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Executive Summary 
This report presents the outcomes of integrating AI safety components into a Minimum Viable 
Product (MVP) demonstrator and most importantly three domain-specific demonstrators—space, 
automotive, and railway—as part of the SAFEXPLAIN project, funded by the EU Horizon Europe 
programme. Each demonstrator applies Safety Pattern 2, where AI contributes to decision-making 
but does not solely determine system behaviour, ensuring increased traceability and safety. 

In the space use case, pose estimation for satellite docking is achieved through diverse AI models 
and redundancy, integrating real-time diagnostics and anomaly detection. The automotive 
demonstrator implements DS3.1-compliant logic using YOLOS-Tiny and VAE-based supervision to 
detect pedestrians and ensure braking safety in simulated driving scenarios on embedded 
hardware. The railway case study combines stereo vision with depth estimation to identify 
obstacles on tracks, leveraging multiple redundancy strategies and visual simulation in Unreal 
Engine. 

Across all domains, the systems integrate layered diagnostics, real-time supervisor monitoring, 
fallback mechanisms, and embedded deployment on platforms like Jetson Orin AGX. These results 
demonstrate the portability, robustness, and explainability of the SAFEXPLAIN safety framework 
in safety-critical, AI-enabled applications. 

 

  



1 Introduction 
This deliverable (D5.2) presents the status of the SAFEXPLAIN case studies, focusing on the 
integration and porting of system components developed across the project. It demonstrates how 
the Safety Pattern 2 (SP2) architecture—defined in earlier work—has been applied to an MVP 
demonstrator and three demonstrators in representative domains: space, automotive, and 
railway. 

The objective of this phase is to bring together AI components, diagnostic mechanisms, supervision 
functions, and control logic into cohesive, operational demonstrators. Emphasis is placed on 
achieving modular integration, ensuring platform compatibility (including embedded execution), 
and preparing each case study for validation. 

D5.2 builds on preparatory work conducted in WP2, WP3, WP4, and early WP5 activities. The 
reported results mark a significant step toward the final evaluation and verification stages, 
confirming that integration is on track and the system’s behaviour is reproducible and portable 
across domains. 

2 MVP Demonstrator 
The MVP demonstrator aims to provide a simplified yet comprehensive representation of a 
reference AI-based system, highlighting SAFEXPLAIN technologies and tools, together with the 
platform's key resources. Initially conceived as Proof of Concept (PoC) to guide the implementation 
of platform features, it matured into a more robust and consolidated example of application of 
the SAFEXPLAIN approach and is now considered an open demonstrator that can be exploited to 
share and promote the project results outside the consortium. 

The demonstrator models an application scenario that meets Safety Pattern 2 (SP2[1]) 
specifications, where the AI component is not exclusively responsible for the system behaviour but 
can contribute to the decision process and ultimately to the operation. This reference setup 
includes instantiations of the required software packages, communication interfaces, 
instrumentation, and a standardized parameter configuration, ensuring compliance with the 
selected safety pattern. 

As a close collaboration among WP2, WP3, WP4 and WP5, further details of the implementation 
and demonstrator feature are available in the deliverables D4.2[2] and D3.3[3]. 



2.1 Architecture 

 
Figure 1. Demonstrator architecture 

Figure 1 shows the architecture of the demonstrator system, integrating the AI models and all 
components required by the safety pattern to ensure the system safety. A lightweight 
implementation was preferred to showcase the functioning without introducing excessive 
complexity. The details are reported in the following subsections. Accordingly, the Demo is 
focusing on the AI-subsystem alone and does not consider a traditional non-AI sub-system, which 
is instead the main responsible for the system operation according to the SP2 semantics. Non-AI 
subsystems safety can be guaranteed and assessed within the traditional Functional Safety 
approach and thus not in focus of this demonstrator. 

The input stream of the system comprises timeseries sequences of images generated from the 
dataset pipeline of AIKO[4]. These datasets simulate a spacecraft agent navigating on trajectories 
and taking images with a monocular grayscale camera. In the field of view, a target satellite is 
present and represents the aim of the object detection system deployed in the demonstrator. 

2.1.1 AI/ML constituent 
The AI (DL) models employed for the foundational constituents of the system were chosen among 
open-source object detection models, to allow full accessibility of the whole system. They employ 
Deep Learning techniques (Convolutional Neural Networks – CNN – and Multilayer Perceptron 
MLP in particular) to identify in an image some specific targets that they were trained to recognise. 
In the vast range of choices, lightweight and easily portable models were preferred, and were 
selected from the TorchVision library to facilitate compatibility with the SAFEXPLAIN middleware. 

Two different models are trained for object detection and run in parallel and independent nodes: 

• SSDLite: ssdlite320_mobilenet_v3_large, a fast model relying on a MobileNet backbone, 
with reduced computational needs which is optimized for embedded environments, and 
thus particularly suitable in the project context (see documentation at [5]) 

• Faster CNN: fasterrcnn_mobilenet_v3_large_320_fpn, also using a MobileNet backbone. 
This model is more accurate than the SSDLite but slower, since it requires more resources 
at inference time (see [6]). 



2.1.2 Diverse redundancy 
The redundancy of the AI/ML constituent is ensured by the presence of two DL models, with 
different architectures and separate training, that provide the same functionality to the system 
(see previous subsection). 

They are implemented in two different ROS2 nodes, which are segregated by the SAFEXPLAIN 
middleware, and their outputs go through a process of comparison and reconciliation carried out 
in the Decision function. 

2.1.3 L1DM mechanisms 
The L1 Diagnostics and Monitoring component is required to monitor inputs and AI constituents 
to ensure that runtime errors and model insufficiencies do not harm the system’s safety goals. In 
this case, the component implements two mechanisms: 

• Input temporal consistency: this technique implements verification on two consecutive 
input images, ensuring that their difference is below a certain threshold estimated from 
the training dataset of the system; this allows to detect lost frames, sensor lagging and 
faults and to avoid that the system is fed with inconsistent, and thus erroneous, input. 

• Verification of the AI/ML constituent: the health status reported by the two nodes 
implementing the AI/ML constituent is also received by the component and constant 
monitoring is performed. 

All results of the monitoring process are fed to the Decision function, which integrates them with 
the other outputs from supervisory monitors and AI models to provide a consistent and informed 
system output. 

2.1.4 L2DM mechanisms 
L2 Diagnostic and Monitoring mechanisms aim to detect runtime errors on the platform hardware 
and software components. The health of all the other components is constantly shared and 
collected by the L2DM component, which provides the information to the Decision function node 
for verification of the overall execution. 

2.1.5 Supervision function 
Supervision function component consists of several supervisory monitors which have also been 
described in deliverable D3.3 from the theoretical perspective. In this section, technical details of 
that realization in the MVP demo are provided. 

2.1.5.1 Anomaly detectors 
The ‘detect_anomaly’ function takes an input and a pre-trained Variational Autoencoder (VAE) 
descriptor model, preprocesses the image, runs it through the model to get a reconstruction, and 
then calculates a Mean Squared Error (MSE) between the original and reconstructed data. This 
MSE error serves as an anomaly score – higher scores indicate more likely anomalies.  

3 separate VAE models have been trained to handle domain uncertainty related anomalies of input 
images, neuron activation patterns (extracted from a selected layer in SSDLite model 
head.classification_head.module_list[0][0][2]), and a cropped detected object. They are named 
input, model activation and output anomaly detectors respectively. 



2.1.5.2 Surrogate model 
Surrogate model is implemented as a trained Random Forest (RF) regression model to predict 
object bounding boxes based on traditional image features. It extracts features related to key 
points, Gaussian Mixture Model (GMM) parameters, and Local Binary Patterns (LBP) from the 
same input satellite images. The trained surrogate RF model provides interpretable logics that can 
be tested and certified during the AI-FSM phases. 

2.1.5.3 Uncertainty-aware model  
This uncertainty-aware model builds upon the main model (SSDLite) architecture by incorporating 
dropout layers into its feature maps. This addition enables the estimation of epistemic uncertainty 
in the model’s predictions. Leveraging the MobileNet backbone of the original SSDLite, the model 
extracts feature and then applies dropout to each feature map before passing them to the SSD 
prediction heads. To quantify uncertainty, the model runs multiple stochastic forward passes (with 
varying dropout masks) on the same input images. The resulting distribution of detected object 
bounding boxes is then used to compute a 95% Confidence Interval (CI95), represented by inner 
and outer bounding boxes that define the range of likely object locations. 

2.1.6 Decision Function 
The decision function is built based on an ensemble model to aggregates the outputs of multiple 
prediction instances, combining detected object bounding boxes and associated anomaly scores. 
The function operates by comparing predictions against a pre-computed baseline stored in a JSON 
file. This baseline represents the expected boundaries for in-distribution data and serves as a 
reference for anomaly detection.  A metric calculation based on this baseline is performed during 
initialization. 

The function receives prediction outputs (bounding boxes, labels, confidence scores) from diverse 
redundant main models alongside with the anomaly scores provided by the three anomaly 
detectors. It uses these inputs to determine if a given prediction is anomalous based on its 
deviation from the baseline. If anomaly is found, the function will also provide associated 
explanations. 

2.1.7 Non-AI subsystem 
In the demonstrator architecture, a non-AI subsystem was not perceived to be necessary, since 
the models provided in the AI/ML constituent already implemented the functionalities required 
by the operational scenario. Since the safety pattern architecture is a reference adaptable to the 
specific needs of the case, the component was excluded from the final integration. 

2.1.8 Safety Control 
To avoid unnecessary complexities, the safety control did not implement explicit features. The 
Decision function computes an aggregate bounding box for the target, while integrating outcomes 
from diagnostics and monitoring components, and provides a dependable output. The safety 
control node, in this case, received the result and forwards it to become the final output of the 
system. 

