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Executive Summary  
This deliverable reports on the technical and technological progresses achieved in WP4 during the 
Phase 3 of the project, spawning from m19 to m30. In particular, this report captures the 
advancements and final outcomes of WP4 tasks T4.1-T4.4 (including refinements and support 
activities under T4.5) by MS3 hence covering further developments of SAFEXPLAIN solutions at 
hardware (HW) and software (SW) level and their consolidation and integration on top of the 
SAFEXPLAIN execution platform to support the activities of other work packages and enable the 
evaluation of the case studies. As this deliverable is a natural extension and update to D4.1, 
whenever possible we will reference the latter to avoid redundancies. 

Similarly to the approach followed for D4.1, we provide an assessment on the achievement of the 
main objectives for each WP4 task and relate them to respective outcomes (technologies and tools 
and integration in the execution platform). 

This deliverable does not provide a detailed description of the specific integration of WP4 solutions 
with WP5 use cases and their evaluation. These activities are still ongoing, with WP4 activities 
falling in the scope of T4.5. 
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1 Introduction 
This document reports on the progress achieved in the scope of WP4 during the third phase of the 
project. This work package brings together all platform-level aspects that are relevant for the 
supporting both performance and FUSA requirements on top of the platform. The overarching goal 
of WP4 is to support the development, execution, and analysis of the solutions proposed by this 
same work package (WP4) and other technical work packages (WP2 and WP3) and supporting the 
deployment of SAFEXPLAIN case studies (WP5) on top of SAFEXPLAIN execution platform.  

 

1.1 Scope 
The scope of WP4 consists in intercepting all platform-level requirements and constraints and 
offering a FUSA-compliant and high-performance execution platform. To this extent WP4 develops 
through 4 main tasks and a higher-level meta-task to support the integration of WP2 and WP3 
solutions in the case studies. Additionally, in the final phase 4 of the project, the support task T4.5 
is deployed in order to capture further refinements and adaptations emerging in the final tailoring 
and evaluation phase. Therefore, WP4 has strict relations with all SAFEXPLAIN work packages and, 
in fact, facilitates their alignment. Figure 1 below, taken from D4.1, captures the main tasks in WP4 
and how they support SAFEXPLAIN technologies and integration by capturing explicit and implicit 
requirements from other WPs. 

 

Figure 1 - WP4 role and relation with other WPs [1]. 

 

We recall below the scope and objectives of the main technological tasks in WP4: 

• T4.1 Timing interference control, covering the hardware analysis of the target platform to 
identify the sources of interference and the available support for segregation and 
partitioning. This task is critical to support FUSA aspects, and particularly the deployment, 
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under the supervision of WP2, of FUSA architecture and patterns presented in [2]. T4.1 
finished at m24. 

• T4.2 Observability channels, dealing with available means of collecting hardware-level 
information on program execution on top of the target platform, and providing an 
integrated tool to configure those means and access extract the relevant information at 
both run and analysis time. 

• T4.3 Timing prediction methods and Tools, providing support for the analysis of the timing 
behavior of the deployed functionalities, building on timing interference mitigations 
enabled by T4.1 analysis and SAFEXPLAIN FUSA solutions (WP2) and exploiting timing 
information gathered on top of T4.2 outcomes.   

• T4.4 DL libraries integration and validation in the industrial toolset, facilitating the 
integration of SAFEXPLAIN DL libraries and solutions in a partially automated setup 
supporting FUSA tasks through offline V&V activities and run-time monitoring.   

• T4.5 Refinements and integration updates, capturing final refinements and tailoring of 
WP4 solutions in order to closely support the execution and assessment of the project use 
cases. T4.5 started at m25, right after T4.1 termination. 

 

1.2 Structure of the Document 
In the following sections we provide a review of WP4 activities and progresses up to MS3. Large 
part of the hardware analysis and conceptualization of SAFEXPLAIN software solutions have been 
already captured in D4.1. The reader is encouraged to refer to that document, especially for all 
aspects related to the SAFEXPLAIN target hardware platform (NVIDIA AGX Orin [3]) and system 
software stack. 

The structure of the document will follow the task structure of the WP. Each section will include a 
short recap of the task objectives, the strategy followed, the obtained results, and an assessment 
thereof with respect to integration on the execution platform and adaptations to the project case 
studies. 

  



 

6 

 

D 4.2 Platform Technologies Report 
Version  1.0 
Version 0.0 

2 Updates to the hardware and software stack 
The NVIDIA AGX Orin [3] has been selected as the common target platform for the case studies 
project, for its representativeness from the FUSA perspective and its capability to sustain the 
execution of performance intensive AI-based applications, hence providing support for general-
purpose and AI-specific hardware accelerators. Relevant details on the target features are 
extensively covered in D4.1 [1].  

Below we summarize the changes/upgrades on the hardware setup and software stack. 

2.1 NVIDIA AGX Orin setup 
The NVIDIA Jetson AGX Orin is a family of heterogenous MPSoC (Orin 32/64 Nano) developed by 
NVIDIA to cover the emerging requirements from diverse markets, all sharing the need for high-
performance to support AI-based functionalities at reduced SWaP (Size, Weight, and Power). In 
SAFEXPLAIN, the AGX Orin Dev Kit has been selected. 

The Orin comprises 3 clusters of 4 Arm Cortex-A78AE CPUs [4] each, a NVIDIA Ampere GPU, ad-
hoc AI-oriented accelerators such as NVDLA and PVA, as well as a video encoder and a video 
decoder (see Figure 2). The system also exploits a high-speed IO, with 204 GB/s of memory 
bandwidth, and 32GB of DRAM (in the Dev Kit version). The Orin can deliver up to 275 TOPS which 
enable the execution of multiple concurrent AI applications. 

 

 
Figure 2 - Block Diagram of our target platform (from [5]). 

 The amount of DRAM memory provided by the selected 32GB AGX Orin Dev Kit, while adequate 
for the deployment of WP4 software solutions and user applications, resulted to be quite limited 
for a flexible and efficient development environment. For this reason, we extended the memory 
capability of the board by connecting a 1TB Non-Volatile Memory express (NVMe) module. The 
addition of such module is not a stringent requirement for the execution of the SAFEXPLAIN stack 
and solutions. 
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2.2 Default software stack 
The NVIDIA AGX Orin [3] comes with tailored OS support and libraries. The software stack includes 
a specific version of a Linux-based Operating System as well as a score of dedicated libraries to 
support the development and execution of AI applications. To favour homogenization and 
coordination across development environments in the different WPs, WP4 promoted the early 
identification of a shared software stack configuration to guarantee inter-compatibility of tools.  

 

 
Figure 3 - NVIDIA AGX Orin 

The specific support for the target hardware was not fully consolidated at the beginning of 
SAFEXPLAIN and many software libraries were only provided in older versions. We were therefore 
expecting changes to the setup to happen during the project.  After checking the compatibility of 
the updates with the partners assumptions and requirements, we opted for moving to the latest 
release of the Jetson Linux and JetPack, which also involved an update to the supported AI libraries. 
Figure 4 illustrates the latest versions for the low-level software layer in the SAFEXPLAIN stack.  

 

 
Figure 4 - Updated SW stack. 
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Updated SAFEXPLAIN setup consists in the following elements and versions: 

• Jetson Linux 36.3 (Ubuntu 22.04) 

• Linux Tegra 5.15 

• JetPack 6.0.1 SDK 

Specific libraries 

• TensorRT:   8.6.2  

• CuDNN:   8.9.4.25 

• CUDA:    12.2.12-1 

• OpenCV python:  4.10.0-dev 

• Python3:   3.10.12 

• PyTorch:  2.5.0 

• Vulkan:   1.3.204 

• Vulkan SC:   36.0  
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3 Timing Interference Control (T4.1)  
During the third phase of the project, Task 4.1 kept focusing on timing interference related aspects, 
refining the results from the analysis of interference channels and available support in the 
execution platform. The work led to the identification of a set of HW/SW level solutions for limiting 
timing interference either by construction, in alignment with WP2 strategy [2], or by deploying ad 
hoc run-time mechanisms.  It is worth noting that T4.1 has been active for just 6 months in this 
phase of the project, hence half of the time allocated for T4.2-T4.4. 

In terms of the contents of this section, Section 3.1 reports on the results from applying kernel-
level solutions on the underlying OS in order to reduce the OS-related variability and guarantee 
more predictable execution times. Section 3.2, instead, focuses on hardware and software related 
aspects and reports on the updates on the HW/SW configurations for supporting the required 
degrees of segregation while meeting the performance requirements. 

3.1 Software Sources of Timing Interference 
The Orin software stack builds on Linux Tegra, which consists in the tailoring of a full Ubuntu 
distribution. The use of a Linux-based, general-purpose operating system as opposed to real-time 
ones, introduces some interference or jitter in the execution of tasks stemming from the variability 
incurred by the many system calls and background activities the OS is undergoing. As real-time 
OSes were not ready and available on the target platform at the beginning of the project, we opted 
for a middle ground solution consisting in exploiting two complementary approaches: (i) applying 
the real-time (RT) patch to the Linux kernel and (ii) exploiting the capability to force system calls 
and interrupts to a subset of the cores. It is noted that the RT patch [6] (recently accepted in the 
mainstream development branch) is at the basis of the many commercial real-time Linux 
distributions. 

3.1.1 Kernel interference mitigation 

The Linux OS kernel can become a source of interference that may affect the execution time of 
other software running in the system. This is always true, but it can become especially apparent 
when the system is under heavy workloads, as the kernel will schedule out some tasks if there are 
not any free cores available. 

The Linux kernel provides a patch [6] to replace the default scheduler with PREEMPT_RT, which is 
better suited to run critical tasks as it is intended to reduce latency and hence execution time 
variability. NVIDIA provides instructions for kernel customization12 that can be followed in order 
to replace the default kernel for one with PREEMPT_RT enabled. 
However, even when using a patched kernel, critical tasks may become affected by OS noise when 
the system is under heavy loads. A simple improvement is to configure such tasks as high priority. 
This can be done, for instance, using pthread_attr_setschedparam and setting the 
sched_priority to a high value, but this is insufficient if the kernel still needs to interrupt our 
critical task. 
In parallel, the impact of the kernel can be mitigated by configuring it to force some cores to be 
isolated and configuring some others to take care of interrupt requests. To this end, we can 
leverage the clustered architecture of the Orin AGX board and reserve a single cluster for all OS 

 

1 https://docs.nvidia.com/jetson/archives/r36.2/DeveloperGuide/SD/Kernel/KernelCustomization.html 
2 https://docs.nvidia.com/jetson/archives/r36.2/DeveloperGuide/AT/JetsonLinuxToolchain.html#at-
jetsonlinuxtoolchain 
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related activities, while keeping the other two for critical tasks. This can be achieved by adding the 
following parameters to the kernel boot extlinux.conf configuration: 

isolcpu=4-11 irqaffinity=0-3 

In principle, different cpuisol sets can be configured but the above setup is the one providing 
better isolation, if the overall load of the system allows reserving the full cluster 0 to system 
services. 

We performed an assessment of the effectiveness of these measures in reducing the OS impact. 
We applied the Linux kernel RT patch using the instructions provided by NVIDIA and configured 
the boot options with isolcpu and irqaffinity as described. 

 

3.1.1.1 Experimental setup 

To evaluate the proposed mechanism, we use the cyclictest tool3. Cyclictest is a Linux kernel 
tool that accurately and repeatedly measures the difference between a thread's intended wake-
up time and the time at which it actually wakes up in order to provide statistics about the system's 
latencies. It can measure latencies in real-time systems caused by the hardware, the firmware, and 
the operating system. 

The installation can be performed with the following set of commands: 

apt-get install build-essential libnuma-dev 
git clone git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git 
cd rt-tests 
git checkout stable/v1.0 
make all 
make install 

 

Output Explanations:  

• T: (Thread Number): This indicates the thread number.  

• (PID): The Process ID (PID) of the thread.  

• P: (Priority): The priority of the thread. The higher the number, the higher the priority  

• I: (Interval): The interval at which the thread wakes up, in microseconds. Here, it is set to 
1000 microseconds (1 millisecond), as specified with the --interval option.  

• C: (Count): The count of wakeups or iterations that the thread has performed.  

• Min (Minimum Latency): The minimum latency observed, in microseconds, for the 
wakeup.  

• Act (Actual Latency): The actual latency observed for the most recent wakeup, in 
microseconds.  

• Avg (Average Latency): The average latency observed over all wakeups, in microseconds.  

• Max (Maximum Latency): The maximum latency observed, in microseconds, for any 
wakeup.  

Interpreting the Output:  

• Min, Act, Avg, and Max Latencies: These values are crucial for understanding the real-
time performance. Ideally, these should be as low as possible and close to each other. 

 

3 https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start 
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Significant differences between the minimum and maximum latencies can indicate 
variability and potential issues in meeting real-time deadlines.  

• Consistency Across Threads: Consistent values across different threads (T: 0, T: 1, 
etc.) suggest that the system handles real-time scheduling uniformly. Significant 
discrepancies might indicate CPU affinity issues or uneven load distribution.  

• Max Latency: The maximum latency is particularly important in real-time systems, as 
it represents the worst-case scenario. This value helps determine if the system can 
meet the most stringent real-time requirements.  

 

We run cyclictest in four separate scenarios: for high and low priority tasks, and for the regular 
kernel provided by NVIDIA and a custom kernel with the RT patch applied. We run cyclictest 

with the following parameters and let it collect 4000 samples or more for wakeups for each thread: 

cyclictest  -a -t -n -p99 # For high priority tasks 
cyclictest   -a -t -n # For normal priority tasks 

 

3.1.1.2 Results 

We analyse the results and chart the maximum latency, as the latter is the metric that better 
identifies execution time variability. In the tables below we present the complete results for the 
non-RT and the RT kernels, then we proceed to present the most relevant differences. 

