_ACCESS_RETRY 0x61
PMU_A78AE_MEM_ACCESS_RD 0x66
PMU_A78AE_MEM_ACCESS_WR 0x67
PMU_A78AE_UNALIGNED_LD_SPEC 0x68
PMU_A78AE_UNALIGNED_ST_SPEC 0x69
PMU_A78AE_UNALIGNED_LDST_SPEC OX6A
PMU_A78AE_LDREX_SPEC 0x6C
PMU_A78AE_STREX_PASS_SPEC 0x6D
PMU_A78AE_STREX_FAIL_SPEC OX6E
PMU_A78AE_STREX_SPEC OX6F
PMU_A78AE_LD_SPEC 0x70
PMU_A78AE_ST_SPEC 0x71
PMU_A78AE_DP_SPEC 0x73
PMU_A78AE_ASE_SPEC 0x74
PMU_A78AE_VFP_SPEC 0x75
PMU_A78AE_PC_WRITE_SPEC 0x76
PMU_A78AE_CRYPTO_SPEC 0x77
PMU_A78AE_BR_IMMED_SPEC 0x78
PMU_A78AE_BR_RETURN_SPEC 0x79
PMU_A78AE_BR_INDIRECT_SPEC Ox7A
PMU_A78AE_ISB_SPEC 0x7C

69



D 4.2 Platform Technologies Report SAFI:

Version 1.0

PMU_A78AE_DSB_SPEC 0x7D
PMU_A78AE_DMB_SPEC Ox7E
PMU_A78AE_EXC_UNDEF 0x81
PMU_A78AE_EXC_SVC 0x82
PMU_A78AE_EXC_PABORT 0x83
PMU_A78AE_EXC_DABORT 0x84
PMU_A78AE_EXC_IRQ 0x86
PMU_A78AE_EXC_FIQ 0x87
PMU_A78AE_EXC_SMC 0x88
PMU_A78AE_EXC_HVC Ox8A
PMU_A78AE_EXC_TRAP_PABORT 0x8B
PMU_A78AE_EXC_TRAP_DABORT 0x8C
PMU_A78AE_EXC_TRAP_OTHER 0x8D
PMU_A78AE_EXC_TRAP_IRQ Ox8E
PMU_A78AE_EXC_TRAP_FIQ Ox8F
PMU_A78AE_RC_LD_SPEC 0x90
PMU_A78AE_RC_ST_SPEC 0x91
PMU_A78AE_L3_CACHE_RD OxAOQ
PMU_A78AE_CNT_CYCLES 0x4004
PMU_A78AE_STALL_BACKEND_MEM 0x4005
PMU_A78AE_L1l_CACHE_LMISS 0x4006
PMU_A78AE_L2D_CACHE_LMISS_RD 0x4009
PMU_A78AE_L3D_CACHE_LMISS_RD 0x400B
PMU_SCF_BUS_ACCESS 0x10190
PMU_SCF_BUS_ACCESS_RD 0x10600
PMU_SCF_BUS_ACCESS_WR 0x10610
PMU_SCF_BUS_ACCESS_SHARED 0x10620
PMU_SCF_BUS_ACCESS_NOT_SHARED 0x10630
PMU_SCF_BUS_ACCESS_NORMAL 0x10640
PMU_SCF_BUS_ACCESS_PERIPH 0x10650
PMU_SCF_BUS_CYCLES 0x101d0
PMU_SCF_CACHE 0x10f20
PMU_SCF_CACHE_ALLOCATE 0x10f00
PMU_SCF_CACHE_REFILL 0x10f10
PMU_SCF_CACHE_WB 0x10f30

9.3 Usage Example

#include <stdio.h>
#include <stdlib.h>
#include "a78ae-pmu.h"

int main() {

// The mask specifies if each counter will be used or not. 1 to set, @ to reset.

const unsigned int mask = @b111111;

// Event numbers in accordance with the A78-AE manual. You can also use the #defined
events in a78ae-pmu.h

const unsigned int events[] = {@x3, 0x8, Ox11, Ox17, OxA0Q, Ox400B };

// Array which will save the values collected by the library

int values[6];

// First, initialize. Only once.
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a78ae_pmu_init();
int core_id = 1;
if(a78ae_pmu_configure(mask, events, PMU_MODE_PER_THREAD | PMU_MODE_SCOPE_ALL_PROCESSES|
PMU_MODE_CORE_FIXED | core_id) != @) {
exit(-1);
b
// Reset and start counting
if (a78ae_pmu_reset_counters(mask) != A78AE_PMU_RESULT_OK) {
exit(-1);
}

if (a78ae_pmu_start_global() != A78AE_PMU_RESULT_OK) {
exit(-1);
}

volatile int tmp=0;
for (volatile int i = @; i< 100000000; i++)
tmp += i;
// Stop and read values
if (a78ae_pmu_stop_global() != A78AE_PMU_RESULT_OK) {

exit(-1);

¥

if ( a78ae_pmu_read_counters(mask, values) != A78AE_PMU_RESULT_OK) {
exit(-1);

}
printf("%d,%d,%d,%d,%d,%d\n", values[@], values[1l], values[2], values[3], values[4],
values[5] );
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