 



2.2 Timing profiling 
The Demo exercises the transparent support for timing profiling of single nodes, offered by the 
Middleware layer. The profiling in the Demo is addressing the node implementing the Single Shot 
Detector (SSDLite) model and is enabled by the middleware configuration script defined for the 
Demo. 

The Demo also demonstrates the application of the Timing Analysis methods described in 
deliverable D4.2[2]. The profiling information gathered on the node is automatically fed to the 
RestK script to compute the node’s Probabilistic Worst-Case Execution time (WCET) distribution. 
Finally, the distribution is plotted on a dedicated UI window. 

2.3 Demo development and testing 
The Demo have been developed on top of the reference Middleware skeleton for Safety Pattern 
2. The middleware skeleton already provided a software architectural design where all nodes are 
providing an empty semantics. The Demo development, therefore, mainly consisted in replacing 
dummy semantics in the architecture with concrete semantically relevant elements. The 
integration of these elements followed an incremental approach where the integration of each 
element was followed by a quick regression testing campaign. Integration started from the core 
inference model and proceeded by adding the redundant model, and providing the 
implementation for the supervision function, borrowed from DLLib[3]. Successively, the Demo was 
extended with L1 and L2 diagnostic and monitoring functionalities, partially building on existing 
ROS2 support. 

Integration testing and validation have been conducted exploiting the functionalities developed in 
the scope of WP4, for visualization and inspection of the system logs and internal state. More 
details on logging and visualization support can be found in [2]. 

3 Space case study 
The space case study takes place in a scenario with high relevance for the space industry, a 
spacecraft agent navigating towards another satellite target and attempting a docking manoeuvre, 
represented in Figure 2. This is a typical situation of an In-Orbit Servicing mission, where 
commercial and scientific satellites or space stations have to interact with other assets in a precise, 
synchronized way. 

 
Figure 2. Space scenario for the case study 

The agent can exhibit a varying degree of autonomy in operating the trajectory and approaching 
manoeuvres. Simple sensors such as grayscale optical cameras can provide information on the 
target and the environment, and that is where the adoption of AI and its safety are paramount for 
enabling unprecedented capabilities. 



The case study envisions a component of the Guidance, Navigation and Control (GNC) system, the 
pose estimation, shown in Figure 3. It is an essential block of the pipeline, which is required to 
provide an accurate pose (translation and attitude) of the target, allowing the other components 
to compute a trajectory and the relative actuator commands to follow it. For further information 
on the case study scenario, see the project’s previous deliverable D5.1[4]. 

 
Figure 3. GNC architecture and the pose estimation component 

3.1 Architecture 
The pose estimation, being the core of the system that was built as the case study, was 
encapsulated in an architecture comprising different components to meet Safety Pattern 2[1], 
where AI components have safety-critical responsibilities together with traditional-software ones. 

In fact, in the pose estimation, the AI models represent a core feature for the final output, and 
thus AI has a relevant impact on the critical operations of the system. On the other side, non-AI 
elements in the component itself are present and provide pose estimation results; furthermore, in 
the context of the GNC system which would include the pose estimation module, non-AI 
functionalities would be implemented and would share the safety-critical role.

 
Figure 4. System architecture 



The final system setup is illustrated in Figure 4.  

The main components are identified by colour and explained in the following subsections, and the 
main communication patterns are represented by arrows (communication internal to the 
components is excluded for better visualization, but details are reported in the corresponding 
subsection). 

3.1.1 AI/ML constituent  
The case study was prepared during the first phase of WP5, stubbing and preparation of algorithms 
and datasets, as reported with details in deliverable D5.1[4]. Most of the features have not 
changed, as shown in Figure 5. 

 
Figure 5. AI/ML constituent modules 

The network is a single-input, multiple-output (SIMO) framework, consuming an image and 
providing pose estimations and secondary outputs. It is based on a unified backbone, relying on 
an EfficientNet[7]. This model processes the input and distributes its learned features to the 
different heads, optimising the use of computational resources. The models leaning on the 
backbone are: 

• Direct method for pose estimation computes the 6-dimensional pose (3 for position with 
respect to the agent, and 3 for rotation or attitude) directly from the input, without 
intermediate explicit steps or outputs. The bounding box is provided together with the 
pose.  

• Indirect method for pose estimation computes the same pose estimation with a different 
technique, adopting two steps: 

o Detection of the key points of the target (the vertices of the asset, spikes of antennas and 
so on) computing a heatmap of the points and then applying non-maximum suppression 
(NMS) algorithms. 

o Computation of the pose using a Perspective-n-Point (PnP) algorithm, a geometrical 
approach taking the key points as inputs. 

• Segmentation map: provides a binary map identifying the silhouette of the target, a 
secondary output useful for the identification of the object. 

• Normal map: provides an RGB mask encoding the orientation of the target surfaces with 
respect to the target, another secondary output for further insights into the model’s 
understanding of the environment.  



• Orthogonality to the docking area: a small, critical model that estimates the deviation from 
the normal to the docking site on the target, where the agent must lock into it. This allows 
to verify how much the trajectory of the agent is precise and does not endanger the 
manoeuvre. 

Inputs: input image from the camera sensor node. 

Outputs: two pose estimations, bounding box, normal and segmentation map to the Supervision 
function node for monitoring, and to the Decision function node for ensembling and forwarding; 
orthogonality to the docking site to the Safety control node for the operation verification and final 
decision on the system output. 

3.1.2 Diverse redundancy  
The redundancy mechanism is a first essential tool for ensuring a safe execution in a critical system. 
In this case, it is implemented in different ways: 

The main, critical functionality of the system is the estimation of the pose. For this reason, the 
computation is implemented in two ways: two different models, with different architectures and 
different approaches are used (Figure 6); one is a direct, full Deep Learning technique, the other 
employs different models, both DL-based and non-AI, and it is more interpretable and human-
readable. 

These two models are implemented in two different ROS2 nodes, which are run in segregation in 
the SAFEXPLAIN middleware. The two pose estimations are then ensembled and a compared, 
balanced output is computed by the Decision function. If the estimations though are inconsistent, 
a malfunction warning is triggered. 

 
Figure 6. Model redundancy for pose estimation 

Secondly, other outputs are redundant: the bounding box is computed directly, but it is also 
inferred from the set of key points, so that two different computations are again provided and 
compared. The bounding box can then again be compared to the normal and segmentation map 
to verify their consistency. 



3.1.3 L1DM mechanisms 

 
Figure 7. L1DM component 

The L1 Diagnostics and Monitoring component (Figure 7) was implemented to protect the system 
against runtime errors, input anomalies and model insufficiencies. This monitoring activity is 
performed in parallel to the execution on multiple elements, by the L1DM component 
implementing the following techniques: 

• Input temporal consistency: this technique implements verification on two consecutive 
input images, ensuring that their difference is below a certain threshold estimated from 
the training dataset of the system; this allows to detect lost frames, sensor lagging and 
faults and to avoid that the system is fed with inconsistent input. 

• Data quality: this technique verifies the quality of the image by analysing the edges present 
in the picture and detecting potential anomalies. Both techniques are implemented using 
the OpenCV library, a well-known open set of tools for computer vision. 

• Monitoring of the AI/ML constituent health status: the AI/ML constituent nodes report 
their health status, to which this component is subscribed to track its correct functioning. 

All results of the monitoring process are fed to the Decision function, which integrates them with 
the other outputs from supervision and AI models to provide a consistent and informed system 
output. 

Inputs: input camera image, AI/ML constituent outputs. 

Outputs: nominal or anomalous result for temporal consistency, for data quality, and AI models 
health; forwarded to the Decision function and consequently to the Safety control nodes. 

3.1.4 L2DM mechanisms 
The L2 Diagnostics and Monitoring component (Figure 8) is tasked to track the processes in the 
system and report about their correct functioning, on a lower level than L1DM, less focused on the 
functional aspect and more on the software components’ execution. 



The SAFEXPLAIN middleware periodically receives reports from all the components in the system, 
keeps track of the components that must be launched and be alive at any time, and promptly 
provides any runtime error or fault to the Decision function, and consequently the Safety control. 

 
Figure 8. L2DM component 

Inputs: health status from all the other components. 

Outputs: status of the system sent to the Decision function node and consequently to the Safety 
control node. 

3.1.5 Supervision function 
The Supervision function (Figure 9) has the essential role of monitoring the AI/ML constituent on 
the functional side and protecting the system from any malfunction, insufficiency and anomaly 
that may arise: the input may be corrupted or the data distribution may differ strongly from what 
the model was trained on, the model itself may suffer from inference anomalies and provide 
untrustworthy outputs, and more. 



 
Figure 9. Supervision function component 

For this reason, the component implements: 

• Anomaly detection on the input: a DL model based on a Variational AutoEncoder (VAE) 
was trained on the same training dataset of the AI/ML constituent; it learned to encode 
the images in an embedding and then reconstruct them, internalising the distribution of 
features in the images. At inference time, it tries to reconstruct the image it is given, and 
the reconstructed image is compared to the original one: the degree of deviation is taken 
as a score for anomalous input; the more the image is not in the expected distribution, the 
more the VAE will have difficulty recognising and reconstructing the patterns. 

• Anomaly detection on the output: the same technique is applied to the output of the 
AI/ML constituent, to monitor potential anomalies in the model inference: images cropped 
on the bounding box are used as input, so that another VAE model learns to expect pictures 
where the target exactly fits the frame. The same mechanism is applied to check the 
bounding box that is produced by the system. 

• Another technique was made available by the work of WP3 (see[3] for further details): the 
model uncertainty estimation. This technique allows to estimate the degree of confidence 
with which the AI/ML constituent is giving its output; this can provide valuable information 
about its trustworthiness. The integration of the uncertainty estimation is currently under 
evaluation since the performance overhead on the system execution must be verified 
across multiple test cases; the components already instantiate many models and 
processes, and a fair trade-off between safety, redundancy and computational 
performance must be reached. If it will be proved to be sustainable, it will be added to the 
system as a further level of supervision, otherwise the prior modules will be enough to 
guarantee the functionality. 