 Non-RT kernel 
High 
priority 

T: 0 (52671) P:99 I:1000 C:  28099 Min:      1 Act:    3 Avg:    3 Max:      41 
T: 1 (52672) P:99 I:1500 C:  18732 Min:      2 Act:    2 Avg:    2 Max:      38 
T: 2 (52673) P:99 I:2000 C:  14049 Min:      2 Act:    2 Avg:    3 Max:      38 
T: 3 (52674) P:99 I:2500 C:  11239 Min:      2 Act:    2 Avg:    3 Max:      34 
T: 4 (52675) P:99 I:3000 C:   9366 Min:      2 Act:    3 Avg:    3 Max:      15 
T: 5 (52676) P:99 I:3500 C:   8028 Min:      2 Act:    5 Avg:    3 Max:      12 
T: 6 (52677) P:99 I:4000 C:   7024 Min:      2 Act:    3 Avg:    2 Max:      10 
T: 7 (52678) P:99 I:4500 C:   6244 Min:      2 Act:    5 Avg:    3 Max:      13 
T: 8 (52679) P:99 I:5000 C:   5619 Min:      2 Act:    3 Avg:    3 Max:      18 
T: 9 (52680) P:99 I:5500 C:   5108 Min:      2 Act:    7 Avg:    4 Max:      17 
T:10 (52681) P:99 I:6000 C:   4683 Min:      2 Act:    3 Avg:    3 Max:      14 
T:11 (52682) P:99 I:6500 C:   4322 Min:      2 Act:    4 Avg:    3 Max:      11 

Normal 
priority 

T: 0 (52686) P: 0 I:1000 C:  26910 Min:     13 Act:   54 Avg:   52 Max:      99 
T: 1 (52687) P: 0 I:1500 C:  17940 Min:     19 Act:   52 Avg:   52 Max:     324 
T: 2 (52688) P: 0 I:2000 C:  13454 Min:     40 Act:   52 Avg:   53 Max:    2357 
T: 3 (52689) P: 0 I:2500 C:  10764 Min:     51 Act:   52 Avg:   53 Max:      60 
T: 4 (52690) P: 0 I:3000 C:   8968 Min:     24 Act:   54 Avg:   54 Max:    7051 
T: 5 (52691) P: 0 I:3500 C:   7688 Min:     52 Act:   53 Avg:   52 Max:     198 
T: 6 (52692) P: 0 I:4000 C:   6727 Min:     51 Act:   55 Avg:   52 Max:      68 
T: 7 (52693) P: 0 I:4500 C:   5980 Min:     18 Act:   56 Avg:   54 Max:     497 
T: 8 (52694) P: 0 I:5000 C:   5382 Min:      6 Act:   56 Avg:   53 Max:     373 
T: 9 (52695) P: 0 I:5500 C:   4892 Min:     20 Act:   53 Avg:   54 Max:      67 
T:10 (52696) P: 0 I:6000 C:   4485 Min:     18 Act:   52 Avg:   53 Max:      87 
T:11 (52697) P: 0 I:6500 C:   4140 Min:      5 Act:   53 Avg:   53 Max:      61 

 

 RT kernel 
High 
priority 

T: 0 ( 2554) P:99 I:1000 C: 102510 Min:      1 Act:    7 Avg:    5 Max:      36 
T: 1 ( 2555) P:99 I:1500 C:  68340 Min:      1 Act:    8 Avg:   13 Max:     219 
T: 2 ( 2556) P:99 I:2000 C:  51255 Min:      1 Act:    6 Avg:    6 Max:      32 
T: 3 ( 2557) P:99 I:2500 C:  41003 Min:      1 Act:    2 Avg:    6 Max:      32 
T: 4 ( 2558) P:99 I:3000 C:  34170 Min:      2 Act:    3 Avg:    2 Max:       6 
T: 5 ( 2559) P:99 I:3500 C:  29288 Min:      1 Act:    2 Avg:    2 Max:       5 
T: 6 ( 2560) P:99 I:4000 C:  25627 Min:      2 Act:    2 Avg:    2 Max:       7 
T: 7 ( 2561) P:99 I:4500 C:  22780 Min:      2 Act:    2 Avg:    2 Max:       7 
T: 8 ( 2562) P:99 I:5000 C:  20501 Min:      2 Act:    2 Avg:    2 Max:       8 
T: 9 ( 2563) P:99 I:5500 C:  18638 Min:      2 Act:    3 Avg:    2 Max:       6 
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T:10 ( 2564) P:99 I:6000 C:  17084 Min:      2 Act:    3 Avg:    2 Max:       6 
T:11 ( 2565) P:99 I:6500 C:  15770 Min:      2 Act:    3 Avg:    2 Max:       6 

Normal 
priority 

T: 0 ( 2571) P: 0 I:1000 C:  42203 Min:      4 Act:   54 Avg:   58 Max:    1356 
T: 1 ( 2572) P: 0 I:1500 C:  28137 Min:     10 Act:   55 Avg:   75 Max:    1276 
T: 2 ( 2573) P: 0 I:2000 C:  21103 Min:      3 Act:   55 Avg:   60 Max:     293 
T: 3 ( 2574) P: 0 I:2500 C:  16882 Min:      5 Act:   69 Avg:   61 Max:     236 
T: 4 ( 2575) P: 0 I:3000 C:  14068 Min:     52 Act:   52 Avg:   53 Max:      63 
T: 5 ( 2576) P: 0 I:3500 C:  12059 Min:     52 Act:   53 Avg:   53 Max:      62 
T: 6 ( 2577) P: 0 I:4000 C:  10551 Min:     52 Act:   53 Avg:   53 Max:      62 
T: 7 ( 2578) P: 0 I:4500 C:   9379 Min:     52 Act:   54 Avg:   53 Max:      60 
T: 8 ( 2579) P: 0 I:5000 C:   8441 Min:     52 Act:   53 Avg:   53 Max:      59 
T: 9 ( 2580) P: 0 I:5500 C:   7673 Min:     52 Act:   53 Avg:   53 Max:      61 
T:10 ( 2581) P: 0 I:6000 C:   7034 Min:     52 Act:   53 Avg:   53 Max:      62 
T:11 ( 2582) P: 0 I:6500 C:   6493 Min:     52 Act:   53 Avg:   53 Max:      56 

 

Next, we plot the maximum latency in microseconds and compare the RT kernel vs the non-RT 
kernel, high vs normal priority tasks, and isolated vs non-isolated cores. 

First of all, we evaluate the effectiveness of setting task priority to a high value when we apply the 
RT kernel patch. In Figure 5 we can clearly see the difference between normal priority (left) which 
causes latencies between 56 us and 1356 us, and high priority (right) which only causes latencies 
between 5 us and 219 us. 

 
Figure 5 – RT kernel latency, high vs normal priority tasks, all cores. 

Even when configuring high priority tasks, it can be clearly seen in Figure 6 that isolcpu and 
irqaffinity settings have a notable effect on task latency. Latencies for isolated cores in clusters 
1 and 2 experience latencies of up to 8 us, while high priority tasks running in cluster 0 (not isolated 
and devoted to irq management) still exhibit latencies of up to 219 us. These results confirm our 
expectation on the complementarity of the two approaches. 
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Figure 6 – RT kernel latency, isolated cores vs non-isolated clusters, high priority tasks. 

Last, we assess the effectiveness of using a custom kernel with the real time patch applied, 
compared to the default kernel provided by NVIDIA consistently with an isolcpu and 
irqaffinity configuration. In Figure 7 we show latencies for high priority task in cores 4 to 11 
(the isolcpu set) for each kernel. We observe latencies of up to 18us when running on the default 
kernel and always below 8 us in the RT-patched kernel. 

 

 
Figure 7 – RT vs non-RT kernel latency, isolated cores, high priority tasks. 

The main conclusions that can be extracted from this data are: 

• Tasks need to be configured as high priority. Reduces at least 10x, even in non-isolated 
cores. 

• Tasks in non-isolated cores may suffer wake-up latencies up to 37x higher than on isolated 
cores. Critical tasks should always be configured in isolated cores 

• We observe wake-up latencies between 25% and 3.6x higher in non-RT kernels. The RT 
patch should be applied and used when running critical tasks in this platform. 
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3.2 Configurations for interference mitigation 
The SAFEXPLAIN execution platform combines the NVIDA Orin [3], as target hardware, and system 
software layer, comprising a tailored Ubuntu distribution. One of the main objectives in 
SAFEXPLAIN consisted in the identification of hardware and software support for controlling the 
sources of timing interference arising from contention on shared hardware resources in MPSoCs. 

In this phase of the project, we consolidated the results obtained from the analysis of the Orin 
hardware architecture and its constituents. Interested readers may refer to [1] for more details on 
relevant hardware components and their expected impact on timing interference.  

As an incremental contribution to the previous phases, we concluded the empirical assessment of 
hardware and software support for interference mitigation by experimenting with the impact of 
two main Orin configurations affecting both performance and segregation.  

3.2.1 Platform level support and configurations  

3.2.1.1 Power model impact 

The Orin platform provides practical tools for configuring and enforcing a specific power model 
among those supported in the hardware. Power models are generally defining minimum and 
maximum frequency of execution for each computing element (core, gpu, etc.). They are also 
responsible for selectively enabling/disabling components in the platform. For example, power-
modes determine how many core clusters are active on the boards, or how many SP are enabled 
in the GPU. Besides affecting performance, power models also configure the level of parallelism 
supported by the platform. 

Power-modes can be selected or enabled via simple command line tool nvpmodel that allows to 
select among the available power configurations. The Orin AGX provides 4 pre-configured power 
models with different energy consumption caps (from 15W to 50W). Power models’ main features 
are summarized in Table 1 below. Power model ID=0 is the default power model. 

 POWER_MODEL 
ID=0 
(MAXN) 

ID=1 
(MODE_15W) 

ID=2 
(MODE_30W) 

ID=3 
(MODE_50W) 

CPU_ONLINE CORE_0 1 1 1 1 

CPU_ONLINE CORE_1 1 1 1 1 

CPU_ONLINE CORE_2 1 1 1 1 

CPU_ONLINE CORE_3 1 1 1 1 

CPU_ONLINE CORE_4 1 0 1 1 

CPU_ONLINE CORE_5 1 0 1 1 

CPU_ONLINE CORE_6 1 0 1 1 

CPU_ONLINE CORE_7 1 0 1 1 

CPU_ONLINE CORE_8 1 0 0 1 

CPU_ONLINE CORE_9 1 0 0 1 

CPU_ONLINE CORE_10 1 0 0 1 

CPU_ONLINE CORE_11 1 0 0 1 

TPC_POWER_GATING TPC_PG_MASK 0 248 240 0 

GPU_POWER_CONTROL_ENABLE GPU_PWR_CNTL_EN on on on on 

CPU_A78_0 MIN_FREQ 0 0 0 0 

CPU_A78_0 MAX_FREQ -1 1113600 1728000 1497600 

CPU_A78_1 MIN_FREQ 0  0 0 
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CPU_A78_1 MAX_FREQ -1  1728000 1497600 

CPU_A78_2 MIN_FREQ 0   0 

CPU_A78_2 MAX_FREQ -1   1497600 

GPU MIN_FREQ 0 0 0 0 

GPU MAX_FREQ -1 420750000 624750000 828750000 

GPU_POWER_CONTROL_DISABLE GPU_PWR_CNTL_DIS auto auto auto auto 

DLA0_CORE MAX_FREQ -1 614400000 1369600000 1369600000 

DLA1_CORE MAX_FREQ -1 614400000 1369600000 1369600000 

DLA0_FALCON MAX_FREQ -1 294400000 729600000 729600000 

DLA1_FALCON MAX_FREQ -1 294400000 729600000 729600000 

PVA0_VPS MAX_FREQ -1 704000000 704000000 704000000 

PVA0_AXI MAX_FREQ -1 486400000 486400000 486400000 

Table 1 - AGX Orin supported power modes. 

Power models lead to different hardware configurations by limiting the subset of hardware 
elements that are enabled at run time. Also, the model defines the operational frequency interval 
for each component, that is the min and max frequency at which a core, a GPU, or a specific 
accelerator (e.g., PVA) may operate. It is worth noting that the power model does not set up a 
specific operational frequency but just an interval: this might not be desirable in time critical 
scenarios where timing variability arising from dynamic frequency regulation is discouraged.  

It is still possible to configure a fixed frequency by using another command line tool: 
jetson_clocks. This tool allows to immediately overwrite the frequency of operation of all 
components to the maximum. Of course, this choice, while removing unwanted execution time 
variability, has clear implications on the power consumption profile. 

In the following we report the results from an empirical assessment of the impact of power models 
and frequency on the execution (in isolation) of selected benchmarks. We consider an 
implementation of a matrix multiplication function, a common building block for many data-
intensive functionalities, as those deployed in AI-based functions for image recognition, as an 
example. We execute the benchmark in isolation on the different cores and clusters in the AGX 
Orin under the different power modes. We measure cycles, not time, which makes observation 
agnostic on the CPU frequency. In fact, we are interested in understanding how each core may 
provide different execution conditions. 
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Figure 8 - Execution cycles in isolation per core under different power models. 

As reported in Figure 8, the Cortex A78 cores show a similar behavior across cores and across 
power models. While the number of active cores varies across power models, the provided 
behavior in terms of execution cycles is homogeneous, as expected. It should be noted that the 
results are filtering the impact of the OS as observations were captured by configuring the PMULib 
to retrieve user-level hardware events only.  

In terms of execution time, the impact of the power model is instead evident as shown in Figure 9 
below, the execution time is correlated to the maximum frequency defined for each model. In the 
experiments, variability coming from dynamic frequency is removed by forcing the Orin to stick 
always to the maximum frequency. 

 

 
Figure 9 - Power models impact on execution time. 

Results confirm that execution frequency is heavily affecting performance. The execution time 
under PM0 is much lower than that required under PM0, and also lower than that required under 
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PM3, due to the lower frequency bound for PM3. Instead, frequency upper bound for PM2 is closer 
to that obtained under PM0, as confirmed by the results. 

It is worth noting that better performance comes at the cost of a higher energy profile. It may be 
worth considering further trade-offs between performance and power by defining custom power 
models that meet the timing requirements but with the minimum energy profile. 

3.2.1.2 Review of platform config options 

SAFEXPLAIN platform aims to support the FUSA and performance requirements emerging from 
WP2 and WP3 work. The concept itself of FUSA (software) architecture builds on the assumption 
that the underlying layer (hardware and software) can be configured to guarantee variable degrees 
of segregation among components. Segregation in the first stance can be provided by exploiting 
architectural features that need to be enabled and properly configured. 

Table 2 below summarizes the main hardware level features and configurations that have been 
considered to promote segregation and mitigate interference at hardware and system-software 
level. For each feature, we identify what Layer in the execution platform is directly affected, the 
corresponding module (if HW), the main affected dimension (performance, interference, 
predictability, FUSA), the scope at which the feature operates, the available options and a high-
level assessment of the impact expected when the configuration is enabled. 

Table 2 - Summary of relevant deployment configurations. 

Layer Module Dimension Scope Options Impact 

HW Power 
module 

Performance System-
level 

Power mode Largely affects performance and 
energy consumption. Fixing the 
power mode avoids inconsistent 
timing behavior. 

HW DL1  Interference Intra-core Partitioning  Reduce interference between 
applications running on same core 

HW L2 Interference Intra-core Partitioning  Reduce interference between 
applications running on same core 

HW L3 Interference Intra-
cluster 

Partitioning  Not enough information available 
on AGX Orin. Would possibly reduce 
interference between applications 
running on same cluster 

HW L4 Interference System-
level 

Partitioning Unsupported or not enough 
information available on AGX Orin. 
Would possibly limit interference 
on L4 cache accesses. Expect limited 
interference anyway as most 
workloads should fit in L3. 

HW SFC Interference System-
level 

- Interference to be captured with 
interference characterization and 
control strategy. Expect limited 
interference as most workloads 
should fit in L3. 

HW RAM Interference System-
level 

- Interference to be captured with 
interference characterization and 
control strategy. Expect limited 
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interference as most workloads 
should fit in L3. 

HW GPU Interference System-
level 

- AGX Orin current JetPack does not 
support GPU partitioning. Potential 
interference to be captured with 
interference characterization and 
control strategy. Expect limited 
interference as GPU use in use cases 
is serialized (also according to case 
study questionnaire). 

HW PVA Interference System-
level 

-  Not used according to case study 
questionnaire. 

HW DLA Interference System-
level 

-  Not used according to case study 
questionnaire. 

HW CPU FUSA Core Lockstep 
mode 

Adds lockstep functionality to 
CCPLEX cluster. No particular 
implication on analyses. 

HW/ 
SW 

SPE Predictability System-
level 

Free-RTOS 
on SPE 

Not considered in SAFEXPLAIN. 

SW - Predictability System-
level 

RT patch Can be configured to reduce 
variability suffered by critical tasks. 
Requires kernel patch. 

SW - Interference  System-
level 

CPU 
Mapping 

Strategic application to ore 
mapping allows exploiting inherent 
architectural segregation, for 
example, among CCPLEX clusters. 

SW - FUSA 
Predictability 

System-
level 

Hypervisor Unsupported on AGX Orin. Could 
allow segregation and isolation 
among SW partitions. 