Inputs: input image from sensor camera node, AI/ML constituent outputs. 

Outputs: anomaly scores for input and output, forwarded to the Decision function node. 



3.1.6 Decision Function 
While the previous components are employed to compute information about the task at hand, the 
environment and the system well-functioning, the Decision function plays the first essential 
decisional role: it receives multiple inputs from such components and it aggregates them, 
producing a coherent and enriched output. 

The core of the component (Figure 10) is implemented as an ensemble method, which takes care 
of comparing the pose estimations from the two methods and verifying that they are consistent 
with each other. Secondly, the bounding box is compared with the set of key points, to ensure 
consistency on this aspect, and with the maps provided by the secondary models of the AI/ML 
constituent. Finally, anomaly scores, health reports and potential warnings are integrated to 
decide whether all components have been executing without issues and if the previously 
computed outputs can be trusted and forwarded. Integrated AI outputs and monitoring reports 
are then delivered to the Safety control node. 

 
Figure 10. Decision function component 

Inputs: AI/ML constituent outputs, L1DM report and health status, L2DM processes health report, 
Supervision function anomaly report. 

Outputs: integrated pose estimation and health and anomalies report, sent to the Safety control 
node. 

3.1.7 Non-AI subsystem 
In this system, there is a non-AI subsystem which is part of the pipeline of the core feature of pose 
estimation: the Perspective-n-Point algorithm. 

Functionally, the module is seamlessly integrated into the AI/ML constituent, providing the second 
step of the indirect method for pose estimation (see subsection 3.1.1). From the perspective of 
the technology, though, it employs an algorithm which does not involve Deep Learning but just 
geometrical computations to provide the pose given a set of key points whose position is known 
in the target, so it falls under this category. 



Inputs: set of key points from the key point detection module, internal to the AI/ML constituent. 

Outputs: pose estimation, joined to the other outputs from the AI/ML constituent and sent to the 
same components. 

3.1.8 Safety Control 
The Safety control (Figure 11) is the last component in the pipeline of the system before the 
outputs are delivered (to the agent, the user, or the outer systems interacting with it). It hosts the 
verifications of the outputs of the Decision function and the final considerations necessary to 
decide if the current operational status is nominal, and the outputs can be delivered as 
trustworthy, or anomalies and malfunctions hindered the execution and a warning or transition to 
safe mode must be issued instead. 

 
Figure 11. Safety control component 

The component bases the decision on analysing the conclusions of the Decision function, including 
the consistency of the pose estimation results, the health of the processes and the retrieved 
anomaly scores. In addition, the orthogonality verification is carried out: the corresponding model 
from the AI/ML constituent delivers its estimation, and the Safety control ensures that the agent 
is approaching the target with a minimum level of orthogonality to the docking site. If this check is 
not passed, a relative warning is sent out; otherwise, according to the Decision function’s opinion, 
the pose estimation can be validated and transmitted. 

Inputs: Decision function output (pose estimations, L1DM, L2DM and supervision results), 
orthogonality estimation from AI/ML constituent. 

Outputs: operational status of the system (nominal or anomalous), pose estimation and additional 
information from the decision and monitoring. 

3.2 Testing 
Along with the integration of the system, incremental testing was conducted to assess the system 
functionalities. The single components were tested as standalone items, during and after 
integration, to assess their capability of providing the specified feature (subscription to topics and 



input receiving, monitoring, supervision or inference depending on the case). As the integration 
progressed, testing of the system was carried out to verify the interaction of the components with 
each other. 

The tests major need was the generation of datasets of images and relative ground truths; this was 
already provided in the first phase of WP5, as the data generation pipeline for the space case study 
provided the capability of generating both random and trajectory-based datasets. The data was 
then split into training and test sets for later use. 

The assessment of the tests was carried out by verifying the correctness and accuracy of the 
outputs, like the pose estimation error rates, and the expected operational status; if certain input 
images contained anomalies, the relative components were ensured to output the corresponding 
warnings. Also, secondary outputs like segmentation and normal maps, bounding boxes and such 
were taken into consideration during tests inspection, to ensure the consistency of the full 
pipeline. 

The testing activity was carried out locally, especially during development and integration, and 
after this first assessment it continued the platform: the system instantiation on the Orin was 
incrementally updated and its correct execution was verified in the embedded environment. 

This testing activity was only the first step towards a full verification of the system: the main 
verification process will be held in the last phase of WP5, evaluation and assessment of the case 
studies: in the following months, real scenarios simulated from the tests catalogue provided by 
WP2 will be fed to the system and the results collected. Further improvements of the system and 
its components will be applied whenever possible, making sure that they have a low impact on the 
readiness of the case study. 

3.3 Challenges and solutions 
Integrating such a complex system, in a dedicated environment, compatible with an embedded 
device and using outcomes from different work packages was a challenge, and it brought about 
some issues that point to the most delicate parts of the work: 

• During the integration of the components, the main design and implementation worry was 
to keep inputs, intermediate and final outputs consistent with each other, ensuring that 
information from different images didn’t mix up. For this, it was needed a careful of where 
needed to enforce topic synchronisation and on which arguments of the topics to make 
the comparison. This led sometimes to changes in the topic message’s structure, adding ids 
or further information.  

• A sometimes-tricky experience was debugging the system from a certain level of 
complexity onward, due to the high number of layers onto which the AI solution relies (the 
components themselves, the SAFEXPLAIN middleware, ROS2, the operating system, etc.); 
for overcoming this, we set up set of logging commands and we carefully monitored the 
components.   

• A complex activity was porting the system to the platform, ensuring that all dependencies 
were available and compatible with the embedded environment. We chose to run the 
application in a containerised environment to have full control over it, and we had to 
update some dependencies mid-way and rebuild some upper layers. This effort was 
nonetheless expected from experience on previous porting tasks. 

• A delicate matter, that is still under supervision, is maintaining an adequate performance 
of the core function of providing the pose estimation. The AI developers build their 
standalone model, but integrating it with other components, algorithms and 



communication patterns introduces an overhead which must be monitored and tweaked 
to preserve the functionality. Experiments and testing, as said in the previous section, are 
still going on and will be the focus of the last period of the project, when we’ll be ready for 
any adjustments and fixes that will prove necessary for the case study improvement. 

4 Automotive case study 
4.1 Architecture 
Figure 12 illustrates the end-to-end system architecture implemented in this case study. It 
captures the modular ROS 2 pipeline comprising simulation input (CARLA), real-time perception 
(YOLOS-Tiny) for pedestrian and car detection, YOLOPV2 for lane detection, decision logic, safety 
supervision via a Variational Autoencoder (VAE), and final control output through the Controller 
Node.  

The architecture follows a layered structure, where perception, decision, supervision, and control 
are separated into ROS 2 components that interact through structured messaging. SAFEXPLAIN 
middleware enables lifecycle coordination, health diagnostics, and fallback management 
throughout the system.  

All components are designed to support traceable decision-making and functional safety 
compliance. Interactions between nodes are handled via ROS 2 topics, including perception 
outputs, anomaly flags, system warnings, braking commands, and diagnostic reports.  

 

 
Figure 12: End-to-end system architecture deployed on NVIDIA Orin AGX.  

The system includes full DS3.1 logic handling, which relies on key timing thresholds to assess 
collision risk and determine appropriate responses. 

DS-3.1 is a driving safety scenario defined within the SAFEXPLAIN project that addresses 
autonomous vehicle behaviour in urban environments where pedestrians may suddenly enter the 
vehicle’s path, aligning with safety and regulatory frameworks such as UN Regulation No. 152; it 
evaluates the system’s ability to detect pedestrians early, issue timely warnings, perform 
emergency braking when necessary, and ensure the vehicle operates within its functional safety 
limits. 

These include Time-to-Collision (TTC), Time-to-Warning (TTW), and Time-to-Collision 
Autonomous-Emergency-Braking (TTC AEB), which are explained below: 

• TTC: The estimated time before a potential collision occurs between the ego vehicle and 
an object ahead, assuming constant speeds and trajectories. 

• TTW: The threshold at which the system should issue a visual or auditory warning to alert 
the driver or autonomous controller of a potential risk. 

• TTC AEB: A critical TTC threshold at which the system must initiate emergency braking to 
avoid or mitigate a collision. 



 Based on these thresholds, the system distinguishes the following intervention steps: 

• Step 1: TTC > TTW → Monitoring only  
• Step 2: TTC == TTW → Warning (visual + audible)  
• Step 3: TTC ≤ TTC AEB → Emergency braking (≥5 m/s²)  

 

The Decision Node computes TTC and adjusts thresholds when the Supervision Node flags 
anomalies. The Controller executes the final actuation.  

 

 
Figure 13: Topic Graph Showing ROS-Based Communication Between Nodes in the Automotive Demonstrator 

The topic-level architecture of the automotive demonstrator includes key diagnostic and 
actuation-related topics that support structured safety logic, traceability, and fallback behaviour. 
The communication flow covers message paths such as /supervision/anomaly_flags (to signal 
degraded input conditions), /decision/warning and /decision/brake (to trigger driver alerts or 
emergency braking), and /controller/diagnostics (to monitor execution latency or delays).   

These elements enable the system to respond appropriately across DS3.1 Step 1–3 conditions—
ranging from passive monitoring to active braking—while supporting traceable validation of 
decision logic, anomaly propagation, and control actuation. The topic graph enables a modular and 
transparent safety pipeline, aligned with Safety of the Intended Functionality (SOTIF)[8] and UN 
Regulation No. 152[9] requirements.  



4.1.1 AI/ML constituent  
The AI/ML constituent of the system encompasses all components responsible for data-driven 
perception and unsupervised anomaly detection. It forms the core of the perception–decision loop 
by enabling real-time understanding of the driving environment and detecting deviations from 
expected input patterns.  

This constituent includes the following key modules:  

• YOLOS-Tiny[10] Pedestrian Detector: Deployed within the Perception Node, this model 
identifies pedestrians and cars in the forward-facing camera feed. The hustvl/yolos-tiny 
model is based on the YOLO (You Only Look Once) object detection framework. However, 
unlike traditional YOLO versions, it uses a Vision Transformer (ViT) architecture instead of 
convolutional layers. This makes it more like transformer-based models like DEtection 
TRansformer (DETR). The "tiny" variant refers to a lightweight version suitable for faster 
inference. So, it’s a YOLO-inspired model reimagined with transformer technology. A 
confidence threshold of 0.5 is used to ensure detection reliability while minimizing false 
positives. We will validate the coming months if this value requires any 
tweaking/retraining. 

• YOLOPv2[11] Lane Detection Module: This module uses a pre-trained, open-source neural 
network to extract lane markings. YOLOPv2 stands for "You Only Look Once Perception 
version 2", a unified vision model designed for autonomous driving perception tasks. The 
output complements object detections by providing structural context in the scene.  

Anomaly detection is handled independently by the Supervision Node, which encapsulates the VAE 
logic. For full details, refer to the Supervision Function section.  

 
Figure 14: Parallel processing of camera input by pedestrian detector and lane detection module. 

 



4.1.2 Diverse redundancy  

To support functional safety in AI-based perception systems, the architecture applies the principle 
of diverse redundancy, as defined in D2.2. This principle involves using independent 
implementations of the same functional capability, such as object detection, to reduce the risk of 
correlated failures due to shared architecture or training biases. 

In the current system, diverse redundancy is achieved within the object detection component 
using: 

• YOLOS-Tiny – a transformer-based object detector used for recognizing pedestrians, 
vehicles, and other road actors. 

• YOLOP-V2 – a CNN-based multi-task model that includes object detection, lane detection, 
and drivable area segmentation. 

Although both models operate on the same camera input, their internal architectures are 
fundamentally different, enabling fault detection through architectural diversity. When 
overlapping outputs (e.g., object bounding boxes) are cross validated, this setup supports early 
detection of perception inconsistencies and enhances safety. 

It is important to note that while YOLOP-V2’s lane and drivable area predictions provide 
additional environmental understanding, these functions are complementary, not redundant with 
YOLOS-Tiny. The diverse redundancy specifically applies to their shared object detection role. 

In addition to model-level redundancy, the system includes structural and temporal safeguards: 

• Independent diagnostics in various nodes monitor lens obstruction, message delays, and 
sensor health. 

• Timestamp verification and signal freshness checks across modules prevent stale data 
propagation. 

This multi-layered redundancy strategy supports both L0 diversity and downstream diagnostics, 
contributing to the robustness of the overall safety architecture. 

4.1.3 L1DM mechanisms 
Level 1 Diagnostic Monitoring (L1DM) refers to diagnostics implemented directly within individual 
functional nodes. These mechanisms are designed to detect internal inconsistencies, sensor 
quality issues, or unexpected deviations at the component level—before they escalate into 
system-wide failures. L1DM ensures that each module can self-assess and report its operational 
integrity in real time.  

In the context of this system, the following L1DM mechanisms are implemented:  

• Camera Quality Monitoring (Perception Node): The system evaluates the incoming 
camera feed for degradation indicators such as blur, over/underexposure, and brightness 
shifts. These checks are lightweight and run in parallel with the primary perception logic.  

• Obstruction and Calibration Checks (Perception Node): The node assesses whether the 
visual input is partially occluded (e.g. by dirt or objects on the lens) and monitors for camera 
calibration drift. If detected, the node flags warnings to downstream modules.  



• Anomaly Flagging via VAE (Supervision Node): The VAE computes anomaly scores frame-
by-frame and publishes as /supervision/anomaly_flags, which serve as L1-level diagnostics.  

• Bounding Box Plausibility Validation (Decision Node): The Decision Node evaluates 
bounding box size, location, and consistency across frames to filter out implausible object 
detections (road actors) that may indicate faulty perception output.  

• Signal Delay Detection (Controller Node): The Controller node continuously compares the 
time since the last speed-feedback update and the time since the most recent object 
detection to their respective thresholds (speed_update_threshold and 
camera_detection_timeout). If either threshold is exceeded, it logs a warning and 
publishes on /controller/velocity_calculation_warning or 
/controller/camera_performance_warning, ensuring any critical message delay is flagged 
and real-time control remains reliable. Each of these mechanisms produces structured 
warnings or confidence indicators that can be used for:  

• Local fallback decisions (e.g. discard corrupted frames)  
• Triggering L2 system-level diagnostics  
• Supporting traceability and audit of failure conditions  

These L1DM capabilities contribute directly to DS3.1 compliance and functional safety assurance 
by making every node accountable for its input integrity and internal decision quality.  

In addition to localized diagnostics, the SAFEXPLAIN middleware plays a coordinating role, 
aggregating health reports from all nodes and enabling structured recovery, lifecycle control, and 
traceable logging. This is illustrated in Figure 15.  

 
Figure 15: Role of SAFEXPLAIN middleware in aggregating diagnostics, managing recovery, coordinating lifecycle transitions, and 

maintaining cross-node traceability. 

4.1.4 L2DM mechanisms 
Level 2 Diagnostic Monitoring (L2DM) refers to system-wide diagnostic mechanisms that 
aggregate, interpret, and report the health status of the overall pipeline. Unlike L1DM, which 
operates locally within nodes, L2DM spans across components and relies on structured interfaces 
and middleware to ensure runtime observability and traceability.  

The core function of L2DM is to collect diagnostic outputs from individual modules—such as 
perception, decision, control, and supervision—and consolidate them into a coherent system 
status. This information is used for health reporting, fault propagation analysis, and lifecycle 
management.  



In this architecture, L2DM is implemented through the SAFEXPLAIN middleware, which provides a 
ROS 2–compliant interface for diagnostics. Nodes emit status messages, error flags, and anomaly 
indicators using structured topics, which are then aggregated and published as part of the system’s 
runtime health state.  

Key L2DM functions include:  

• Lifecycle coordination: Ensuring that nodes transition through initialization, operational, 
and error states in a traceable and managed way.  

• Cross-node consistency checks: Verifying that inputs, outputs, and diagnostic states across 
nodes remain synchronized and up to date.  

• Health state publishing: Emitting aggregated health reports for external monitoring tools 
or safety managers.  

• Diagnostic escalation: Triggering fallback modes, alerts, or safe-state transitions when 
certain thresholds are breached across multiple components.  

The Supervision Node and BaseApplication interfaces play a central role in aligning node behaviour 
with SAFEXPLAIN’s structured diagnostic scheme. By enabling system-level awareness, L2DM 
mechanisms contribute to DS3.1 compliance, enhance fault traceability, and support safety 
certification goals. 

4.1.5 Supervision function 
By decoupling monitoring from control and perception, the Supervision Function introduces a 
robust and explainable safety layer that reinforces system resilience and diagnostic transparency. 
The Supervision Node communicates directly with the Decision Node, adjusting reaction 
thresholds in real-time and publishing frame-specific diagnostics. 

At its core, the Supervision Node leverages a VAE to evaluate incoming camera frames for 
distributional anomalies. By reconstructing each frame and comparing it to its original, the VAE 
identifies out-of-distribution inputs, visual degradation, or unexpected scene elements that 
could compromise perception reliability. The result of this process is communicated via structured 
diagnostic flags (e.g., /supervision/anomaly_flags). The structure of the Supervision Node—
including its use of VAE-generated anomaly scores, and integrated health monitoring—is depicted 
in Figure 16. 

 



 

 
Figure 16: Supervision node flow with VAE anomaly detection and health diagnostics (orthogonal to primary object detection) 

 
Beyond the VAE, the Supervision Function performs a range of L1DM and L2DM activities:  

• L1DM: Detects localized anomalies such as blur, brightness imbalance, or image 
obstruction within the frame.  

• L2DM: Contributes to system-level health reporting and integrates with the SAFEXPLAIN 
middleware for lifecycle coordination and escalation handling.  
Figure 17 illustrates how L0 functional logic, L1 local node diagnostics, and L2 supervision 
and middleware coordination are integrated to provide traceable DS3.1-compliant 
execution and safety monitoring behaviour across the full automotive pipeline.  
 

 
Figure 17: Layered diagnostic architecture showing functional flow (L0), local node-level diagnostics (L1), and system-level health 

aggregation (L2). 

 
 
 



Additionally, the Supervision Node plays a supervisory role over other nodes by:  
• Monitoring message timing, freshness, and arrival intervals  
• Verifying the consistency of diagnostic signals across modules  
• Flagging fault propagation patterns that suggest systemic risk  

The Supervision Function enhances the system’s ability to detect latent failures, including those 
that may not be immediately reflected in object detection results. It provides a complementary, 
independent validation path and supports functional safety assurance under both DS3.1 and 
SOTIF-relevant criteria.  

By decoupling monitoring from control and perception, the Supervision Function introduces a 
robust and explainable safety layer that reinforces system resilience and diagnostic transparency.  

Although the VAE operates on the same camera input as the perception models, it serves a 
different functional role: detecting anomalous or out-of-distribution inputs instead of classifying 
objects. Therefore, it does not qualify as a diverse redundancy mechanism but rather as an 
orthogonal diagnostic strategy that enhances system observability and integrity.  

4.1.6 Decision Function 
The Decision Function serves as the core reasoning layer within the perception–control pipeline. 
It synthesizes information from perception, vehicle state, and diagnostics to determine whether 
warnings or braking actions should be issued. The goal of this function is to ensure timely, 
explainable, and context-aware responses to potential hazards in the driving environment.  

The Decision Node processes three key inputs:  

• /perception/objects – structured object detections from the Perception Node, including 
bounding boxes, classes, and confidence scores.  