 

The features in Table 2 summarize the spectrum of supported mechanisms in the AGX Orin 
platform. The coverage these features can provide for WP2/3 requirements is not necessarily 
exhaustive and, as a matter of fact, it is not in the Orin case. Therefore, starting from this set of 
features, WP4 goal consisted in facilitating a mapping between WP2 and WP3 requirements into 
concrete features and configurations (Figure 10).  

The main focus of WP2 requirements [2] is on 
segregation, to mitigate the impact of 
interference, and predictability. Obtaining full 
segregation on the AGX Orin is not possible 
without renouncing completely to 
performance. However, several degrees of 
isolation can be achieved, contributing effective 
means to mitigate the potential impact of 
interference. It is worth noting that the 
architectural level clusterization, with the 3 CPU 
clusters, already provides a good degree of Figure 10 - Requirements steering platform configuration. 
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inter-cluster segregation: this means that the impact a software component executing on a cluster 
can incur on other components executing on other clusters is somehow limited by the resource 
sharing level. In particular, clusters benefit from cluster-private L3 cache. Intra-cluster 
interference, on the other hand, can be mitigated by enabling partitioning on the same L3 level (L1 
and L2 are private per core). 

On the performance side, the main driving elements are the power model, the execution 
frequency, and, clearly, the load on computing elements. With respect to the power model, the 
selection of the most appropriate configuration depends on the overall system design. As the 
power model defines what computing elements are enabled, it is important to consider the 
computational requirements of the use case: how many SW components use CPU, GPU, other 
accelerators and dependencies among them. In fact, the AGX Orin does not allow the sharing of 
the GPU among applications in parallel (i.e., no Multi-Process Service – MPS support4) and 
therefore all applications using the GPU will be necessarily serialized. As part of our work in 
analyzing the benefits of GPU partitioning, we analyzed the Multi-Instance GPU (MIG) feature 
provided by NVIDIA. While this feature offers in theory many benefits for execution time 
determinism, it is paradoxically only implemented for high-end GPUs used in data centers.  The 
result of our analysis in fact shows that MIG offers important benefits on execution time 
determinism, while the impact of performance can be controlled via its flexible configuration 
options. Hence, this is an interesting feature to add to future embedded GPUs like that in the Orin 
architecture [7]. 

Execution frequency clearly impacts the time it takes for a function to execute. While power 
models define ranges of frequency for each mode, the actual frequency at operation for the 
different devices depends on the dynamic regulation mechanism. This is not well perceived in 
safety-critical systems where variability in execution time is negatively affecting timing 
predictability. The AGX Orin supports the overriding of the frequency setting and makes it possible 
to force the components to execute at the max frequency in the range. All experimental results 
and analysis in WP4 were performed under the assumption that the system operates at a fixed 
frequency for all scenarios and use cases. 

Finally, the load on computing elements determines the response time of each software 
functionality (either a single function or a full functional chain). It is not uncommon, in time critical 
systems, that functionalities are executed uninterrupted, following a run-to-completion semantics. 
This is even more true for functional chains that are deployed to process external inputs (e.g., from 
sensors) and generate an action in response, through a sequence of elaboration steps. It is 
suggested to promote cohesive assignation of functions to computing elements so that the 
execution model can be also leveraged to avoid interference.  

While mapping considerations are generally done on an application basis, the SAFEXPLAIN 
architectural patterns permit the definition of generic mapping guidelines and patterns, where 
software components are assigned to computing elements (i.e. clusters) based on cohesiveness 
and criticality.  

 

 

4 See https://forums.developer.nvidia.com/t/mps-on-agx-orin/219157 
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Figure 11 - Example of architectural pattern and mapping. 

As an example, Figure 11 presents the software components’ view of a WP2 Safety Pattern. 
Colored frames hint at possible mapping scopes where a mapping scope defines a set of elements 
that can be mapped to the same architectural cluster due to semantical or criticality affinities. In 
the example,  

• Scope 1 comprises the AI component together with the Supervision block (taking care of 
both generic and ML specific monitoring and diagnostic tasks).  

• Scope 2 groups the decision function and safety control, as they share the maximum 
criticality level.  

• Scope 3 includes L2 and L3 diagnostic and monitoring services. Non-AI function and 
Actuators share two independent Scopes 4 and 5, but they can be eventually merged into 
a single scope.  

By conveniently mapping Scopes to core clusters, it is already possible to limit the interference 
each scope may incur on each other, taking advantage of architectural clusterization. Ad hoc 
configurations are eventually required to meet performance requirements within the same 
cluster. This is generally obtained by finer grain control over execution (processes, scheduling 
algorithm, priorities, etc.). 

 

3.2.2 Mapping of software components 

Complex AI-based applications typically consist of several software modules that cooperate to 
manipulate external inputs and to produce an action. The type of systems targeted in SAFEXPLAIN 
are not an exception to that. It is also the case that these systems rely on complex heterogeneous 
platforms to provide the necessary computational power to deliver the intended functionalities in 
a timely manner. In the presence of multiple and possibly heterogeneous computing elements, 
the way each software component is concretely executed on the platform can make the difference 
between adequate and poor performance.  
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In the AGX Orin platform an application can be deployed on three different clusters and, depending 
on the specific AI problem at hand, can be assigned to a different accelerator within GPU, PVE, 
DLA. Ad hoc deployment schemes may be adopted depending on the number of components, 
dependences, as well as performance and segregation requirements. 

Mapping and timing interference. We conducted an empirical study to assess how cluster-level 
deployment options may impact on execution time, with special focus on exposure to timing 
interference. To this extent, we have collected a large set of results executing the same matrix 
multiplication function used to assess power mode impact in Section 3.2.1.1, in multicore 
scenarios to observe the impact of timing interference. We executed an extensive set of 
experiments with different representative benchmarks characterized by a different degree of use 
of shared memory resources. In the following we report the results for a representative scenario, 
where the matrix multiplication function is executed in parallel multiple instances of a synthetic 
benchmark with large amount of L2 misses, but hitting the L3. Since the L3 cache is shared within 
the same cluster, the benchmark can be used to explore the impact of cluster sharing. 

 
Figure 12 - Impact of core mapping in timing interference. 

Figure 12 show the impact of the combination of mapping and power models on the execution 
time of the matrix multiplication function when run against a variable number of copies of the 
synthetic benchmark (generating L2miss/L3hits). The number of explored scenarios changes with 
the power model as the latter determines the number of active clusters and cores in the platform. 
As expected, when the benchmark is executed in the same cluster, it incurs larger timing 
interference due to the contention arising on the L3 cache (including potentially additional 
evictions caused by the contenders). In our experiments we focused on the changes affecting the 
execution cycles to isolate the impact of interference: results are relative to the execution in 
isolation when the matrix multiplication function is executed in core 0.  

Under Power model 1 (PM0) only one Cortex A78 core cluster is enabled, which provides a nice 
power profile ~15W. In this scenario, contention mainly arises when requests access the cluster 
shared L3 cache, as L1 and L2 ones are core-private. We observe the impact of contention within 
the same cluster. Contention varies depending on the characteristics of the running applications. 
However, we notice how L3 is indeed a source of contention, and the impact is dependent on the 
number of contenders sharing the cache (max observed impact at ~16%), following an apparently 
linear relation. PM1,2,3 allows for a larger number of deployment scenarios where the system 
level decisions on task (node) to core mapping can make the difference in limiting the potential 
impact of contention. The amount of interference across PMs changes consistently with the 
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number of clusters enabled. In general, under all PMs, it is noted that the impact of contenders 
running on other clusters is negligible, which is explained by the characteristics of the task under 
analysis (high L3 hit ratio) and by the role of Orin architectural clusterization in supporting naturally 
segregation. It is interesting to observe the impact of contention in PM3: despite it shares the same 
set of enabled clusters PM0 the impact of contention is relatively lower, which seems to be related 
to the impact of max frequency on how frequently contending requests actually clash in accessing 
the L3. This conclusion is consolidated by the observation that PM2 (which configures middle way 
frequency of execution) compared to 2-cluster scenarios in PM1 and PM3 provides middle way 
results.  

Results obtained with other benchmarks confirmed the trend. In general, the obtained results 
support our expectations on the importance of architectural level clusterization in the Orin to 
shape and limit the potential amount of timing interference suffered at run time. In turn, this 
conclusion motivates the need for an informed approach for fine-grained mapping of software 
components to the platform. 

Mapping, Safety Patterns, and Middleware. The guiding principles for mapping the software 
components on the platform are not limited to interference reduction but also include minimum 
performance, predictability, and indirect requirements stemming from (software) architectural 
constraints.  

In the SAFEXPLAIN approach, the Safety Patterns [2] bring a set of requirements on the set of 
mandatory elements to be deployed on the platform (for example to provide Diagnostic and 
Monitoring support) and on the interactions among them. These requirements translate into 
constraints on the feasible mapping scenarios. Furthermore, the SAFEXPLAIN Middleware [1], by 
introducing an additional layer, is also impacting the way software modules are deployed on top 
of the platform. Figure 13 shows the multiple layers involved in the mapping of software 
components to the execution platform: The Middleware layer, embedding a ROS2 [8] layer, and a 
Linux layer. 

 

 
Figure 13 - Multilayered mapping from Middleware components to Linux threads. 

At the middleware level, the mapping problem reduces to the problem of finding a mapping of 
application functionalities onto safety pattern elements and middleware nodes (abstraction and 



 

23 

 

D 4.2 Platform Technologies Report 
Version  1.0 
Version 0.0 

extension of ROS2 nodes). As a preliminary step, at application level, software components need 
to be framed within the FUSA architecture and specifically on the Safety Pattern that better fits 
the role of the ML component in the system and the FUSA implications. As anticipated in Section 
3.2.1.2, the mapping is partially determined by the relation between the mandatory building 
blocks in the Safety Patterns (e.g., Supervision Function, Decision Function, etc.). The architectural 
pattern can be extended/replicated to model larger systems with multiple software components, 
still abiding by the implicit and explicit rules dictated by the specific safety pattern. After 
middleware mapping is decided, we identify 2 further layers in the mapping problem. 

At the ROS2 level, the mapping problem focuses on mapping (middleware) nodes to ROS2 run-
time entities. ROS2 exploits the concept of executors for execution management to identify the 
run-time entities that are responsible for executing the callbacks, timers, and servers of a node. 
Three types of executors are supported: Multi-Threaded Executor, Single-Threaded, and Static 
Single-Threaded. The multi-threaded executor deploys a configurable number of OS threads to 
enable parallelism in processing messages and events. The single-threaded executor, instead, 
deploys one single thread so that the processing of all messages and events is serialized. The static 
single-threaded is a variant used when services and callbacks are fully statically defined.  

Executors can be associated to (multiple) callbacks explicitly and, more importantly, can be shared 
across nodes. For a fine-grained control of nodes to core mapping it is therefore necessary to 
control explicitly the set of executors for each node in a consistent way with cohesive software 
functions and intended segregation objectives. In this respect, some blocks are meant to be 
deployed in the same core or, at least, same cluster in reason of the cohesive nature of the 
provided set of functionalities. This is the case, for example, of the L1DM and Supervision 
components concurring in the Supervisor Block. On the other hand, some other blocks need to be 
kept apart due to mixed-criticality concerns or to keep the controller and controlled blocks 
sufficiently segregated. 

At (Linux) Thread level, executors are associated to one or multiple threads in the OS (in this case 
Linux) layer. Ultimately, it is at thread level where mapping and execution order of functions 
(through priorities) are determined. It is therefore important that the last layer before the actual 
thread execution is configured consistently with the middleware and ROS2 mapping. At this stage, 
it is possible to define a precise mapping of executors to threads and a mapping of threads to 
specific cores in the platform. The mapping must be consistent with the software architectural 
constraints (e.g. need of parallelism in processing messages/events) and the platform 
configuration (e.g. power model). 

We will discuss, in Section 5.3, how this fine-grained control is instrumental for supporting specific 
technology for timing interference control and monitoring. 

3.2.3 Timing interference control 

Timing interference is a deeply studied problem in embedded critical systems as the incurred 
variability makes it more difficult to provide tight and trustworthy bounds on timing requirements 
of time-critical applications. As is well known in the state of the art, when it comes to real 
platforms, sources of interference cannot be completely removed. First, even if there are 
partitioning approaches for hardware shared resources, aggressive segregation might require 
renouncing completely to performance. Second, and more importantly, modern platforms lack 
support to prevent contention in hardware shared resources, which are growing in number and 
complexity in every new platform generation [9].  
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With respect to the SAFEXPLAIN setup, at architectural level, multicore timing interference in the 
Orin mainly arises from sharing the cache and memory hierarchy and the interconnect. The 
architectural clusterization in the platform allows to easily achieve some degree of isolation from 
interference already by design through an informed mapping of software elements to clusters and 
cores within same clusters. Multicore execution results provided in Section 3.2.2 confirm that, 
despite the aggressiveness of the contenders, private per-core L1 and L2 caches and the 
clusterization make that the observed impact of interference is not dramatic in the Orin. This is 
also the case for compute-intensive applications like those addressed in SAFEXPLAIN characterized 
by a high degree of reuse in the data path.  

 
Figure 14 - Potential sources of timing interference in the Orin. 

In line with the empirical evidence discussed in Section 3.2.2 , the potential timing interference 
impact one application can suffer can be heavily reduced by selecting and enforcing an appropriate 
mapping of software components and underlying threads to platform islands defined by clusters 
and cores. Interference arising on L3 accesses affects only those software components that share 
the same cluster. Arguably, a mapping strategy should be collapsing to the same cluster those 
applications that are not executed in parallel (e.g. because they are separate steps in a functional 
pipeline). Whenever the mapping strategy does not allow to exploit architectural clusterization 
then it is possible to resort to other mechanisms to mitigate the impact of interference. 

First, at hardware architectural level, hardware and software cache partitioning solutions could be 
deployed to ensure each core in the cluster obtains its own share of the shared (L3) cache. As 
reported in Table 2, the Orin is meant to support hardware-level partitioning of the L3 cache. 
However, the way the cache should be configured is not adequately documented, as often 
happens for embedded targets and as it happens for L4 in the Orin. Despite the reverse 
engineering efforts, it was not possible to obtain a working configuration. It seems that the 
partitioning scheme, while partially effective, will eventually keep some cache ways shared among 
cores in the same cluster, thus essentially defeating our purpose (as we are not interested in 
average case performance). On the other hand, software-level partitioning would have required 
the introduction of an additional complexity layer in the software stack.  

The embraced solution has been suggested by most recent works in the state of the art [10] [11] 
[12] where approaches are increasingly building on the combination of hardware and software 
architectural features with some kind of monitoring or regulation mechanism to keep the residual 
interference under control. This is mainly motivated by the necessity to have an agnostic approach 
that does not excessively depend on the platform level support and can ensure interference 
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mitigation in the realistic scenarios where, despite full segregation mechanism exist, performance 
cannot be renounced. 

 
Figure 15 - High-level view of interference control scheme. 

Several interference control schemes have been proposed [10], [13], [14]. The main concept they 
embrace is that interference can be monitored at run-time by tracking the activity on the shared 
hardware resources (source of interference) so that, when generated interference exceeds a 
predefined threshold, some applications are prevented from accessing the source of interference. 
Figure 15 illustrates how a generic interference control mechanism can affect the execution of the 
application on Core 1: the blue segment corresponding to the unrestricted execution and the green 
one showing how the exceedance of the threshold caused Core 1 to pause its execution until Core 
0 is done and Core 1 execution can be resumed. These mechanisms typically build on two main 
aspects: monitoring and control/mitigation policy. The latter can vary depending on the scope and 
timing requirements. 