• /vehicle/state – real-time vehicle telemetry, such as speed.  
• /supervision/anomaly_flags – safety and quality indicators from the Supervision Node, 

flagging degraded sensor input or suspicious conditions.  

The internal evaluation logic of the node—based on TTC, object plausibility, and diagnostic 
conditions—is visualized in Figure 18, showing how specific inputs trigger safety-relevant outputs.  

To support traceable and configurable DS3.1 behaviour, the Decision Function uses two explicitly 
declared thresholds:  

• TTW: 3.0 seconds – a warning is triggered when the computed TTC falls below this value 
but remains above the braking threshold.  

• TTC AEB: 1.0 second – a brake request is issued when the TTC drops below this value and 
no driver override is detected.  

These thresholds are exposed as ROS 2 parameters (ttw_threshold, ttc_aeb_threshold) and may 
be tuned based on vehicle dynamics or testing requirements. Additionally, when anomaly flags 
are received from the Supervision Node, the Decision Function adjusts these thresholds downward 
to ensure earlier intervention under degraded conditions.  
 
Runtime enforcement ensures that TTW is always greater than TTC AEB, preserving logical 
consistency. These values influence the warning and brake output topics as well as the system 
state transitions published by the node.  

 
 



Detailed Logic Explanation:  
 
For each detected object, the Decision Function computes TTC using the formula: TTC = distance 
/ relative speed, where relative speed defaults to ego speed if object speed is unavailable.  

If TTC ≤ TTW, a visual warning is triggered. 

If TTC ≤ TTC AEB, and no override conditions are present, a brake request is issued.  

When anomaly flags from the Supervision Node are active, the system applies conservative 
adjustments to the thresholds, ensuring earlier warnings and braking.  

Each object is processed independently, and the most critical object (smallest TTC) determines 
the system response.  

The node includes fallback logic for delayed or missing vehicle state data (e.g., speed), allowing it 
to estimate values locally and maintain decision continuity.  

These behaviours ensure alignment with DS3.1 compliance and support SOTIF safety assurance 
by mitigating risks under degraded conditions.  

 

 
Figure 18: Decision function flow showing TTC-based logic, anomaly integration, and outcome paths for warnings, braking, or 

continued monitoring. 

 
The Decision Function evaluates each detected object based on a computed TTC value derived 
from the ego vehicle’s speed and object distance. When TTC exceeds the warning threshold (TTW), 
no action is taken. When TTC reaches or falls below TTW, a visual and audible warning is issued. If 
TTC reaches the TTC AEB threshold and no override is detected, the system requests braking. 
Anomaly flags received from the Supervision Node cause the Decision Node to adjust these 
thresholds dynamically, enabling earlier intervention under degraded input conditions. This logic 
ensures alignment with DS3.1 Step 1 (monitoring), Step 2 (warning), and Step 3 (braking), while 
also supporting SOTIF coverage for unpredictable edge cases or visual anomalies.  

The Decision Function bridges perception and actuation with safety-verified logic, ensuring that 
complex AI-driven observations are converted into reliable, certifiable actions.  



 

4.1.7 Non-AI subsystem 
The Non-AI Subsystem—also referred to as the Safety Control Layer—is responsible for enforcing 
deterministic safety behaviour in response to decisions made by upstream components. Unlike 
perception or decision-making modules that rely on machine learning, this subsystem operates 
using rule-based logic designed for predictability, traceability, and fail-safe actuation.  

The subsystem receives the following inputs:  

• /decision/warning – alerts that signal elevated risk conditions.  
• /decision/brake – commands that request immediate braking action.  
• /carla/vehicle_speed – real-time speed feedback from the simulator or vehicle.  

 
Based on these inputs, the Non-AI Subsystem determines the appropriate control response and 
outputs:  

• /carla/control – low-level vehicle control commands, including throttle, brake overrides.  
• Safety warnings – optional messages that may be propagated to other components or 

external interfaces. 
This layer acts as the final control authority within the system and plays a critical role in reducing 
response latency and ensuring system stability during high-risk scenarios. It can initiate 
emergency braking independently of upstream confidence levels, and it maintains basic driving 
logic even in the absence of AI inputs (e.g., during fallback or degraded modes).  

Additionally, the Non-AI Subsystem contributes to:  

• Safety layer isolation – providing a separation between AI-driven logic and actuation.  
• Runtime validation – monitoring the timing and integrity of control messages.  
• DS3.1 alignment – supporting traceable actuation responses and system-level safety 

guarantees.  

By complementing the AI stack with a deterministic safety core, the Non-AI Subsystem reinforces 
the system’s functional safety, improves its resilience to uncertainty, and ensures a reliable bridge 
to real-world actuation. 

4.1.8 Safety Control 
The Safety Control layer serves as the final line of defence in the system architecture, bridging the 
gap between AI-driven decision-making and physical actuation. Its purpose is to ensure that, 
regardless of the upstream logic or perception quality, the system can execute safe and reliable 
control actions under all operating conditions.  

This layer is implemented through the Non-AI Subsystem, which operates independently of 
learning-based modules. It follows rule-based control logic that is deterministic, transparent, and 
fully auditable—key qualities for functional safety certification and DS3.1 compliance.  

Key functions of the Safety Control layer include:  

• Command validation: Ensures that control commands received from the Decision Node 
(such as /decision/brake) are well-formed, timely, and consistent with current vehicle 
state.  

• Emergency actuation: Issues low-level control outputs (e.g., /carla/control) to enforce 
braking, throttle reduction in response to high-risk conditions.  



• Fallback handling: Maintains minimal safe behaviour even when AI modules are 
unavailable, slow to respond, or degraded due to poor sensor inputs.  

• Signal monitoring: Continuously checks inputs such as /vehicle/state and 
/supervision/anomaly_flags for anomalies, timeouts, or inconsistencies.  
 

The Safety Control system is designed to act conservatively under uncertainty. For instance, in the 
presence of late or conflicting messages, it can block unsafe commands, apply default braking 
behaviour, or revert to pre-defined safe states. 

By separating control execution from AI perception and reasoning, the architecture ensures fail-
operational behaviour, enhances system robustness, and reduces the likelihood of cascading 
faults. This decoupling is fundamental to achieving SOTIF objectives.  
 

4.2 Integration & Testing 
To ensure the system meets its safety, reliability, and functional performance goals, a 
comprehensive testing strategy should be applied across all components of the pipeline. The 
limited testing campaign so far focused on validating both nominal functionality and failure 
response behaviour under a variety of simulated and controlled scenarios. This will be 
implemented in the period from M32-M36.  

The system was yet (limited) tested within the CARLA simulation environment, where test cases 
should be systematically executed with precise control over sensor inputs, environmental 
conditions, and timing. These tests are designed (but not yet implemented) to replicate realistic 
driving events and to introduce fault scenarios relevant to DS3.1 and SOTIF compliance. 

Key aspects of the testing approach include:  
• Functional validation: Confirming that each node—Perception, Decision, Supervision, and 

Controller—operates correctly under normal input conditions and generates the expected 
outputs.  

• Degradation testing: Introducing visual noise, sensor dropout, timestamp drift, and other 
perturbations to evaluate the system’s robustness and ability to fallback safely.  

• Anomaly detection validation: Measuring the effectiveness of the VAE-based supervision 
in identifying out-of-distribution inputs, scene anomalies, and visual degradation.  

• Timing and synchronization: Assessing how well the system maintains temporal 
consistency across nodes and handles delayed or missing messages.  

• Diagnostic behaviour: Verifying that L1DM and L2DM mechanisms activate appropriately 
and publish structured health indicators in real time.  

The testing framework also produced logs, anomaly flags, and health reports that should be 
reviewed post-execution to confirm system correctness and identify areas for tuning or 
refinement.  

The results of this process should be documented in a series of test cases, each mapped to specific 
safety goals and supported by implementation evidence. Together, these tests should provide 
confidence in the system’s ability to perform reliably under operational and degraded conditions.  

See Figure 16, Figure 17, Figure 18 for visual representation of component logic and supervision 
diagnostics.  

 



4.2.1 Deployment and Embedded Integration (Jetson Orin AGX) 
To evaluate the portability and real-time embedded execution of the DS3.1-compliant automotive 
demonstrator, the entire Automotive Use Case pipeline was deployed on the NVIDIA Jetson Orin 
AGX platform. This deployment aimed to confirm that all SAFEXPLAIN components—including the 
Perception Node, Decision Node, Supervision Node, Controller, and middleware—operate reliably 
on an embedded ARM64-based system.  

CARLA[12], the driving simulator, was executed on a separate desktop PC. Sensor data was 
streamed via TCP/IP to the Orin platform, where the runtime components executed the full safety 
pipeline in real time. This setup preserved ROS 2 topic communication and SAFEXPLAIN-based 
lifecycle coordination across the hardware boundary.  

4.2.1.1 Visual Setup and Power Profiling  
Error! Reference source not found. shows the complete demonstrator configuration: the 
embedded Orin AGX connected via network to a CARLA-running PC and visualized through the 
Foxglove Dashboard. 

 
Figure 19: Jetson Orin AGX running automotive use case and Foxglove Dashboard 

Error! Reference source not found. illustrate the use of NVIDIA Jetson Power GUI to monitor 
power and resource usage during the execution of DS3.1 scenarios on Orin. 



 
Figure 20: Visual representation of the Power GUI tools running on Jetson Orin 

4.2.1.2 Integration Considerations 
To ensure compatibility with JetPack 6 and ARM64 constraints, several software-level adjustments 
were necessary:  

• TorchVision: No official ARM64 CUDA wheels were available for the required version 
(0.18.0+), so it was built manually from source.  

• PyTorch compatibility: CUDA-enabled builds were tested iteratively to match the Jetson 
ecosystem.  

• NumPy ABI: Compatibility issues were resolved by reverting to NumPy 1.24.3.  
• Image decoding: CARLA occasionally emitted unsupported formats; fallback decoding logic 

was introduced to enforce compatibility (e.g., bgr8 format).  
• YOLOS-Tiny model initialization: Resource spikes on Orin during model load were 

mitigated through deferred loading and RAM caching strategies.  
• ROS 2 lifecycle alignment: All nodes were refactored to properly support kConfigure and 

Active states using the BaseApplication interface, ensuring smooth transitions and 
middleware compatibility.  

4.2.1.3 Current Status and Future Work 
• While the ported system is operational and stable, full validation of runtime behaviour and 

safety logic on the embedded platform remains planned for the period M32-M36. This 
includes:  

• Scenario replay using MCAP files recorded from real test cases.  
• Confirming correct trigger behaviour for DS3.1 Steps 1–3.  
• Measuring system latency and response timing under load.  
• Verifying structured health reporting and fallback behaviour in degraded modes.  
• This embedded deployment confirms the demonstrator’s portability, its modular 

architecture’s readiness for edge applications, and alignment with SAFEXPLAIN goals of 
traceable safety assurance across heterogeneous platforms.  

 



4.2.2 Validation Tooling: Overlay Interface and Foxglove Dashboard 
To support functional safety validation and demonstration of DS3.1 compliance, two 
complementary interfaces have been developed:  
  

4.2.2.1 Visual Overlay Dashboard Interface  
The Overlay Interface provides real-time visualization of critical perception and control data 
overlaid on camera inputs (Error! Reference source not found.). It serves both:  

• Validation roles (e.g., seeing system state during test playback).  
• Driver-oriented insight into braking, warning, and object detections.  

Key Features:  

• Visualizes:  
o Bounding boxes for detected objects with class, distance, confidence.  
o TTC bar, brake status, system state (green/yellow/red indicator).  
o Ego vehicle speed, brake request flag, anomaly state.  
o Visual and Audio warning  

• Designed for scenario playback from simulation.  
o Used for quick identification of:  

• Correct object detection triggering.  
• Warning and braking events according to DS3.1 steps. 

 

 
Figure 21: Visual Overlay Dashboard per frame/image 

*** Disclaimer: this image is not (yet) reflecting the UI improvements related to visual and audio pre warning and the AEB specific 
related braking actions, we might be able to replace these images last minute before formal release *** 
 
Pedestrian detected at 3.31m, brake request True, system state Yellow indicating active 
intervention.  



  
4.2.2.2 Foxglove Studio Dashboard for Deep Diagnostics  

The Foxglove Dashboard is used for in-depth post-analysis of recorded test scenarios (Figure 2, 
Figure 3). It provides:  

• Detailed introspection into all ROS topics and diagnostics.  
• Replay of MCAP-converted Rosbags covering full DS3.1 scenarios.  

Key Features:  
• Multi-panel visualization:  

o Plots: deceleration requests, anomaly scores, throttle/brake activity.  
o Messages: detailed status from supervision and decision nodes.  
o Camera views: front and bird’s-eye perspective synchronized with control actions.  

• Enables:  
o Frame-by-frame verification of DS3.1 test steps.  
o Inspection of diagnostics like anomaly flags, VAE scores, and supervision status.  

• Useful for debugging, functional safety audits, and scenario demonstrations.  

 
 

Figure 22: Full braking scenario on Foxglove 

*** Disclaimer: this overlay used in this Foxglove dashboard visual; is not (yet) reflecting the UI improvements related to visual and 
audio pre warning and the AEB specific related braking actions, we might be able to replace these images last minute before formal 
release*** 



Visualization of an unobstructed driving sequence, showing no anomaly detection, no brake 
commands, and no deceleration profile. It shows acceleration and green system health and no 
TTC.  
 

4.2.2.3 Comparison of Interfaces  
  
Overlay Interface  Foxglove Dashboard  
Focused on real-time visual clarity  Focused on deep diagnostic insight  
Tailored for driver-perspective 
demonstration  

Tailored for developer & auditor-level 
validation  

Shows critical driving info  Shows full system internals, raw ROS data  
Live overlay of system state and detections  Replay & analyse pre-recorded, MCAP-

converted logs  
  

Integration with DS3.1 Validation:  
Both tools are actively used in scenario testing, enabling:  

• Validation of TCDS_3.1 Steps 1–3.  
• Confirmation of warning/brake trigger points.  
• Visual evidence supporting test case traceability.  

 

4.3 Challenges and solutions 
Throughout the integration and validation of the automotive AI pipeline, several engineering 
challenges were encountered—ranging from hardware limitations and middleware behaviour to 
model deployment and runtime diagnostics. Addressing these challenges required targeted 
solutions that balanced performance, safety, and system compatibility.  

Below is an overview of the key challenges and the solutions applied:  

Figure 23: Unobstructed driving scenario on Foxglove 



• CARLA compatibility with embedded hardware: The NVIDIA Jetson Orin AGX could not 
run the CARLA simulator natively due to its PC- Architecture requirements.  
➤ Solution: CARLA was executed on an external development machine, with sensor data 
streamed via TCP/IP to the embedded system, preserving real-time input flow.  

• Bridge node startup dependencies: The bridge node responsible for interfacing with 
CARLA would block other ROS 2 components if the simulator wasn't available at 
launch. ➤ Solution: A conditional launcher and retry logic were implemented to delay 
ROS node initialization until a successful connection was established.  

• Health reporting inconsistencies: Initial implementations lacked alignment with 
SAFEXPLAIN’s diagnostic expectations and did not follow a uniform reporting scheme.  
➤ Solution: All nodes were refactored to inherit from a shared BaseApplication 
interface, enabling standardized health reporting and lifecycle handling.  

• Timing drift and message synchronization: The use of CARLA-generated timestamps led 
to misalignment between simulation time and local execution.  
➤ Solution: Timestamps were replaced with locally generated clocks (e.g., time.time()), 
improving synchronization and real-time consistency.  

• YOLO model initialization spikes: On embedded hardware, the initial loading of YOLOS 
Tiny created resource spikes, occasionally causing instability.  
➤ Solution: Deferred model loading, RAM caching, and threshold tuning were applied to 
reduce overhead and stabilize system performance.  

• Unsupported image encoding: CARLA occasionally produced image formats incompatible 
with OpenCV or ROS decoding standards.  
➤ Solution: Fallback decoding logic was introduced to enforce safe formats like bgr8.  

• Log file overgrowth: Unfiltered ROS logging led to rapid log file expansion on the limited 
embedded filesystem.  
➤ Solution: Log verbosity control and automatic log rotation were implemented.  

• Diagnostic parameter variability: Simulation and real-world environments required 
different thresholds for diagnostics.  
➤ Solution: All diagnostic thresholds were exposed as ROS 2 parameters, enabling 
runtime configuration per scenario.  

• Difficulties to find the right CUDA-enabled version of Pytorch 
➤ Solution: research in communities which version should be used on the Orin with 
Jetpack 6 and try and error till fixed.  

• Compatibility of NumPy 1.x ABI 
➤ Solution: reinstalled NumPy 1.24.3  

• Installing the right version of TorchVision (with the right ARM64 CUDA wheels) 
➤ Solution: Building and installing a matching version of TorchVision: since no official 
ARM64 CUDA wheels were available for TorchVision 0.18.0+ on the public index, we built 
it from source. Resulting in the perception node now successfully completes its 
kConfigure transition, and moves to the Active state, allowing the LifecycleManager to 
proceed without aborting.  

Each of these challenges and their respective solutions contributed to system stability, safety, and 
portability, enabling a robust execution pipeline across embedded and simulation platforms.  

The functional and diagnostic flow described above should be evaluated through simulation-based 
testing and integrated validation scenarios. 4 visualizes the key signal pathways and verification 
hooks used to assess system behaviour against DS3.1 safety criteria.  



 

To ensure comprehensive validation of the system’s safety logic and alignment with DS3.1 
requirements, each test case was explicitly mapped to the node(s) responsible for its 
implementation. The diagrams below visualize this mapping, grouping test cases by functional role 
within the perception–decision–control stack.  

Figure 25 shows test cases related to the Perception Node, including image quality, calibration, 
and detection plausibility. 

 
Figure 25: Perception Node Test Coverage 

Figure 26 illustrates test coverage of the Decision Node, with a focus on time-to-collision (TTC) 
evaluation, object classification, and signal delays. 

Figure 24: Testing and validation flow from CARLA input through all node’s layers. Diagnostic outputs feed into DS3.1 test case 
validation. 



 
Figure 26: Perception Node Test Coverage 

Figure 27 outlines test cases implemented in the Controller and Supervision Nodes, capturing low-
level actuation safety and high-level anomaly monitoring. 

 
Figure 27: Controller & Supervision Node Test Coverage 

These visuals support traceability between test artifacts and architecture components, reinforcing 
both functional validation and system-level safety assurance. 