In SAFEXPLAIN we build on a holistic approach for interference control where we combine:  

(i) architectural level segregation offered by the Orin architecture, with (ii) an interference-
aware software-level mapping strategy, and  

(ii) a run-time interference monitoring and control mechanism (CGuard tool, described in 
Section 5.3).  

All the above aspects depend on the specific application requirements. 

At L4 level, the sharing involves all the CPU clusters and the GPU. Again, in the Orin no explicit 
support for partitioning the cache is documented [1]. Other larger and more powerful models of 
the same manufacturer are indeed providing better support for partitioning which hints at the 
possibility of having similar support in the target type of platform. 

Regarding interference arising on the GPU side, when multiple software components are exploiting 
the GPU, the Orin is not supporting GPU time sharing scheme, which is instead supported in other 
platforms from NVIDIA. We do not consider this to be a huge issue in the operational scenarios we 
foresee for the type of applications we are considering in SAFEXPLAIN where some degree of 
serialization in the GPU is not detrimental to the overall performance. When the application can 
benefit from a high degree of parallelism in accelerators, it is possible to resort to specialized 
accelerators in the Orin (PVA, DLA) that are designed for specific problems and need porting to 
specialized API. 
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4 Observability Channels (T4.2)   
In the third phase of the project, the main goal of this task consisted in the refinement of the 
bespoke observability library, PMULib, and its tailoring and integration with the project 
technologies. In particular, we focused on (i) refining the observability scope, to support different 
use cases for the library, and (ii) finalizing the integration of the library with the middleware 
framework and technologies. 

In this section, we cover the design and validation of PMULib extended scope and discuss the main 
directions followed for the integration of PMULib within the SAFEXPLAIN middleware to support 
the analysis and run-time monitoring objectives. 

4.1 Multiple instantiation support 

A first important modification on the observability support has been focusing on relaxing some 
constraints on the use of PMULib in terms of the number of supported instances at the same time. 
PMULib has been improved to allow multiple instances of it being in use simultaneously. This 
allows different processes to configure and collect data for different events and scopes. To this 
end, the library keeps track internally of the current processes using it and maps each one to their 
own subset of data, keeping track of the file descriptors used to access the perf subsystem. To that 
end and to keep critical sections thread-safe the library protects system calls with 
pthread_mutex_lock. This is done internally and transparently for the user. 

4.2 Specialization of PMULib scope 
In the course of the project, it became evident that there were different use case scenarios for 
PMULib. These scenarios differentiate on the observability scope of interest: in some cases, we 
can be exclusively interested in collecting hardware events for a given process or thread, while, in 
some other cases, we can be more interested in all events happening on a given core. The way 
those scenarios map to SAFEXPLAIN technologies will be discussed in Section 4.3. 

We extended PMULib functionalities to support multiple observability scopes by exposing to the 
user a means for selecting a specific PMULib mode. The PMULib provides some parameters that 
enable the configuration of different features in the library, allowing the user to fine-tune event 
collection to their needs. There are three dimensions that can be configured: 

• Collect counters Per Process/Per thread 

• Collect Own counters/System wide events 

• Collect events occurring in Any cores/Individual core 

 
Figure 16 - PMULib configurable scopes. 
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Figure 16 illustrates the configurable operational scopes for the PMULib. Blue paths are 
representing feasible options for tracking process/thread level events, whereas red paths are 
relative to global events triggered by any process, which cannot be collected system wide but only 
for a specific core. 

The configuration parameters are configured in groups of three: 

/* Defines in a78ae-pmu.h */ 

#define PMU_MODE_PER_THREAD  0 

#define PMU_MODE_PER_PROCESS  (1<<8) 

#define PMU_MODE_SCOPE_OWN_COUNT 0 

#define PMU_MODE_SCOPE_ALL_PROCESSES (1<<9) 

#define PMU_MODE_CORE_ANY  0 

#define PMU_MODE_CORE_FIXED  (1<<10) 
 

/* example configuration */ 

a78ae_pmu_configure(mask, events, PMU_MODE_PER_THREAD | PMU_MODE_SCOPE_OWN_COUNT| 

PMU_MODE_CORE_ANY) 
 

Some combinations are not supported, such as collecting system wide events occurring in any core, 
but most of them are. In this section we focus on the most useful configurations: 

PMU_MODE_PER_THREAD, PMU_MODE_SCOPE_OWN_COUNT, PMU_MODE_CORE_ANY 

PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT, PMU_MODE_CORE_ANY 

PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT, PMU_MODE_CORE_FIXED, cpuid=X 

PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_ALL_PROCESSES, PMU_MODE_CORE_FIXED, cpuid=X 

 

In addition to the formal correctness validation of the PMULib carried out in the previous 
subsection, we also have conducted additional tests to verify that the configurable parameters 
behave as expected. This validation sits on the already validated PMULib, i.e. we assume in this 
section that we can trust the PMULib results and then go on to test the different configurations. 

4.2.1 Experimental setup and validation 

The experimental setup is comprised of a process that sets up the PMULib, each test with different 
configuration options, and then spawns two threads, waits for them to finish, and collects the 
PMULib results. The threads are the same for every test, although they are mapped to different 
cores depending on the test. Each thread executes a loop performing some memory operations as 
shown in the Figure 17 below: 

void* threadFunction(void* arg) { 

 const int SIZE = 1024*1024; 

 unsigned char array[SIZE]; 

 int threadId = *(int*)arg; 

 for(int i=1; i<SIZE; i++) { 

  array[i] = array[i-1]+i*3; 

 } 

 return NULL; 

} 

Figure 17 - PMULib feature validation thread code snippet. 

We spawn the threads using the pthreads library. We iterate 1000 times for each test and collect 
each iteration as a datapoint for the evaluation. 
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4.2.1.1 Test 1: PMU_MODE_PER_THREAD, PMU_MODE_SCOPE_OWN_COUNT, 
PMU_MODE_CORE_ANY 

The main process spawns two threads but the PMULib is configured to read counter per thread. 
This means that the main process does not collect any events generated by the spawned threads. 
The outcome matches the expected result, where we see less than 3000 instructions retired 
(compared to the 25M executed by each thread). 

 
Figure 18 - Events collected with per-thread scope, own count, and any core.  

The events observed, as reported in Figure 18, are very low and are related to the few instructions 
run by the main process to control the experiment and use the PMULib. 

4.2.1.2 Test 2: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT, 
PMU_MODE_CORE_ANY 

In this test the main process spawns the threads after configuring PMU_MODE_PER_PROCESS, which 
causes the PMULib to also capture the events generated by the threads. 

 
Figure 19 - Events collected with per-process scope, own count, and any core. 
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In Figure 19, we observe 50M instructions retired, which match the 25M per thread that we 
expected. 

4.2.1.3 Test 3: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_OWN_COUNT, 
PMU_MODE_CORE_FIXED, cpuid=4 

We repeat the same experiment with a subtle change: in this test we force the mapping of the 
threads to cores 4 and 5 using the pthread_setaffinity_np() function. Then, we configure the 
PMULib to, instead of collecting all counts regardless of the core, collect only the results generated 
in core 4. 

 
Figure 20 - Events collected with per-process scope, own count, and fixed core.  

Once again, the results reported in Figure 20 match our expectations, as the number of instructions 
retired went down to 25M, the amount executed by a single thread. 

4.2.1.4 Test 4: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_ALL_PROCESSES, 
PMU_MODE_CORE_FIXED, cpuid=4 

Test 4 is very similar to Test 3, but we collect the results for any process running on core 4, not just 
the one configuring the library. This is a subtle difference with respect to Test 3, as we are mapping 
each thread in that core, but the objective of this test is to ensure that we can configure 
PMU_MODE_SCOPE_ALL_PROCESSES and collect the results we expect. Note that this test requires 
root privileges, as it is reading other process data. 
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Figure 21 - Events collected with per-process scope, all processes, and fixed core.  

As expected, Figure 21 reports the same results as in Test 3. 

4.2.1.5 Test 5: PMU_MODE_PER_PROCESS, PMU_MODE_SCOPE_ALL_PROCESSES, 
PMU_MODE_CORE_FIXED, cpuid=11 

This test complements Test 4, and its objective is to check if the PMULib reads low values when a 
core which is not running any thread is configured. We have set the same flags, so we are collecting 
system wide events (count for any process), and we require root access. We map our threads as 
in the rest of the tests to cores 4 and 5, and we collect PMULib results for core 11. 

 
Figure 22 - Events collected with per-process scope, all processes, and fixed core (unused core).  

In Figure 22, we can see that most of the time core 11 is idle, sometimes a sporadic task seems to 
be mapped there (likely an OS thread), but the values are extremely low (always less than 500 
instructions retired). 
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4.2.2 Conclusion 

We have tested the most useful PMULib configuration parameter combinations and we have 
proven that the outcome matches the expectations. In the figure below we see a summary of all 
tests, showing the CPU_CYCLES accounted in each of them. We see tests 1 and 5 counting very 
close to zero, as they are not counting any thread activity; we see test 2 counting activity for both 
threads; and we can see tests 3 and 4 counting the same activity, for a single thread. 

 
Figure 23 - Recap and overview of test results. 

4.3 PMULib Integration 
Additionally, in this phase of the project, we have focused on achieving the necessary degree of 
integration to support the case studies and to support the deployment of other technological 
elements in the SAFEXPLAIN ecosystem. First of all, the PMU Library has been closely integrated 
with the Middleware and in particular with the BaseApplication class (representing the baseline 
middleware component) to enable automatic monitoring of the component functionality. This 
integration has been designed to make the instrumentation transparent to the application 
designer and simply configurable (enabled/disabled) at deployment time. Furthermore, the 
integration also allows the user to explicitly and manually select which part of the application must 
be monitored and what hardware events are deemed relevant.  

4.3.1 PMULib configuration for use in the middleware 

Before using the library in the SAFEXPLAIN middleware, the user has to configure it in the machine 
that will run the application. The PMULib can be deployed as a shared library (*.so file), or using 
the source files directly. While implemented in C, the library also supports Python implementation 
of the middleware itself and applications. In this case, the user must set an environment variable 
(as exemplified below) so the library’s Python wrapper will be able to use the PMULib. 

 

export A78AE_PMU_LIBRARY=/path/to/the/lib.so 
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The monitoring library sends the values collected from the PMCs to a specific Middleware topic 
a la ROS2 (that the user can configure). The collected values can be read/accessed by the user 
using the PMULogger, a ROS2 compatible Middleware node, that receives the messages from the 
monitoring library, shows them in the console and stores them in a memory location. To set up 
the file’s location, the user should modify the following environment variable:  

 

4.3.2 Enabling node-level monitoring 

The Middleware-level integration provides the capability to monitor one node without setting 
additional code or pragmas but just by setting a configuration value. The library is included in all 
instances of the BaseApplication class (i.e. all nodes in the Middleware and Application), but the 
monitoring is disabled by default. To enable it, the user needs to create or modify the existing 
node’s configuration file to set the following parameters: 

• enable_performance_monitoring: enables or disables the node’s monitoring. 

• performance_monitoring_mode: selects which monitoring mode to use. We currently 

support three modes: 

0. Timing: collects basic timing metrics (CPU cycles). 

1. Contention: collects contention metrics  

2. Manual: collects custom set of metrics.  

Mode 0: is the default mode, collecting instructions executed and cycle counts, which are the 
baseline for measurement-base timing analysis (See Section 5). 

Mode 1: is the specific mode used to intercept and model contention impact. The tracked events 
are those hardware events with high correlation with interference. See Section 5.3 for the 
definition of the concept of hardware event correlation and how this is exploited for contention 
modelling and prediction. 

Mode 2: is the custom model, fully configurable by the user. The specific set of tracked hardware 
events can be modified to allow the collection of all supported events in the PMULib. The user is 
responsible for selecting which area of the code wants to monitor using the libraries directives, 
already explained in [1]. 

Below we report an illustrative example of PMULib configuration for enabling the monitoring of a 
middleware node. The example shows how the dl_02 model node from the smw_ml_constituent 

is configured to enable the timing monitoring. The file providing the configuration is a simple yaml 

file. 

export A78AE_PMU_OUTPUT=/path/to/the/output.txt 
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The most relevant entries in the configuration snippet are those setting the PMULib mode to 0 and 
setting to true the monitoring flag. Other entries in the configuration, which will be exhaustively 
covered in the middleware user manual, are instead related to configure basic execution features 
(i.e. execution frequency), platform level features (i.e. health and alive monitoring), or parametric 
component (i.e. ML models path). 

4.3.3 Manual monitoring 

The manual monitoring allows the user to monitor a particular piece of code of the application and 
not the full functionality provided by the node (as in the node-level monitoring). This mode is 
normally paired with PMULib mode 2. To enable this PMULib usage scenario, the user has to 
enable performance monitoring and set the mode to 2 (manual). Then, in the code, the user has 
to set which parts of the code to monitor. Next, there is an example of how to use the library to 
set the starting and end points of the monitoring: 

 

The self.pmuPublish(read) directive is used to feed the PMU Logger (see below), but it is not 
mandatory if the user does not plan to use it as the output can be processed similarly to any ROS2 
topic. 

4.3.4 PMU Logger 

The PMU Logger is the node that receives the messages from the PMU library with the values 
collected for the tracked events. Its main functionality is to print the collected values to the 
terminal (e.g., the number of cycles each run() instance takes from start to end), and, by default, 
stores the values in the file located in $A78AE_PMU_OUTPUT. There is a PMULogger prototype 

/**: 
 dl_02: 
  ros__parameters: 
  reference_cycle_ms: 1000 
  enable_alive_monitoring: true 
  enable_health_monitoring: true 
  enable_performance_monitoring: true 
  performance_monitoring_mode: 0 
  model_file: "path/to/the/model " 

def run(self) -> bool: 
 # ... 
 if self.pmu: 
     self.pmu.reset_and_start() 
    # ... 
 if self.pmu: 
  read = self.pmu.stop_and_read() 
  self.pmuPublish(read) 
 # ... 
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already configured for the smw_ml_constituent. The user can execute it by launching it as a ROS2 
node, running the following command: 

 

The topic to which the logger is subscribed and the logger’s output path can be changed through 
parameters (pmu_topic and output_path, respectively) within the launch. The monitoring of 
multiple applications simultaneously is also supported, so multiple loggers reading and writing 
from and to different sources can be deployed. 

4.3.5 PMULib and CGuard for contention control 

PMULib is also at the art of CGuard, the contention monitoring and control solutions designed and 
deployed in SAFEXPLAIN. While the mechanism design and principles are discussed in Section 5.3, 
in the following we discuss the requirements imposed on PMULib and how the PMULib integration 
meets them. 

As discussed in Section 5.3, CGuard mechanism builds on monitoring a certain set of hardware 
events that are strongly correlated to multicore timing interference and use these events to model 
the impact of non-critical functions on the timing behavior of critical ones. The modelling is 
exploiting the correlation between events and the potential delay suffered by the critical task. A 
linear formula for modelling such impact can be derived from empirical observations and applying 
the methodology described in Section 5.2. 

In this context PMULib is used both at analysis time and run-time. At analysis time, PMULib is used 
to collect a wide set of events on specific multicore execution scenarios where the critical task is 
executed in parallel with a set of contenders to assess its sensitivity to contention and to derive 
the linear contention formula by exploiting the observed correlation between events and 
contention impact. The target operational scenario for PMULib in this case is thread level and does 
not require tailoring PMULib integration as it is easily achieved by configuring the PMULib 
accordingly (we can assume thread level events as we are controlling the mapping of threads to 
core in the middleware configuration). 

 
Figure 24 - PMULib state transitions in CGuard. 

At run-time, PMULib is used to monitor the non-critical tasks by collecting the selection of 
hardware events (correlated to contention impact) and sending them to the CGuard module, 
which is responsible for processing the information and reacting in case the predefined threshold 
for the predicted contention is exceeded (see Section 5.3). In this case, the PMULib is pre-
configured within the non-critical application class in the middleware, extending the base 
application class with specific functionalities to support the CGuard logic. The PMULib is involved 

ros2 launch smw_util pmu_logger.launch.py 
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in the gathering and sharing of the set of events happening on the middleware node executing the 
non-critical task. In this case, the selected scope is the Core-level one as we enforce by construction 
that if one core is executing a non-critical node then it can only be executing non-critical nodes. 
This is justified by mixed-criticality considerations and to guarantee minimal separation between 
critical and non-critical functionalities. In this case, we are therefore interested in capturing all the 
impact coming from the core executing non-critical nodes in the contention monitoring interval. 
The PMULib is pre-configured accordingly, taking care of the set of events that need to be tracked 
and supporting CGuard logic on when to enable, disable and reset hardware event counters. The 
PMULib state transitions within the scope of CGuard is provided in Figure 24. 
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5 Timing Prediction Methods and Tools (T4.3)  
The overall approach for timing validation was identified in the previous phase of the project and 
consisted in the deployment of a probabilistic timing analysis based on Markov’s inequalities that 
resulted to be well equipped to deal with the complexity of the heterogenous MPSoC target and 
the type of execution time distribution exhibited by AI-based complex functionalities. We also 
identified the need for run-time monitoring of some non-functional aspects, with particular 
interest in the impact of multicore timing interference.  

During the third phase of the project, this task has mostly focused on the integration of the timing 
analysis solutions and on supporting the deployment of a comprehensive, consistent strategy for 
timing verification and validation. In particular, the efforts have been devoted to three main 
objectives:  

1. tailoring of the timing analysis approach to better capture the inherent traits of the type of 
systems we are addressing in SAFEXPLAIN;  

2. complementing the timing verification strategy with implementation and integration of 
CGuard, a contention monitoring and control mechanism; and  

3. improving on the automation of the timing characterization approach with the middleware 
environment, to allow a streamlined application of the RestK [1] timing analysis tool. 

 

5.1 Detecting Low-Density Mixture Component Distributions in 
High-Quantile Tail 

The execution of complex AI-based functionalities on top of cutting-edge heterogeneous MPSoC 
devices leads to highly variable execution times which are complex to analyse and to exploit for 
resource allocation and optimization. Those highly variable execution times are challenging the 
application of consolidated timing analysis approaches [15] and have justified an increased interest 
in probabilistic timing analysis approaches. Within the spectrum of probabilistic timing analysis 
approaches, the complexity of the analysed distribution may affect and impair the obtained 
results. 

One challenge we addressed in this task is the presence of low-density mixtures in the tail of the 
execution time samples and their potential impact on probabilistic WCET (Worst-Case Execution 
Time) estimation. These mixtures arise from intricate interactions between cutting-edge hardware 
and software, leading to complex execution time distributions. Hardware-related variability 
patterns (due to uncountable stateful resources like multi-level caches, interconnects, on-core 
resources, ...) and coexistence of multiple operational scenarios contribute to this variability. 

To conduct a detailed analysis of this problem, we studied several parametric mixture models, 
proving that WCET estimation can be misleading if the mixtures are not properly detected, 
exemplified by a Gaussian mixture with one component having 𝑤1 =  0.99 of the weight with 
mean 𝜇1 = 10 and standard deviation 𝜎1 =  1 and the second component having weight 𝑤2 =
0.01, mean 𝜇2 = 20  and standard deviation  𝜎2 =  3. 
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Figure 25 - Example mixture distribution and EXP, GPD results. 

As exemplified in Figure 25, in the case of the GPD (General Pareto Distribution), it produces heavy 
tails, as the threshold selection detects that the tail begins before the second component of the 
mixture, which produces a heavy tail because the rest of the extreme points are further apart, 
leading to pessimistic upper-bounds. In the case of the EXP, the threshold has been selected before 
the second component, so the pWCET (probabilistic Worst-Case Execution Time) estimate is 
optimistic. 

As addressing the presence of mixture distributions in high-quantiles does not fall within the 
specific scope of any existing IID (Independence and Identical Distribution) test in the state of the 
art, we developed an automatic algorithm for testing ID (Identical Distribution) on the tail. 

This algorithm, named TailID, is based on the confidence interval (CI) computation for the EVT 

(Extreme Value Theory) EVI (Extreme Value Index) parameter 𝜉 .  Assuming that the excesses of 

the execution time observations for a given threshold follow a GPD, the Maximum Likelihood 

method can be conducted to find an estimator for the parameter 𝜉 . To assess the uncertainty 

around this estimation, the Central Limit Theorem shows that the difference between the true 

value 𝜉  and the parameter’s estimator 𝜉̂ converges in distribution to a Gaussian, this is 

√𝑛(𝜉̂ − 𝜉)   →𝑑 𝑁(0, 𝜉2). The CI can be derived from this result. 

TailID algorithm analyses iteratively the extreme values that may be triggering a change in the EVI, 

called candidate points. To achieve this, the algorithm first computes the CI for the EVI parameter 

without any candidate points, then reintroduces the first candidate and recalculates. If the 

recomputed EVI falls outside the CI, the candidate point (along with all more extreme candidates) 

is flagged as an inconsistent point, violating the ID assumption. If the recomputed EVI remains 

within the CI, the process continues with the next candidate until all candidates are examined or 

one is detected as inconsistent.  

Given the number of Inconsistent Points Detected (IPD) we defined 3 scenarios depending on IPD's 

relation to the minimum number of samples (MoS) required for a proper EVI estimation. 

1. Scenario 1. 𝐼𝑃𝐷  =  0 TailID outcome provides more evidence on the robustness of the tail 

estimations given the stability of the tail. 

2. Scenario 2. 𝐼𝑃𝐷  >  𝑀𝑜𝑆 We are in the presence of multiple tail behaviours, then for 

performing pWCET estimations we consider the threshold of the tail at the first inconsistent 

value found with TailID, which would be on the last mixture component.   

3. Scenario 3. 𝐼𝑃𝐷  ≤  𝑀𝑜𝑆  More samples are needed to make a better estimation. If after 

performing more runs 𝐼𝑃𝐷  >  𝑀𝑜𝑆  we are in Scenario 2, while if one reaches the 
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maximum number of runs that can be performed and still 𝐼𝑃𝐷  ≤  𝑀𝑜𝑆 , tail prediction 

should not be done, otherwise the uncertainty in the estimation can be high. 

TailID has been evaluated not only on synthetic mixtures but also on real data collected from an 

AI-based application running on an NVIDIA AGX Orin, a reference embedded heterogeneous 

platform for AI applications in the automotive domain. Figure 26 below illustrates an example of 

TailID’s performance on a specific workload. 

   
Figure 26 - TailID improvement over EXP and GPD. 

The leftmost diagram shows the sample where points targeted as candidates by the algorithm are 
marked with distinct shapes and colours and the red-shaded area highlights the points ultimately 
detected as inconsistent. As many inconsistent points are detected, we fit Scenario 2. 

In the plot in the middle of Figure 26, the horizontal grey line represents the GPD EVI of the 
sample's extreme set without including the candidate points, while the dashed line indicates the 
upper bound of its CI. Each point corresponds to the GPD EVI when the candidate point 
(represented with the same colour in the first figure) is added to the extreme set, with each dashed 
line representing the upper bound of the CI. TailID iterates this process until a candidate point is 
found to be above the CI, which will be used as the new threshold from where to estimate the 
pWCET.  

Finally, the pWCET estimates are shown in the rightmost plot, confirming that detecting a low-
density mixture in the tail and, hence, choosing the appropriate threshold, produces a tighter 
upper-bound with the GPD and EXP models. 

5.2 Contention Modelling with Linear Regression 
During this project we have gathered enough evidence of the correlation between HEMs and the 
Execution Time of an Analysis Task under contention, as seen in the Table 3. With that information 
we can construct a linear regression to model the contention as a function of the HEMs. Said 
models can incorporate more than one HEM if needed to decrease modelling error. However, the 
evidence points towards heterogeneous relationships between HEMs and ET depending on the 
AT, i.e. a fixed HEM can have a different correlation with the ET depending on the AT. Therefore, 
a single general linear regression cannot cover satisfactorily the modelling of contention for any 
AT. This creates the necessity of building a linear regression model for each AT. Our experimental 
setting is a set of AT kernels and a set of contending benchmarks. An experiment consists of the 
tuple (AT, CT, CTn, CPUMap), where AT is the task under analysis, the CT is the contender, the CTn 
is the number of contenders (all of which are copies of CT), and CPUMap indicates in which core 
these contenders are located. To construct a model for each AT, we gather all possible 
combinations of CT and CTn, with the CPUMap indicating that all contenders are within the same 
cluster.  
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Table 3 - Correlation, Magnitude and Variability of selected HEMs. 

L2W 
ADJ_VAR MAG COR 

0x17 244% -2.22 0.74 

0x18 373% -2.26 0.93 

0x19 372% -1.29 0.93 

0x23 687% -3.04 0.28 

0x26 423% -3.1 0.14 

0x29 382% -2.26 0.92 

0x2b 384% -1.89 0.92 

0x36 314% -2.15 0.91 

0x52 240% -2.22 0.67 

0x56 371% -2.27 0.92 

0x60 375% -1.54 0.91 

0x61 375% -1.67 0.91 

0xa0 320% -2.14 0.91 

0x4005 211% -1.2 0.86 

0x4009 240% -2.22 0.68 

 

 

5.2.1 Modelling Approach 

In our experiments we read 119 HEMs including the Execution Time. For a fixed AT, we can reduce 
the number of variables by filtering through low correlation HEMs with the Execution Time. 
Example classification of HEMs wrt correlation is reported in Table 3 where we summarize 
Correlation, Variability, and Magnitude for the L2 Write benchmark. Even after the filtering, we 
still need to find out which combination of HEMs produces the best contention model with the 
linear regression. In order to exhaustively find the best model, we perform the next two steps. 

1. LASSO: standing for Least Absolute Shrinkage and Selection Operator, LASSO is a 
variable selection algorithm suited for linear regression models.  LASSO is a more 
sophisticated approach than simply filtering through correlation, LASSO forces the 
sum of the coefficients in a linear model to be less than a fixed value, therefore, in 
an effort to construct the best model, only the most important variables will have a 
coefficient different than 0. 

2. Best Subset Selection: once the most important HEMs are selected, we still need to 
find out which combination of HEMs produces the best model. In order to ensure 
finding the best one, the Best Subset Selection algorithms iterates through all 
possible combinations of HEMs, starting from a one HEM model, up to p HEMs, 
outputing for each case the best model, that is the one with highest R^2, the 
coefficient of determintation, which indicates the variability explained by the 
model. In our experiments, setting the maximum amount of HEMs in a model to p 
= 5 is enough to produce satisfactory models. 

5.2.2 Data Gathering 

HEM data readings are limited to the number of available PMC in the platform. In the Orin, we are 
limited to 6 HEM readings at once, although we are able to read both the HEMs of the AT and the 
contenders. The contender HEMs are aggregated upon reading, thus only one aggregated count 
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per HEM is used on the models. It is crucial to remember that two groups of HEMs read in two 
different runs cannot be compared, due to different execution conditions. Therefore, constructing 
linear regressions with the Best Subset Selection algorithm requires all HEMs to be read with every 
other HEM in order to input them to the algorithm. This is too time consuming, therefore a more 
sophisticated approach is used in this project. We resort to using HRM [16] (Hardware Reading 
and Merging) which merges different HEM readings using an anchor HEM as reference. In this case, 
because we want to maintain the relationship between ET and the rest of the HEMs, we use ET as 
an anchor. The output of HEM is a dataset where for each execution time value, we have the 
corresponding values of HEMs as if they had been read together by using order statistics.  

 

 

5.2.3 Results 

Let us show a snippet of the results we generated on the Orin. In Figure 27 below we show an 
example of the best model found by the algorithm for the AT matmulbasic_mem. In this case, the 
Best Subset Selection algorithm found that 3 HEMs were enough to model the contention, with an 
𝑅2  =  0.976. In the picture we can observe the actual formula of the linear model, with the 
regression coefficients for each HEM. 
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Figure 27 - Example correlation model for mamulbasic_mem benchmark. 

 
 
In the Table 4 below, we observe the resulting performance of the models for each AT with the 
𝑅2. Note that the majority of the models have good performance, with 43% of the models having 
an 𝑅2 > 0.9.  

Table 4 - Correlation model performance expressed as R^2. 

Kernel R^2 Kernel R^2 

im2col_l2 0.874 matmulttransp_l4 0.664 
im2col_l3 0.848 matmulttransp_mem 0.634 
im2col_l4 0.552 quicksort_l2 0.4 
im2col_mem 0.69 quicksort_l3 0.893 
matmulbasic_l2 0.737 quicksort_l4 0.924 
matmulbasic_l3 0.901 quicksort_mem 0.94 
matmulbasic_l4 0.975 relu_l2 0.783 
matmulbasic_mem 0.976 relu_l3 0.939 
matmultiled_l2 0.122 relu_l4 0.955 
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matmultiled_l3 0.789 relu_mem 0.95 
matmultiled_l4 0.859 vector_dotprod_l2 0.644 
matmultiled_mem 0.962 vector_dotprod_l3 0.923 
matmulttransp_l2 0.733 vector_dotprod_l4 0.924 
matmulttransp_l3 0.689 vector_dotprod_mem 0.966 

 

5.3 Timing interference control with CGuard 
Multicore timing interference identifies the timing penalty or impact from contending requests on 
the same hardware component, arising on multicore execution platforms with an increasing 
number of shared resources. Timing interference is a well-known concern for timing analysability 
and predictability. As such, it has been explicitly addressed in domain specific standards and 
regulations [17] [18].  

As timing interference is stemming from specific shared hardware components, the so-called 
interference channels, it can be in principle avoided or at least mitigated by controlling the way 
resources are shared across applications. The main sources of interference in the AGX Orin 
platform have been identified and explained in [1]. Available mechanisms and configurations that 
can be exploited to limit the amount of interference in the system have been discussed in 
Section 3.2.  

However, it is important to observe that it is practically impossible to remove all sources of 
interference altogether unless we opt for a fully segregated setup, with evident drawbacks on 
performance. More pragmatic approaches resort to a more holistic approach where the potential 
amount of interference is minimized by resorting to the available support at platform and system 
software level, and the residual potential interference is eventually captured at operation by 
deploying a contention regulation mechanism [10] [13] [14]. The problem of guaranteeing freedom 
form interference therefore is divided into two steps: minimization by design, and protection at 
run-time. 

In SAFEXPLAIN we embraced the same philosophy, and complemented the platform level 
solutions, at design and configuration time, with a highly modular and portable on-line monitoring 
mechanism for contention control. The tool we designed and developed in SAFEXPLAIN is called 
CGuard, which stands for contention guard. 

 

5.3.1 CGuard design  

The CGuard mechanism is inspired by existing bandwidth regulation approaches [10] [13] [14] to 
monitor and control the activity of non-critical tasks, which do not require protection from timing 
interference, and prevent them from exceeding predefined utilization thresholds for shared 
hardware resources (the source of timing interference). CGuard is used to temporarily pause the 
execution of non-critical tasks when they generate more interference than allowed, hence 
protecting the critical tasks to terminate its execution within the allocated timing budget. 