The following core safety mechanisms should be validated through simulation and diagnostic 
evaluation. These mechanisms span across perception, decision-making, control, and supervisory 
layers:  

Validated safety mechanisms:  



• Signal delay detection and override logic  
• Anomaly detection via VAE  
• TTC-based decision gating  
• Node health reporting and lifecycle coordination  
• Fallback behaviour under degraded inputs  

Validated safety mechanisms in detail: 

The following core safety mechanisms were validated through simulation, test case execution, and 
diagnostic monitoring. Each contributes to DS3.1 compliance and enhances system robustness 
across perception, decision-making, control, and supervision layers:  

• Signal delay detection and override logic: Implemented in the Controller Node to detect 
delayed or missing vehicle state signals (e.g. speed).  
Test Cases: TC1-0005, TC1-0024, TC2-0009  

• Anomaly detection via VAE: Performed by the Supervision Node, which detects out-of-
distribution inputs and visual degradation.  
Test Cases: TC4-0001, TC2-0010  

• TTC-based decision gating: Handled by the Decision Node, evaluating time-to-collision 
(TTC) to issue warnings or braking commands.  
Test Cases: TC1-0022, TC1-0023, TC1-0025  

• Node health reporting and lifecycle coordination: Managed by the SAFEXPLAIN 
middleware, which collects node health statuses and coordinates lifecycle transitions.  
Covers: All L2DM reporting paths, aligned with TC4-0014 and supervisory monitoring 
behaviour  

• Fallback behaviour under degraded inputs: Observed across all nodes when sensor input 
quality degrades or control signals become unreliable.  
Test Cases: TC1-0019, TC1-0020, TC2-0001  

 

5 Railway case study 
The railway use case focuses on obstacle detection in railway environments through stereo vision 
and AI-based perception. The objective is to detect potentially hazardous elements on the tracks, 
such as people or vehicles leveraging depth-aware perception and robust AI pipelines deployable 
on embedded platforms. The system follows the SP2 safety pattern, integrating AI models, 
diagnostic monitoring (L1/L2), and decision/safety control layers for safe and traceable operation. 

5.1 Architecture 
The end-to-end architecture (Figure 28) consists of stereo image input, a rail segmentation 
module, an obstacle detection module, a distance estimation module, a monitoring and decision 
layer, and a final safety control stage that issues warnings when required. A non-AI module 
performs deterministic depth estimation to provide an additional source of trustworthy 
information. 



 
Figure 28: Railway end-to-end system architecture 

 

5.1.1 AI/ML constituent  
Compared to D5.1, the AI constituent has evolved from a unified master model (YOLOv8-based 
object and rail detection) into two distinct and specialised models: 

• Rail segmentation model (YOLOv8-seg): performs semantic segmentation to identify the 
rail tracks. 

• Obstacle detection model (YOLOv8): performs object detection for people, vehicles, and 
other relevant classes. 

Justification for the Change 

• Class imbalance: Every railway image contains rails, creating a class imbalance that made 
it difficult to train a unified model. Splitting the tasks enables better handling of this issue. 

• Dataset availability: Object detection datasets are far more common and diverse than 
semantic segmentation datasets specific to railway scenarios. 

• Modularity and evaluation: Smaller, task-specific models are easier to evaluate, deploy, 
and optimise for embedded performance. 

Object detection  
The object_detection node receives two images from a stereo camera (left and right) and is 
responsible for detecting objects in both images based on its trained model. Multiple instances of 
this node can be deployed, with each instance representing a different trained model. In this 
configuration, detections are performed in parallel and independently. 

ROS Interfaces: 

• Subscriber: 
o /ikerlan_ml_constituent/ikerlan/input → Type: 

ikerlan_interfaces.msg.StereoImage 
• Publisher: 

o /ikerlan_ml_constituent/"node_name"/output → Type: 
ikerlan_interfaces.msg.StereoDetectionArrayParameters: 

 
o Model → Specifies the trained model that will be used to perform the detection 



5.1.2 Diverse redundancy 
To create the redundancy schemes, +model has been trained to recognize the following classes: 
person, bike, car, motorbike, bus, and truck. 

In the case of the duplicated redundancy, the baseline model has simply been used twice in 
parallel. In the case of diverse redundancy, there are 4 different scenarios. 

• Diverse concept: In the diverse concept, in addition to the baseline model, there is also a 
separate model which runs in parallel and has a different concept for detecting people. 
Instead of detecting the entire person, it detects body parts, which allows us to correct 
some of the false negatives from the baseline model. 

• Diverse execution platform: In the diverse execution platform, in addition to the baseline 
model ran on the GPU, there is a second baseline model ran on the CPU. Interestingly, 
running the same model on CPU and GPU yields slightly different results, which is why it's 
considered a diverse redundancy scenario. This is due to the differences in how CPUs and 
GPUs handle inference. CPUs are deterministic, meaning that running the same inference 
multiple times will always yield the same results. In contrast, GPUs operate in parallel, so 
the order of operations may vary slightly between runs, leading to minor variations in the 
output. 

• Diverse framework: In the case of the diverse framework, in addition to the original model, 
there is a second baseline model which has been exported to TensorRT. Like the CPU 
diverse execution platform scenario, the baseline model and the TensorRT baseline model 
yield different results. This is because when the model is exported from Pytorch to ONNX 
and ONNX to TensorRT it has endured some changes in the weights and also even in the 
architecture. Additionally, the runtimes are different for PyTorch and TensorRT and it 
contributes to the output difference. A second aim of employing diverse frameworks is to 
protect the system against common-cause errors. By comparing the outputs of both 
models, we can detect whether a common-cause error has occurred and determine if any 
of the frameworks contain a bug or fault. In other words, if PyTorch has a bug, it would only 
affect one of the two models, which would not be critical. 

• Lockstep: In the Lockstep scenario, two baseline models are run in parallel, but they are 
delayed in different ways. The first model generates detections and stores them for 5 
frames. The second model waits for five frames then generates detections. The idea is to 
protect the system against random hardware faults. They both yield the same exact result 
if there is no fault. 

5.1.3 L1DM mechanisms 
The L1 monitor node is designed to ensure the health and consistency of input images and 
detections from an ML model within a ROS environment. It focuses on three aspects: input data 
quality, input temporal consistency, and output trajectory prediction. The node continuously 
monitors the health of the input images and ML detections and reports any issues through a health 
status message. 

• Input data quality: Canny edge is used to identify edges in the input images. Anomalous 
edges are checked, which can indicate potential issues with the image quality. If anomalous 
edges are detected, the node updates the health status to reflect a data quality issue. 

• Input Temporal Consistency: The optical flow between consecutive frames is calculated to 
measure the temporal consistency of the input images. Specifically, it compares the 
calculated optical flow with a predefined threshold to determine if the images are 



consistent over time. If the optical flow exceeds the threshold, the node updates the health 
status to indicate a temporal consistency issue. 

• Output Trajectory Prediction: The node uses Kalman Filters to track the detections 
produced by the ML model. It checks for objects that are not being tracked and have 
exceeded a warning age. If untracked objects above the warning age are detected, the 
node updates the health status to reflect a trajectory prediction issue. 

5.1.4 L2DM mechanisms 
For the integration of this mechanism, a small patch was developed. When it was integrated, the 
final implementation of the ReportHealth() function was not yet available. Therefore, from each 
node that needs to publish any kind of health message information, a publisher has been 
implemented to handle it. Once the final version is available, this small patch will be removed and 
the ReportHealth() implementation will be used directly. 

5.1.5 Supervision function 
The Supervision Function plays a critical role in enhancing the reliability and trustworthiness of the 
AI/ML constituent. It acts as an independent monitoring layer that evaluates whether the model 
inputs and outputs fall within the expected distribution. 

To fulfil this role, the current supervision function includes visual explainability integration via 
EigenGrad-CAM heatmaps applied to the obstacle detection model, enabling per-frame 
interpretability of predictions. 

These visual cues allow the system to highlight which parts of the image influenced a detection, 
increasing transparency and enabling post hoc analysis of anomalous behaviour. 

Note on performance:  

After integrating the EigenGrad-CAM explainability module, significant latency was observed 
during inference on Jetson Orin. The computation time for generating saliency maps is currently 
too high for real-time deployment, especially when combined with the primary models. A more 
detailed performance profiling is being planned, and lightweight alternatives are under 
consideration for future iterations. 

 

5.1.6 Decision Function 
The decision function node is responsible for verifying that the detections produced by two 
different sources (or models) are consistent and for grouping the corresponding detections. In 
addition, the node monitors the health of the overall system and issues alerts if any irregularities 
are detected. It can operate in two modes—duplicate redundancy and diverse redundancy—which 
determine the criteria for matching the detections. 

Node procedure: 

To ensure that the detections from both sources are processed in tandem, the node uses a time 
synchronizer. This synchronizer collects messages that are closely timestamped, ensuring that 
comparisons are made on corresponding data samples. 

 

 

 



Depending on the redundancy type parameter: 

• Duplicate Mode: The node calls process_detections_duplicate(), expecting near-identical 
detections from both sources. 

• Diverse Mode: The node would call process_detections_diverse() implying a different 
matching approach when detections come from different models. 

Duplicate mode: 

The function performs pairwise matching by iterating over detections in the first array and finding 
the best corresponding detection in the second array. It calculates an overlap score using the 
Intersection over Union (IoU) based on bounding box positions and sizes. A match is considered 
valid if the overlap score meets or exceeds the 0.9 threshold, ensuring each detection in the second 
array is used only once. Finally, the function returns matched detections for both arrays along with 
a nested array of overlap scores. 

If the two input vectors do not have the same number of detections or if any pairing has a score 
lower than the threshold, the error is reported through the health message. 

Diverse mode: 

process_detections_diverse() 

• Validation: The function first verifies that detection arrays from both sources (for left and 
right images) are not empty. If any array is missing, the function returns immediately. 

• Applying Non-Maximum Suppression (NMS): It calls a helper function 
non_maximum_suppression() to process the detections from both sources. This helper 
function internally sorts the detections based on their confidence scores. It Iterates over 
the sorted detections and calculates the overlap score using Intersection over Union (IoU) 
between each pair. Finally, it removes detections that overlap beyond a specified 
threshold, and it therefore retains only the highest confidence detection for each group. 

• Output Construction: After applying NMS, the function builds a unified 
StereoDetectionArray message that includes the filtered left and right detections. 
Additionally, it publishes a Float32 health/score message (e.g., using the minimum score 
among the retained detections). 

• Resetting State: The node clears its stored detection arrays to prepare for the next cycle. 