CGuard differentiates from existing approaches in the fact that it does not rely on specific 
hardware or system software support (with enhanced portability and modularity) while still 
providing comparable performance. Further, the CGuard can deploy different contention 
modeling approaches, including the one based on linear regression (see Section 5.2). 



 

43 

 

D 4.2 Platform Technologies Report 
Version  1.0 
Version 0.0 

Below we describe the process and mechanism we have defined to control the contention critical 
tasks (CT) may suffer from non-critical tasks (NCTs). The process is partially automated, and it 
encompasses a pre-operation phase and an operation phase. Each phase carries several steps. 

In the pre-operational phase, the contention thresholds must be identified for each CT. Such 
thresholds can be derived based on the quasi-final deployment scenarios or, alternatively, with 
augmented scenarios, relying on synthetic benchmarks [19] to generate a configurable amount of 
contention. The pre-operational phase may also include the test batches required for the 
derivation of the linear contention formula (see Section 5.2).  

In the operational phase, instead, the mechanism is instantiated by a set of specialized entities (or 
components) that are deployed at the same time on the execution platform.  

The CGuard mechanism builds on ROS2 support for 
callback_groups and executors, available starting from ROS2 
Humble version. These features allow two (or more) executors 
with different priorities to be mapped to the same core. In 
practice, we can define a high-priority thread that can always pre-
empt the standard (low-priority) thread responsible for the node 
nominal behavior of an NCT. The high-priority thread is associated 
to a callback that can be programmed to perform critical and 
urgent actions such as sharing the core hardware event monitors 
(HEM) values read via Performance Monitoring Counters (PMCs) 
collected through PMULib or preempt the low-priority thread, 
obtaining the same effect as forcing the component into 
throttling. The latter state corresponds to pausing the NCT for the 
necessary time to terminate the execution of the CT, or at least till 
the next monitoring window in case the configuration allows. 

ROS2 concepts for multiple executors with different priorities on the same node are summarized 
in Figure 28, relative to an NCT. As shown in the figure, we can define multiple executors and 
associate them to different threads that, in turn, are associated to specialized callbacks in the NCT 
ROS2 node. This allows the NCT to perform three main functions: (i) its nominal behavior, (ii) 
sending the PMC data to the contention control module, and (iii) entering into a paused/throttling 
mode. 

The contention control mechanism is implemented by a dedicated node on a dedicated core. The 
CGuard control node is responsible for: 

- Collecting the NCTs PMCs in a centralized place 

- Applying the formula or model to detect threshold exceedance 

- React consequently by triggering the throttle state  

- Re-enable the NCT nominal behavior when needed 

We detail below the main functionalities required from the different entities in the CGuard 
mechanism. 

Enabling monitoring and control 

The control is always on for NCTs but the controller needs to be enabled (by the CT upon each 
activation) by publishing a special value to a dedicated topic (on/off on control node). Once 
enabled, the controller can enable and disable the monitoring by publishing a special message to 

Figure 28 - Basic building block. 



 

44 

 

D 4.2 Platform Technologies Report 
Version  1.0 
Version 0.0 

a critical topic for NCTs, associated to a high-priority callback executor in charge of setting the 
status variable to ON. One topic can be used for all NCTs monitored by the CGuard module.  

HEMs collection 

When monitoring is enabled, each NCT provides values of relevant HEMs periodically by publishing 
them to a topic to which the controller node is subscribed. NCTs periodic callback for PMCs is not 
enabled if the monitoring is disabled. When enabled, the PMCs for each NCTs are reset or taken 
as a reference for the next PMC read. 

Contention model  

When enabled, the controller applies the contention model (e.g. the linear formula defined 
according to Section 5.2) to detect threshold exceedance periodically or after he receives all 
updates from all NCTs (this is modelled with critical and non-critical topics or periodic activation 
of the controller node). Updates will provide cumulative values for each HEM or the values for the 
last monitoring period only. This is a design decision and can be configured. 

Reaction 

If the formula threshold is met, the controller publishes a special message to a critical topic on 
NCTs. The topic is different from the one for enabling/disabling monitoring. One topic can be used 
for all NCTs. The callback associated to this topic has high priority in the node and implements an 
endless empty loop polling for the status variable to THR. The local variable is reset to OFF by 
another high-priority callback, triggered by the controller node when the CT is done so that the 
throttling task terminates and even the NCT resumes its nominal execution. 

 
Figure 29 - CGuard mechanism overview. 

Configuration parameters  
The CGuard mechanism offers several configuration parameters that have direct impact on the 
effectiveness and overhead of the mechanism. The main parameters comprise the PMC callback 
frequency (impacting the granularity at which the monitoring is enforced) and the monitoring 
window (setting a trade-off between protection of the CT and progresses on the NCT). 
 

5.3.2 CGuard integration  

The CGuard mechanism has been prototyped in a clean ROS2 environment and later ported and 
integrated in the SAFEXPLAIN middleware, for easy integration in the use cases. 
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The integration of CGuard has been implemented by extending the BaseApplication class in the 
middleware to provide the necessary control in terms of thread mapping to callbacks and their 
priority of execution. The BaseApplication is extended to obtain specialized middleware nodes 
for: 

- the ContentionGuard class, responsible for the implementation of the monitoring and 
control logic, including the contention modelling. The CGuard node keeps the 
functionalities of a BaseApplication with respect to system-level Diagnostic and 
Monitoring functionalities, including Alive monitoring, Health manager and Status 
manager. 

- the CriticalApplication class, which extends the standard middleware node with 
specific support to set and reset the monitoring window and trigger the contention guard 
mechanism. It also keeps the functionalities of a BaseApplication, such as Alive 
monitoring, Health manager and Status manager. 

- the NonCriticalApplication class, which models the NCT task by definingthe set of 
callbacks to support the CGuard implementation, using PMULib to read PMCs and share 
them with the ContentionGuard node. As for the other specialized node, the diagnostic 
and monitoring features are still supported. A slight modification has been applied to make 
sure that the Alive monitoring is not triggered when the NCT enters in throttling mode. 

Figure 30 below provides a schematic view of the main integration concepts for an NCT node, 
which is the most complex specialization node due to the additional number of callbacks and 
associated threads.  

 
Figure 30 - CGuard integration with Middleware. 

 

5.3.3 CGuard validation  

We have performed an initial validation of the CGuard mechanism to assess its effectiveness and 
accuracy in capturing the timing interference. To this extent we focused on high contention 
scenarios as they represent the most critical operational conditions for the CGuard. In the scope 
of the SAFEXPLAIN setup, we must consider that CGuard will be deployed in a controlled 
contention scenario, thanks to the hardware and system software configuration. In that case, 
CGuard will be instrumental to capture residual interference that may happen at operation and 
that exceeds the interference thresholds considered acceptable at analysis time. 

Experiments have been performed to assess CGuard overhead, effectiveness in protecting the CT, 
and impact (slowdown) incurred on the NCT. As CT we used the same matrix multiplication 
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function used to assess the impact of platform configuration in Section 3.2.1. As NCT, instead, we 
used an aggressive benchmark [20] trying to saturate the memory bandwidth, resulting in a more 
challenging scenario for CGuard. 

PMC callback overhead 

We measured the overhead of the PMC callback. We measured the cost of executing the PMC 
callback on the NCT under different PMC callback frequencies. While we do not expect this to 
largely affect the execution, we wanted to rule out hidden dependencies. Results, reported in 
Table 5, show the PMC callback is incurring a negligible overhead, averaging 16 micro-seconds. 

Table 5 - PMC callback overhead. 

PMC Callback [us] 200 us 500 us 1000 us Overall 

average 14.02 17.47 18.42 16.64 

median 14 17 18 14 

min 5 5 8 5 

max 30 36 32 36 

 

PMC callback cumulative impact on NCT 

The cumulative overhead brought by the PMC measuring and callback on the NCT is reported in 
Figure 31, showing the slowdown incurred on NCT execution in relation to the frequency of the 
PMC callback execution. Clearly the cumulative impact is higher with higher frequency (left) and 
diminishes as long we decrease the frequency at which the PMCs values are sent to the CGuard 
module. It is worth nothing that starting from 1 ms, a reasonable target frequency on our setup, 
the overhead on the NCT becomes negligible. 

 

 
Figure 31 - Cumulative impact of CGuard monitoring on NCT. 

 

Effectiveness of CGuard 

Despite the aggressiveness of the benchmark used as NCT, CGuard is extremely effective in 
protecting the execution of the CT from unwanted interference arising from shared memory 
accesses. It is worth noting that, to make things even worse, we deployed the NCT on the same 
Cortex A79 core cluster in the Orin [3]. 

Results in Figure 32 show the relative increase in execution time of the CT (where 1 represents the 
performance of the CT in isolation) with varying frequency of the monitoring, as implied by the 
PMC callback frequency. Even under the looser frequency scenario (1 ms) the CT only incurs a 4% 
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increase in execution time, which is in fact pretty low considering the aggressiveness of the 
deployed NCT. 

 

 
Figure 32 - CGuard effectiveness in protecting CT execution form interference. 

 

5.4 Timing characterization integration and automation 
In this third phase of the project, we worked towards an improved integration of the probabilistic 
timing analysis solution. In particular, we focused on increasing the level of automation support 
on the middleware. We aimed at providing a streamlined flow for collecting the (timing) profile of 
a generic middleware application for which we want to compute an execution time upper bound. 

We leveraged the available main elements in the PMULib integration (see Section 4.3) to support 
not only the transparent collection of timing information on a target middleware node but also to 
automate the use of the RestK probabilistic timing analysis script to derive probabilistic WCET 
bounds.  

As a main constraint, we wanted to ensure the timing analysis tool is not executed on the target 
platform but on an external device, in order not to overload the execution on the Orin. In fact, 
while the script itself is not excessively onerous in terms of computation, it also generates graphical 
representations of the analysed sample, fitted distribution and alike.  

We built on top of ROS2 DDS functionality to implement a standard ROS2 remote note that can 
connect to the Middleware PMULogger to retrieve locally all the collected information (either on-
line or off-line at specific execution stages). The remote node is then responsible to filter and 
preprocess the data obtained from the logger and call the RestK R script. A wrapper has been 
provided for the RestK script that takes care of generating different statistical plots for the 
computed distribution and the respective bounds. The plots are automatically rendered on screen 
in the remote node.  



 

48 

 

D 4.2 Platform Technologies Report 
Version  1.0 
Version 0.0 

 
Figure 33 - Timing analysis automated flow with remote node. 

Figure 33 shows the local and remote infrastructure for the analysis automation. The PMULib 
automatically and transparently collects measurement data from the execution of the analysed 
function on the middleware and logs the information on the PMULogger. The latter is directly 
accessible from a remote ROS2 node through a VPN. Data is then processed locally to obtain the 
timing distribution and bound for a reference exceedance threshold (see [1] for more details). 

The automated framework has been already deployed to support the SAFEXPLAIN open 
demonstrator, introduced in Section 6.3. 
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6 Platform- and System-level V&V support (T4.4)  
The main objectives of this task during the third phase of the project were mainly related to 
finalizing the implementation of already agreed and emerging middleware required 
functionalities, as well as improving the support for automated V&V tasks. Besides, we also 
provided continuous support to facilitate the mapping of FUSA architectural elements (and Safety 
Patterns) to middleware nodes and features, and to facilitate the porting of the case studies on 
top of the middleware and platform. In line with its overall objective, the task aimed to provide 
comprehensive support to all platform level requirements. 

In this third phase we kept consolidating our strategy around the concept of SAFEXPLAIN 
Middleware as a common ground for deploying and integrating all technological elements 
developed to support analysis and platform level concerns in general. Figure 34 provides a high-
level view, on an architectural example, of the large and diverse set of platform-level elements 
and tools that are supported by the SAFEXPLAIN execution platform. 

 

 
Figure 34 - Summary of platform-level support. 

All the elements in Figure 34 have been already introduced either in the previous Sections (e.g. 
PMULib and CGuard) or are described in other project deliverables (e.g. RestK in [1]). The 
interesting information we can draw form the picture is that the SAFEXPLAIN ecosystem includes 
a set of tools and methodologies that operate on the platform configuration at hardware (HW 
Config) and OS (SW Config) level and enable SAFEXPLAIN building blocks (FUSA Safety Patterns, 
Explainable AI, V&V support, Predictability, and Performance). The concept of Middleware is a 
critical enabler for the whole ecosystem. 
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Besides improvements and refinements to the middleware to support SAFEXPLAIN tools and 
methodologies, efforts have been devoted to realizing a concrete instantiation of the methodology 
in the form of an open demonstrator, that can be used to showcase the methodology beyond the 
scope of the consortium. 

In the following, we report on the progress achieved in the Middleware functionalities to support 
application requirements, FUSA patterns, and V&V task. Finally, we report on the specific 
configuration and additional features deployed to support an open demonstrator, showcasing all 
relevant SAFEXPLAIN results. 

6.1 SAFEXPLAIN Middleware concept 
The SAFEXPLAIN middleware has been designed to serve as a common abstraction layer to 
accommodate all platform level requirements on top of the execution platform (hardware and 
system software). This provides a consistent execution environment where all SAFEXPLAIN tools 
and methodologies are naturally integrated and can be straightforwardly exploited by the platform 
user at development, analysis, and operation.  

 
Figure 35 - SAFEXPLAIN Middleware overview. 

The middleware has been designed to capture both self-imposed requirements and all sorts of 
requirements emerging from the other work packages on the execution platform. It positions in 
between the execution platform and the user application, see Figure 35. 

The Middleware has been instrumental to: 

• Ensure compliance with AI-FMS and FUSA architectural patterns by design, avoiding the 
complexities and the pitfalls of delegating the full design to the end user, and ensuring the 
system is deployed following the selected safety pattern. 

• Facilitate the integration of the use case on top of a simplified ROS2-based framework 
where low-level configurations become transparent to the user, and the porting effort is 
often reduced to move code snippets within predefined placeholder nodes in the 
middleware. 

• Provide automation support for recurrent V&V tasks, with special focus on providing an 
efficient environment for SAFEXPLAIN verification and validation requirements and tools 
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• Seamlessly support traditional software-level monitoring solutions, by collecting functional 
and non-functional metrics at operation and support state-of-practice life-cycle monitoring 
and management.  

The Middleware has been designed and developed to support the execution of the use cases in a 
consistent environment where FUSA and explainable AI concepts are implemented. The 
middleware is also supporting the integration of DL and Explainability libraries on top of the 
hardware and software stack and consistently with the FUSA architecture and the concrete Safety 
Patterns. 

Figure 36 below represents how the middleware, on top of the combination of hardware and OS 
layer, integrates a set of tools (PMULib, CGuard, RestK, and DLLib) and methods (HW and SW 
Config) to support a wide and diverse set of requirements and features, ultimately supporting the 
whole SAFEXPLAIN methodology. 

 

 
Figure 36 - SAFEXPLAIN middleware embedded tools and methodologies. 

PMULib, CGuard and RestK are specific tools developed within this same work package. DLLib is 
the software library providing a concrete instance of EXPLib solutions; both have been developed 
in WP3 and are described in [21]. 

In the next sections we will focus on the main updates and refinements to the Middleware layer 
and will introduce the main features in the SAFEXPLAIN open demonstrator. 

 

6.2 SAFEXPLAIN Middleware support 
As introduced in the second phase of the project, the SAFEXPLAIN middleware provides several 
libraries and services to standardize access to the core functionalities of the platform and meet a 
wide set of platform-level requirements, as represented in Figure 35 and Figure 36. During the 
third phase of the project, we devoted our efforts, on one side, to enriching the functionality (and 
solve issues and bugs) of the already present features, and on the other side, to complete the 
missing parts with respect to the requirements specified in WP1 and emerged during the project. 
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Figure 37 - Middleware relevant features. 

In the following discussion, we aim to present the main updates to the software packages 
developed in the context of the SAFEXPLAIN project. To provide a complete picture of the platform 
developed, the package description will recap and update the previous discussions developed 
during the second phase of the project.  

Base Application Class. In the SAFEXPLAIN Middleware, the safety-related applications shall be 
ROS2 nodes derived from the smw_base_application::BaseApplication, which is a highly 
specialized node that gives access to the user support to the platform features, such as IPC 
communication, logging, reliable data persistency, timing analysis instrumentation, supervision, 
etc. The main relevant features offered by the middleware BaseApplication are summarized in 
Figure 37. All these features concur in the realization of a simplified design and deployment 
environment for complex and modular AI-based applications. 

Considering the typical need of a safety application of meeting strict timing constraints, the 
BaseApplication sets up (out-of-the-box) a function initialize() called once to perform 
setup of the application, callback function called run() that’s periodically called upon a user-
defined time expiration, and a terminate() function called to perform housekeeping / clean-up 
during application shutdown. The effort of the user that aims to write a BaseApplication is 
mostly towards defining those three functions. 

The state of the BaseApplications (which can be Unconfigured, Inactive, Active and Finalized) 
evolves over time thanks to the coordination of the lifecycle_manager (within 
smw_lifecycle_manager package). The overall state of the platform instead is kept by the 
state_manager (within smw_state_manager package). 

 

Lifecycle management. The lifecycle_manager ensures synchronization across all tasks within 
the platform, evaluating the preconditions required to configure, activate, and finalize an 
application. During the initialization phase, it verifies that all processes are spawned by the 
platform launcher. Before execution, it ensures that supervision mechanisms are up and running. 

Health management. The platform health manager (implemented as the health_manager node 
in the health_manager package) oversees the supervision of all BaseApplication instances, 
providing both temporal and health monitoring. Each BaseApplication reports its status during 
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the run() cycle, publishing an "alive" and "health" message. Upon publishing, an internal timer 
within the ROS 2 DDS layer is triggered. If the elapsed time between two consecutive status reports 
exceeds a user-defined threshold, DDS—via the ROS 2 RMW and RCL layers—activates a debounce 
counter within the health manager to track the violation. If this violation persists for a predefined 
number of run() cycles (also configurable by the user), the health manager initiates a predefined 
reaction based on its configuration. 

Given the target maturity of the platform software, two response mechanisms have been 
implemented: 

1. Triggering a platform state change – This instructs the state_manager to transition to 

SAFE_STATE. Applications managing platform control output variables recognize this 

state change, helping to prevent unpredictable behavior. 

2. Terminating an application – This allows the supervision node to terminate a process that 

may be disrupting resource access for other platform components or interfering with 

their functionality. 

Although not yet implemented, the current architecture is designed to support more advanced 
response mechanisms in the future, such as coordinated actions across multiple applications or 
automatic process restarts. 

Data persistence. To enhance overall safety, two mechanisms have been implemented to improve 
the detection of corrupted persistent data. 

The first mechanism is based on image hashing, designed to protect and uniquely identify recorded 
camera input data. During the build process, a hash is computed for each input frame using a 
standard algorithm and stored in a text file. At runtime, whenever an image is broadcast, it is sent 
along with its precomputed identifier. Upon reception, the hash is recomputed and compared to 
detect any corruption. 

The second mechanism ensures the integrity of configuration parameter files used by safety-
critical applications. During the build process, a Cyclic Redundancy Check (CRC) is computed for 
each configuration parameter file and stored in a .crc file alongside the original file. At runtime, 
during application startup, the user can invoke the safe_load_parameter method from 
smw_persistency, which loads the parameter file, computes its CRC, and compares it against the 
stored CRC value. If a mismatch is detected, an error is triggered. 

Data communication support. Additionally, in the third phase of the project, the communication 
library has been enhanced with the introduction of the SynchronizerServiceProxy. This service 
enables the synchronization of multiple messages from different sources based on a numerical 
attribute. It has been extensively deployed, with different objectives, across various applications, 
such as to synchronize: 

• Left and right camera frames according to their timestamps in the railway use case. 

• Outputs of two redundant nodes according to the input image ID, as in the demonstrator. 

 

6.2.1 Support to FUSA Architecture 

Supporting FUSA architectural patterns by design is one of the main features of the SAFEXPLAIN 
middleware. In this third phase of the project, we devoted our effort to improving and refining the 
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modeling of the Safety Patterns in terms of components and connections between them, data 
types, and functionalities. 

In the following, we provide a high-level mapping between architectural components and 
middleware nodes in a reference implementation. Considering that the functional-safety scenario 
of the use cases closely matches that of Safety Pattern 2 [2] in terms of functionality and role of 
the AI components, we will focus our review on the instantiation of that pattern.  

We consider a reference setup which includes instantiations of the required software packages, 
communication interfaces, instrumentation, and a standardized parameter configuration, 
ensuring compliance with the selected safety pattern. 

 
Figure 38 - Reference safety architecture pattern for Safety Pattern 2 (from [2]) 

Figure 38 illustrates the reference safety architecture for Safety Pattern 2. The architectural 
components (blocks) in the architectural design correspond to software packages and classes in 
the middleware deployment view.  

 

 
Figure 39 - Reference template instantiation for Safety Pattern 2. 

 

In the reference Safety Pattern template instantiation (see Figure 39), these packages and classes 
can be considered as partially empty boxes that only need to be augmented with the specific 
semantics of the concrete system. The main software elements in the middleware are the 
following: 
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• smw_ml_constituent: contains the code for all AI/ML constituents, with multiple 
instances meeting the L0 diverse redundancy requirements. Each AI/ML constituent 
(represented by the classes DLConstituent_01 and DLConstituent_02 in the provided 
example) extends the ROS2 node concept with specific SAFEXPLAIN features and 
functionalities, inheriting from smw_base_application::BaseApplication. The user is 
expected to provide the semantics for the DL model, as well as the data pre-processing and 
post-processing modules, within this package. 

• smw_decision_function: contains the DecisionFunction class, that shall be customized 
according to the use case; it takes the output from all redundant AI/ML constituents and 
supervision components to provide a unified decision to the safety control component. 

• smw_l1_monitor and smw_supervision_function: accommodate the supervision 
components that complement the DL model's diverse redundancy. The latter component 
comprises AI-specific diagnostic functions, whereas the former provides standard FUSA 
diagnostic and monitoring support. These components detect runtime errors, model 
insufficiencies, anomalies in models and data, and other potential issues. 

• smw_health_manager: Implements platform-level diagnostics and monitoring (L2 
mechanisms) through the health_manager daemon. The only requirement on the end 
user is the definition of a configuration file for determining triggering conditions and 
reactions to detected issues. Once configured, the health_manager is responsible for 
triggering the necessary reactions to ensure system integrity. 

• smw_safety_control: Contains the code for implementing system control and actuation 
logic. In the reference implementation, it simply forwards the output from the node that 
spawns the DecisionFunction class. In a more complex instantiation of the pattern, the 
safety control package is eventually connected to the traditional Non-AI subsystem, which 
is use-case dependent. 

• Non-AI Subsystem: this component is stubbed in the reference middleware template for 
Safety Pattern 2 but it will simply include the deployment of a set of nodes extending the 
smw_base_application::BaseApplication and embedding a use case specific 
semantics. 

 

6.2.2 Support to Verification and Validation  

The Middleware software architecture accommodates also standard Verification & Validation 
concepts, in a consistent way with the AI-FSM concepts (see Figure 40). As already consolidated in 
the second phase of the project, the middleware software architecture supports standard 
verification and validation tests, classified as: 

• Unit tests: Focus on individual code components, such as functions or objects. 

• Component tests: Ensure that a module (e.g., a ROS2 node) behaves correctly by testing 

its interfaces without examining internal implementation details. 

• Integration tests: Validate that multiple system modules work together, ensuring that 

applications can effectively utilize the platform’s core functionalities. 
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Figure 40 - Overview of the verification and validation process for the platform development (from [1]). 

 

During the third phase of the project, we have increased the test coverage for all platform libraries, 
but complete coverage was not feasible due to time constraints, and therefore we prioritized the 
most critical components. Tests have been set up to be executed automatically within Docker 
containers as part of the CI/CD pipeline before merging updates into the main stable branch. 
Additionally, we conducted regular testing on the target hardware (NVIDIA Orin) following each 
major update to ensure smooth operation. This is crucial since behavioral differences may arise 
between the platform running on a standard desktop PC (x86-64 architecture) and the NVIDIA Orin 
(ARM64 architecture). 

From a methodological perspective, we employed three primary types of testing: static code 
analysis, requirement-based testing, and fault-injection testing. 

Static code analysis involves reviewing the source code without execution to detect potential 
issues and enforce coding standards early in development. An example of tool we’ve developed 
and used for static code analysis was the smw_apicheck.py (located in the scripts/ folder), which 
ensures that API definitions remain consistent between Python and C++ implementations. This 
verification helps prevent integration issues arising from function signature mismatches, given that 
C++ and Python applications run concurrently on the platform. 

Requirement-based testing was the primary methodology used during the project to verify 
whether the libraries met their specified requirements. To enhance traceability, we’ve added a 
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detailed description, expected results, and a reference to the corresponding requirements for 
those kinds of tests. 

To support application developers in testing their packages within the platform context, the 
smw_testing package provides valuable mocking tools and tailored testing utilities, such as: 

• topic_statistics_listener: Verifies the frequency of message publishing by an 

application to ensure expected behavior and performance targets have been achieved. 

• param_update_tracker: confirms that a specific application parameter holds the correct 

value, useful, for example, to verify if the applications have been correctly configured by 

the user and if the transitions into a safe state take place within a defined tolerance time 

interval. 

• utilities_from_cli: Exposes various command-line interface (CLI) utilities within test 

scripts, facilitating testing automation. 

Finally, fault-injection testing was conducted to assess the system's error-handling capabilities, 
particularly focusing on the Platform Health Manager. By simulating faults, we evaluated the 
platform's response to availability issues and health-related reporting, thereby increasing 
confidence in the robustness of software module integration. 

In summary, during the third phase of the project, we focused on enhancing the SAFEXPLAIN 
middleware by expanding its functionality, addressing existing issues, and implementing the 
remaining features specified in WP1. Key additions include improved supervision and health 
monitoring mechanisms, enhanced data integrity validation through image hashing and CRC 
checks, the introduction of the SynchronizerServiceProxy for efficient message 
synchronization, and extended testing tooling. With these developments, it has successfully met 
all the requirements established during WP1 for the platform.  

6.3 Demonstrator  
The demonstrator aims to provide a simplified yet comprehensive representation of a reference 
AI-based system, highlighting SAFEXPLAIN technologies and tools, together with the platform's key 
resources. It was initially conceived as Proof of Concept (PoC) to facilitate the identification of 
potential issues, strengths, and areas for improvement, and to guide the implementation of 
platform features across three application domains: aerospace, automotive, and railway. During 
the second and third phase of the project, it matured into a more robust and consolidated example 
of application of the SAFEXPLAIN approach and is now considered as an open demonstrator that 
can be exploited to share and promote the project results outside the consortium.  

The demonstrator models an application scenario that meets Safety Pattern (SP) 2 [2] 
specifications where the AI component is not exclusively responsible for the system behavior but 
can contribute to the decision process and ultimately on the operation. The reasons for going for 
SP2 were: first, that SP2 is the simpler pattern where the AI component inherits criticality 
concerns; second, the SP2 was closely matching the operational scenarios of most of the use cases. 
It was therefore natural to consider SP2 as the initial step for providing a reference setup. This 
reference setup includes instantiations of the required software packages, communication 
interfaces, instrumentation, and a standardized parameter configuration, ensuring compliance 
with the selected safety pattern. 
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Figure 41 - Overview of SAFEXPLAIN open demonstrator. 

 

The demonstrator includes a representative instance or prototype implementation of all the 
building blocks of SP2 that are also tailored to the specific functional behavior. The demonstrator 
was developed in close collaboration with WP2, WP3, and WP5. The resulting system, illustrated 
in Figure 41, models a satellite position tracker sub-system, featuring the following components: 

• Two diverse and redundant AI neural networks for object identification. 

• A supervision function based on Variational Autoencoders (VAEs) to detect anomalies in 

both input-output data and internal model behavior. 

• An L1 Diagnostics & Monitoring module to verify the temporal consistency of input and 

output data. 

• A decision function implementing an ensemble method that synchronizes data from 

different models, aligns detections, and produces a confidence-weighted output. 

• A safety control module, which is meant to use the outcome of the decision function, 

together with diagnostic information, and ideally the result of a non-AI algorithm, to 

elaborate the command of be set to the system actuators (thrusters, gyroscopes, etc.). In 

the absence of a real or simulated actuator, the control module elaborates the decision 

function’s results as a simple validation step. 

Details on the implementation of each component — particularly the AI-related modules and 
supervisors — including an assessment of their maturity, obtained outcomes, and limitations, are 
provided in the deliverables for WP3 [21] and WP5 [22]. 

The system has been configured to execute under PM0 and to deploy a mapping that enforces a 
clear separation between critical components (decision function and safety control operating 
within a functional pipeline), monitoring components, and (segregated) diverse and redundant 
instances of the ML component. 

Clearly, all custom software modules within the demonstrator rely on platform resources for 
execution control and monitoring. In particular, the L2 Diagnostics & Monitoring layer has been 
configured to perform real-time monitoring of all safety-relevant platform nodes. This setup 
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demonstrates how a monitoring violation can trigger a system-wide response designed to 
transition the platform to a Safe State.  

6.3.1 Demonstrator functionalities 

The baseline system deployment and operation have been also extended to provide a set of useful 
functionalities to support the showcasing of the internal information and events happening in the 
system to an external audience. 

To support the execution of the demonstrator, the following software components have been 
developed: 

• Camera Node (part of the smw_sensors package): This software component is designed to 

replay data for the case studies, specifically tailored for use in the demonstrator. It enables 

the platform's software modules to receive a continuous or step-by-step stream of input 

data from a camera, with the ability to pause playback as needed. Additionally, the tool 

allows users to switch the data source folder, which is particularly useful for automated 

fault-injection testing and performance evaluation. Furthermore, applications can utilize 

the ros2bag package for data recording, and other types of data may also be reproduced 

as needed. 

• Visualizer Node (part of the smw_visualizer package): This component is responsible for 

displaying output and diagnostic data from the platform during execution. The visualizer 

node can operate either locally on the AGX Orin board or remotely on a desktop connected 

to the board through a private network. In the latter case, it leverages ROS 2's distributed 

communication framework to minimize interference with the platform’s software 

execution, particularly in terms of CPU load and memory consumption. 

• Remote controller: remotely connects via VPN to the camera node and allows to control 

the execution from a remote ROS2 node. 

The visualizer node has been further generalized to allow overhearing all the information shared 

among nodes through topics in the middleware, which is especially useful when deployed on the 

remote host. The visualizer can be straightforwardly instantiated just by providing the topic 

identifier. 

We also developed a visualizer specialization for supporting the timing analysis flow in an 

automated way, as discussed in Section 5.4, grouping on the same remote window both 

measurements from the PMULogger and automatically generated plots for the probability 

distribution and probabilistic bounds. 

As an example, Figure 42 illustrates how the visualizer node aids in showcasing the demo results 

while also providing insights into the platform software's operation. This figure presents the 

synchronized output of the two redundant AI neural networks for a given input image, which is 

subsequently used to elaborate the final result in the decision function. Clearly, the visualizer can 

be tailored to each use case to display any internal variable of interest. 
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Figure 42 - Visualization node for the outputs of the redundant models. 

 

 

 



 

 

7 Acronyms and Abbreviations 
COTS Commercial Off The Shelf 

CUDA Compute Unified Device Architecture 

FUSA Functional Safety 

GPU Graphics Processing Unit 

HEMs Hardware Event Monitor 

HW Hardware 

OS Operating System 

PMC Performance Monitoring Counter 

PMU Platform Monitoring Unit 

ROS2 Robotic Operating System version 2 

SW Software 

V&V Verification and Validation 
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9 Annex 1 – Updated PMULib interface 
In this annex updated PMULib interfaces are described. The functional documentation refers to 
the following custom types and constants: 

typedef int pmu_result 

static const pmu_result  A78AE_PMU_RESULT_OK = 0 

 static const pmu_result  A78AE_PMU_RESULT_ERR = -1 

9.1 Function Documentation 

9.1.1 a78ae_pmu_init() 

pmu_result a78ae_pmu_init  ( void   )  

Initializes the library. Must be called before using any other library function. Must be called only 
once. 

9.1.2 a78ae_pmu_configure() 

pmu_result a78ae_pmu_configure  ( unsigned int  mask,  

  const unsigned 
int *  

events,  

  const unsigned 
int  

mode  

 )   

Configure the counters specified in mask to count the events specified in the events array.  

Parameters 

mask 
A mask of the counters to reconfigure in this call. If the nth bit is set, the nth will be 
configured to count events[m]  

events 
Array of event IDs to count. It must contain exactly as many items as bits are set in 
<mask>.  

mode 

Contains the configuration mode. Should be the OR value of these three pairs of 
configurations:  

• PMU_MODE_PER_THREAD, PMU_MODE_PER_PROCESS: count per process or 
per thread. Default: per process  

• PMU_MODE_SCOPE_OWN_COUNT, PMU_MODE_SCOPE_ALL_PROCESSES: 
count own (thread or process) events, or all cores. Default: own. Note all 
requires root permission  

• PMU_MODE_CORE_ANY, PMU_MODE_CORE_FIXED: count events in any core 
or for a fixed core. Default: any core. Fixed core is configured in the lower bits, 
or'ing the core if to the configuration.  

Returns 
A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise. 
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9.1.3 a78ae_pmu_counters_available() 

unsigned a78ae_pmu_counters_available  ( void   )  

Number of counters available in the platform for simultaneous use.  
Returns 
The number of counters that can be used simultaneously in the platform.  

9.1.4 a78ae_pmu_read_counters() 

9.1.5  

pmu_result a78ae_pmu_read_counters  ( unsigned int  mask,  
  uint32_t *  values  

 )   

Read the counters specified in mask and store its values in the supplied array.  

Parameters 

mask 
A mask of the counters to read in this call. If the nth bit is set to one, the value 
of counter n will be written to values[m]  

values 
Array where counter values will be stored. It must contain exactly as many 
items as bits are set in <mask>.  

Returns 
A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.  

9.1.6 a78ae_pmu_reset_counters() 

pmu_result a78ae_pmu_reset_counters  ( unsigned int  mask )  

Reset the counters specified in mask.  

Parameters 

mask A mask of the counters to reset in this call.  

Returns 

A78AE_PMU_RESULT_OK if the operation was successful, a different value otherwise.  

9.1.7 a78ae_pmu_start() 

void a78ae_pmu_start  ( unsigned int  mask )  
 

inline  

Starts counters, causing them to increment when the configured event takes place. Callers MUST 
NOT assume that all counters are started at the same time.  

Parameters 

mask Counters to start. Nth counter will be started if the nth bit is set.  

file:///C:/Users/Mikel/Desktop/BSC/safexplain/new_pmulib/html/a78ae-pmu_8h.html%23a8b12b7e19a3d620aff44ace6227e008f
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9.1.8 a78ae_pmu_start_global() 

void a78ae_pmu_start_global  ( void   )  
 

inline  

Starts all counters globally, allowing all of them to increment. Whether this call is equivalent to 
pmu_start with all bits set is implementation dependent, but its usage is preferred over the 
latter, as most PMUs support a global enable/disable in hardware which will be used by this 
function (if present) but never will for the non-global variant.  

9.1.9 a78ae_pmu_stop() 

void a78ae_pmu_stop  ( unsigned int  mask )  
 

inline  

Stops counters, preventing them from incrementing. Callers MUST NOT assume that all counters 
are stopped at the same time.  

Parameters 

mask Counters to stop. Nth counter will be stopped if the nth bit is set.  

9.1.10 a78ae_pmu_stop_global() 

void a78ae_pmu_stop_global  ( void   )  

Stops all counters globally, preventing all of them from incrementing. Whether this call is 
equivalent to pmu_stop with all bits set is implementation dependent, but its usage is preferred 
over the latter, as most PMUs support a global enable/disable in hardware which will be used by 
this function (if present) but never will for the non-global variant.  

9.2 Macro Documentation 
The library provides definitions for event values and for configuration modes. 

Macro Value 

PMU_MODE_PER_THREAD 0 

PMU_MODE_PER_PROCESS (1<<8) 

PMU_MODE_SCOPE_OWN_COUNT 0 

PMU_MODE_SCOPE_ALL_PROCESSES (1<<9) 

PMU_MODE_CORE_ANY 0 

PMU_MODE_CORE_FIXED (1<<10) 

 

Library event values can be configured using the event ID as specified in the manual, or the macros 
below. 

Macro Value 

PMU_A78AE_SW_INCR 0x0 

PMU_A78AE_L1I_CACHE_REFILL 0x1 

PMU_A78AE_L1I_TLB_REFILL 0x2 
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PMU_A78AE_L1D_CACHE_REFILL 0x3 

PMU_A78AE_L1D_CACHE 0x4 

PMU_A78AE_L1D_TLB_REFILL 0x5 

PMU_A78AE_INST_RETIRED 0x8 

PMU_A78AE_EXC_TAKEN 0x9 

PMU_A78AE_EXC_RETURN 0x0A 

PMU_A78AE_CID_WRITE_RETIRED 0x0B 

PMU_A78AE_BR_MIS_PRED 0x10 

PMU_A78AE_CPU_CYCLES 0x11 

PMU_A78AE_BR_PRED 0x12 

PMU_A78AE_MEM_ACCESS 0x13 

PMU_A78AE_L1I_CACHE 0x14 

PMU_A78AE_L1D_CACHE_WB 0x15 

PMU_A78AE_L2D_CACHE 0x16 

PMU_A78AE_L2D_CACHE_REFILL 0x17 

PMU_A78AE_L2D_CACHE_WB 0x18 

PMU_A78AE_BUS_ACCESS 0x19 

PMU_A78AE_MEMORY_ERROR 0x1A 

PMU_A78AE_INST_SPEC 0x1B 

PMU_A78AE_TTBR_WRITE_RETIRED 0x1C 

PMU_A78AE_BUS_MASTER_CYCLE 0x1D 

PMU_A78AE_COUNTER_OVERFLOW 0x1E 

PMU_A78AE_CACHE_ALLOCATE 0x20 

PMU_A78AE_BR_RETIRED 0x21 

PMU_A78AE_BR_MIS_PRED_RETIRED 0x22 

PMU_A78AE_STALL_FRONTEND 0x23 

PMU_A78AE_STALL_BACKEND 0x24 

PMU_A78AE_L1D_TLB 0x25 

PMU_A78AE_L1I_TLB 0x26 

PMU_A78AE_L3D_CACHE_ALLOCATE 0x29 

PMU_A78AE_L3D_CACHE_REFILL 0x2A 

PMU_A78AE_L3D_CACHE 0x2B 

PMU_A78AE_L2TLB_REFILL 0x2D 

PMU_A78AE_L2TLB_REQ 0x2F 

PMU_A78AE_REMOTE_ACCESS 0x31 

PMU_A78AE_DTLB_WLK 0x34 

PMU_A78AE_ITLB_WLK 0x35 

PMU_A78AE_LL_CACHE_RD 0x36 

PMU_A78AE_LL_CACHE_MISS_RD 0x37 

PMU_A78AE_L1D_CACHE_LMISS_RD 0x39 

PMU_A78AE_OP_RETIRED 0x3A 

PMU_A78AE_OP_SPEC 0x3B 

PMU_A78AE_STALL 0x3C 

PMU_A78AE_STALL_SLOT_BACKEND 0x3D 

PMU_A78AE_STALL_SLOT_FRONTEND 0x3E 

PMU_A78AE_STALL_SLOT 0x3F 
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PMU_A78AE_L1D_CACHE_RD 0x40 

PMU_A78AE_L1D_CACHE_WR 0x41 

PMU_A78AE_L1D_CACHE_REFILL_RD 0x42 

PMU_A78AE_L1D_CACHE_REFILL_WR 0x43 

PMU_A78AE_L1D_CACHE_REFILL_INNER 0x44 

PMU_A78AE_L1D_CACHE_REFILL_OUTER 0x45 

PMU_A78AE_L1D_CACHE_WB_VICTIM 0x46 

PMU_A78AE_L1D_CACHE_WB_CLEAN 0x47 

PMU_A78AE_L1D_CACHE_INVAL 0x48 

PMU_A78AE_L1D_TLB_REFILL_RD 0x4C 

PMU_A78AE_L1D_TLB_REFILL_WR 0x4D 

PMU_A78AE_L1D_TLB_RD 0x4E 

PMU_A78AE_L1D_TLB_WR 0x4F 

PMU_A78AE_CACHE_ACCESS_RD 0x50 

PMU_A78AE_CACHE_ACCESS_WR 0x51 

PMU_A78AE_CACHE_RD_REFILL 0x52 

PMU_A78AE_CACHE_WR_REFILL 0x53 

PMU_A78AE_CACHE_WRITEBACK_VICTIM 0x56 

PMU_A78AE_CACHE_WRITEBACK_CLEAN_COH 0x57 

PMU_A78AE_L2CACHE_INV 0x58 

PMU_A78AE_L2TLB_RD_REFILL 0x5C 

PMU_A78AE_L2TLB_WR_REFILL 0x5D 

PMU_A78AE_L2TLB_RD_REQ 0x5E 

PMU_A78AE_L2TLB_WR_REQ 0x5F 

PMU_A78AE_BUS_ACCESS_REQ 0x60 

PMU_A78AE_BUS_ACCESS_RETRY 0x61 

PMU_A78AE_MEM_ACCESS_RD 0x66 

PMU_A78AE_MEM_ACCESS_WR 0x67 

PMU_A78AE_UNALIGNED_LD_SPEC 0x68 

PMU_A78AE_UNALIGNED_ST_SPEC 0x69 

PMU_A78AE_UNALIGNED_LDST_SPEC 0x6A 

PMU_A78AE_LDREX_SPEC 0x6C 

PMU_A78AE_STREX_PASS_SPEC 0x6D 

PMU_A78AE_STREX_FAIL_SPEC 0x6E 

PMU_A78AE_STREX_SPEC 0x6F 

PMU_A78AE_LD_SPEC 0x70 

PMU_A78AE_ST_SPEC 0x71 

PMU_A78AE_DP_SPEC 0x73 

PMU_A78AE_ASE_SPEC 0x74 

PMU_A78AE_VFP_SPEC 0x75 

PMU_A78AE_PC_WRITE_SPEC 0x76 

PMU_A78AE_CRYPTO_SPEC 0x77 

PMU_A78AE_BR_IMMED_SPEC 0x78 

PMU_A78AE_BR_RETURN_SPEC 0x79 

PMU_A78AE_BR_INDIRECT_SPEC 0x7A 

PMU_A78AE_ISB_SPEC 0x7C 
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PMU_A78AE_DSB_SPEC 0x7D 

PMU_A78AE_DMB_SPEC 0x7E 

PMU_A78AE_EXC_UNDEF 0x81 

PMU_A78AE_EXC_SVC 0x82 

PMU_A78AE_EXC_PABORT 0x83 

PMU_A78AE_EXC_DABORT 0x84 

PMU_A78AE_EXC_IRQ 0x86 

PMU_A78AE_EXC_FIQ 0x87 

PMU_A78AE_EXC_SMC 0x88 

PMU_A78AE_EXC_HVC 0x8A 

PMU_A78AE_EXC_TRAP_PABORT 0x8B 

PMU_A78AE_EXC_TRAP_DABORT 0x8C 

PMU_A78AE_EXC_TRAP_OTHER 0x8D 

PMU_A78AE_EXC_TRAP_IRQ 0x8E 

PMU_A78AE_EXC_TRAP_FIQ 0x8F 

PMU_A78AE_RC_LD_SPEC 0x90 

PMU_A78AE_RC_ST_SPEC 0x91 

PMU_A78AE_L3_CACHE_RD 0xA0 

PMU_A78AE_CNT_CYCLES 0x4004 

PMU_A78AE_STALL_BACKEND_MEM 0x4005 

PMU_A78AE_L1I_CACHE_LMISS 0x4006 

PMU_A78AE_L2D_CACHE_LMISS_RD 0x4009 

PMU_A78AE_L3D_CACHE_LMISS_RD 0x400B 

PMU_SCF_BUS_ACCESS 0x10190 

PMU_SCF_BUS_ACCESS_RD 0x10600 

PMU_SCF_BUS_ACCESS_WR 0x10610 

PMU_SCF_BUS_ACCESS_SHARED 0x10620 

PMU_SCF_BUS_ACCESS_NOT_SHARED 0x10630 

PMU_SCF_BUS_ACCESS_NORMAL 0x10640 

PMU_SCF_BUS_ACCESS_PERIPH 0x10650 

PMU_SCF_BUS_CYCLES 0x101d0 

PMU_SCF_CACHE 0x10f20 

PMU_SCF_CACHE_ALLOCATE 0x10f00 

PMU_SCF_CACHE_REFILL 0x10f10 

PMU_SCF_CACHE_WB 0x10f30 

9.3 Usage Example 
#include <stdio.h> 
#include <stdlib.h> 
#include "a78ae-pmu.h" 
 
int main() { 
 // The mask specifies if each counter will be used or not. 1 to set, 0 to reset. 
 const unsigned int mask = 0b111111; 
 // Event numbers in accordance with the A78-AE manual. You can also use the #defined 
events in a78ae-pmu.h 
 const unsigned int events[] = {0x3, 0x8, 0x11, 0x17, 0xA0, 0x400B }; 
 // Array which will save the values collected by the library 
 int values[6]; 
 // First, initialize. Only once. 
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 a78ae_pmu_init(); 
 int core_id = 1; 
 if(a78ae_pmu_configure(mask, events, PMU_MODE_PER_THREAD | PMU_MODE_SCOPE_ALL_PROCESSES| 
PMU_MODE_CORE_FIXED | core_id) != 0) { 
  exit(-1); 
 } 
 // Reset and start counting 
 if (a78ae_pmu_reset_counters(mask) != A78AE_PMU_RESULT_OK) { 
  exit(-1); 
 } 
   
 if (a78ae_pmu_start_global() != A78AE_PMU_RESULT_OK) { 
  exit(-1); 
 } 
 volatile int tmp=0; 
 for (volatile int i = 0; i< 100000000; i++) 
  tmp += i; 
 // Stop and read values 
 if (a78ae_pmu_stop_global() != A78AE_PMU_RESULT_OK) { 
  exit(-1); 
 } 
 if ( a78ae_pmu_read_counters(mask, values) != A78AE_PMU_RESULT_OK) { 
  exit(-1); 
 } 
 printf("%d,%d,%d,%d,%d,%d\n", values[0],  values[1],  values[2],  values[3],  values[4],  
values[5] ); 
 
} 
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