ROS Interfaces: 

• Subscriber: 
o /decision_function/output → Type: ikerlan_interfaces.msg. StereoDetectionArray 
o /ikerlan_distance_estimation/output → Type: sensor_msgs.msg.Image 

• Publisher: 
o /ikerlan_ml_constituent/distance_warning → Type: std_msgs.msg.Bool 
o /ikerlan_ml_constituent/distance_danger → Type: std_msgs.msg.Bool 
o /ikerlan_ml_constituent/health  Type: smw_interfaces.Msg.Health 

• Parameters: 
o Redundancy_type → duplicate / diverse 

5.1.7 Non-AI subsystem 
The non-AI component in the railway use case is represented by the stereo depth estimation node, 
which does not rely on AI but uses traditional computer vision techniques (e.g. disparity map 



estimation and stereo rectification). This node provides an interpretable and deterministic depth 
estimation, complementing AI-based detection with distance estimation for obstacle warnings. 

5.1.7.1 Distance estimation 
The distance estimation node is a ROS node that receives two images from a stereo camera (left 
and right) as input and computes a corresponding depth image. The node operates as follows: 

Node procedure: 

Upon receiving a ROS message containing the stereo image (left and right), the node executes the 
following steps: 

1. Camera Position and Baseline Calculation: 

o The node extracts the rotation and translation data from the cameras' extrinsic 
matrices, computes their positions, and determines the baseline as the Euclidean 
distance between them. 

2. Stereo Rectification: 

o The node determines the image size from the left image, computes the relative 
rotation and translation between cameras, and converts intrinsic matrices to 
double precision with zero distortion. It then calculates rectification transforms, 
projection matrices, and the disparity-to-depth mapping matrix. 

3. Rectification Mapping: 

o The node generates rectification maps and applies them, producing rectified 
images aligned for disparity computation. 

4. Disparity Calculation: 

o The node configures a StereoSGBM matcher with parameters such as minimum 
disparity, number of disparities, block size, penalty values, and additional settings. 
The rectified images are then used to compute the disparity map, which is 
converted to float format and scaled accordingly. 

After the disparity (depth) image is calculated, it is normalized to a range between 0 and 255 and 
published using the corresponding ROS message. If any part of the process fails or if the resulting 
image is completely black, the error is reported through the health message. 

ROS Interfaces: 

• Subscribers: 
o /ikerlan_ml_constituent/ikerlan/input → Type: ikerlan_interfaces.msg.StereoImage 

• Publishers: 
o /ikerlan_distance_estimation/output → Type: sensor_msgs.msg.Image 
o /ikerlan_ml_constituent/health  Type: smw_interfaces.Msg.Health 

5.1.8 Safety Control 
The Safety Control node consolidates decisions made by the AI models and diagnostic layers to 
generate appropriate warnings. Two boolean topics are issued: 

• /distance_warning — when obstacles are detected within a configurable range. 
• /distance_danger — for critical proximity situations requiring immediate attention. 



 

The node uses outputs from the Decision Function, which ensures redundancy agreement and 
health validation, and optionally depth estimation results. It acts as the final gatekeeper in the 
pipeline, issuing either a nominal or degraded operational status. 

5.1.9 Object classification and positioning 
The object_classification_and_positioning node integrates stereo detection data with depth 
information to accurately identify obstacles that lie on the railway track. By filtering detections, 
verifying their location relative to the rail, checking for overlaps between left and right detections, 
and calculating distances via the depth image, the node determines whether an object presents a 
warning or danger. It then publishes Boolean messages, ensuring that the train’s safety system is 
informed about potential obstructions in its path. 

Node procedure: 

Upon receiving a ROS message containing the stereo detections and the depth image, the node 
executes the following steps: 

• Input Validation: The function begins by checking if the stereo detection message (and its 
left/right arrays) as well as the depth image message are valid. If any of these are missing, 
the error is reported through the health message. 

• Separate Detections by class: This function filters the detections by class, separating them 
into two: on one side, the rail area region, and on the other, the rest of the detections. 

• Verifying Detections on the Railway: With the filtered detections, the next step is to 
identify if any detection matches the rail area. This rail area is dynamically detected using 
a segmentation model, which processes the scene to distinguish the railway from the 
surrounding environment, allowing for a more accurate comparison of obstacles within the 
detected rail region. 

• Intersection Analysis: The node compares detections from the left and right sides. This 
step identifies overlapping bounding boxes between the two sets, which helps confirm the 
presence of obstacles. 

• Distance Calculation and State Determination: Based on the relative number of detections 
from the left versus the intersections from the right., For each detection: 

o The centre of the bounding box is determined. 
o The depth image is used to compute an average disparity. 
o A state machine updates the current state (normal, warning, or danger) based on 

preset distance thresholds.  Once the initial warning distance threshold is crossed, 
this threshold is increased, making it harder to return to a safe state. Similarly, when 
transitioning from danger to warning, the limit is raised to prevent rapid state 
fluctuations and ensure a more stable assessment of risk. Accordingly, Boolean 
messages are published indicating a warning or a danger condition. 

5.1.10 Traffic light 
The traffic_light node has been developed to provide a simple visualization of the obstacle status 
on the track. It implements a traffic light system where, if there is no object on the track, green is 
displayed. If an obstacle is detected at a considerable distance (i.e., the distance_warning topic is 
true), the light turns yellow. If the distance_danger topic is true, indicating that an obstacle is close 
to the train on the track, the traffic light will display red. 



This node is for visualizing the results, meaning it is purely a debugging node. If it fails, nothing 
happens. That is why no health message is sent. 

ROS Interfaces: 

• Subscribers: 
o /ikerlan_distance_estimation/distande_warning → Type: std_msgs.msg.Bool 
o /ikerlan_distance_estimation/distande_danger → Type: std_msgs.msg.Bool 

• Publishers: 
o /ikerlan_ml_constituent /traffic_light_markers → Type: 

visualization_msgs.msg.MarkerArray 

5.1.11 Train operation control 
The train operation control node has a very basic function, which consists of communication 
between the system and the driver. The system continuously suggests whether to reduce speed 
or stop the train based on the distance to obstacles on the track. If there are no obstacles, it does 
not provide any suggestions. 

The system cannot stop the train but can reduce its speed when the distance_warning is active. 
The driver also has a button to disable the system’s ability to reduce speed, leaving only the 
suggestions operational. 

ROS Interfaces: 

• Subscribers: 
o /ikerlan_distance_estimation/distande_warning → Type: std_msgs.msg.Bool 
o /ikerlan_distance_estimation/distande_danger → Type: std_msgs.msg.Bool 
o /train_speed_control  Type: std_msgs.msg.Bool 

• Publishers: 
o /train_reduced_speed_suggestion  Type: std_msgs.msg.Bool 
o /train_stop_speed_suggestion  Type: std_msgs.msg.Bool 
o /train_speed  Type: std_msgs.msg.Float32 

5.1.12 Simulation 
Unreal Engine is the simulator chosen for video generation. It was decided that the best version 
for testing was Unreal Engine 5 (the newest available). The problem with this version is that no 
plugin has yet been developed to connect this simulator with ROS. However, we have managed to 
connect it with ROS through shared memory transport, which enables efficient communication 
between processes on the same machine by allowing them to access a shared memory segment 
directly, thereby reducing overhead and latency. We have developed two nodes to implement the 
shared memory mechanism: one for transmitting Float32 messages from ROS to Unreal, and 
another for transferring images. In the latter case, images generated in the simulation are 
deposited into shared memory, where they are subsequently retrieved by the ROS node. Using a 
ROS topic, we can control the train's speed and movement while also obtaining the camera images. 

5.2 Testing 
The chosen simulator for testing has been Unreal Engine 5, where a simple test environment has 
been created. This setup consists of two railway tracks, a train on one of them equipped with two 
stereo cameras, and various additional elements to enhance the simulation. 



To complete the virtual world, different objects such as people, horses, and trees have been placed 
outside the tracks. This allows for validation that, even when these objects are near the train, the 
system does not mistakenly classify them as hazardous obstacles. 

Simultaneously, in the ROS visualizer "RViz", a message is displayed using a MarkerArray, 
simulating a traffic signal. 

Additionally, a car has been positioned on the tracks to test the system’s ability to detect obstacles, 
calculate distances, and appropriately change the signal colours.  

The following images illustrate the system's functionality through a structured visual layout: on 
the left side, the traffic signal and its different states. In the top right corner, the images captured 
by the two stereo cameras. In the bottom left corner, the calculated depth image: 

• When the train is far from the car, the signal remains green, indicating safe passage, as can 

be seen on Figure 29. 
• As the train approaches, the signal turns yellow, warning of a potential hazard, as can be 

seen on Figure 30. 
• Once the train is near the obstacle, the signal switches to red, as can be seen on Figure 31, 

instructing the conductor to stop immediately. 

Figure 29: Train warning visualization with “green” indication 



This setup ensures a realistic and effective validation of the system’s obstacle detection and safety 

response mechanisms. 

5.3 Challenges and solutions 
5.3.1 Challenge 1 
One of the issues we encountered when implementing the decision function node in duplicate 
redundancy mode was that the similarity between bounding boxes had to be 100% for every pair, 

Figure 31: Train warning visualization with “red”  indication 

Figure 30: Train warning visualization with “yellow” indication 



and that was not the case. We tried various algorithms, but none could correctly match the 
bounding boxes. It turned out that the problem was not with the algorithms but with the 
synchronization of the arrays received from both models. Without any synchronization 
mechanism, we were attempting to match objects from different images, causing discrepancies. 
This was resolved by implementing synchronization of the input arrays based on their timestamps. 

5.3.2 Challenge 2 
Another very significant challenge in implementing this use case was generating videos for testing: 

Initially, with the generated videos, it was not possible to calculate an accurate depth image. One 
issue was the synchronization of image captures from the two cameras, as they had to be taken 
simultaneously so that the train remained in the same position. Otherwise, objects would appear 
further ahead in one camera than in the other, leading to errors when calculating the depth image. 
This problem was resolved by advancing the train only after both screenshots were captured. 

Even after resolving the camera synchronization issue, the depth image still was not correct. We 
initially suspected a problem with the algorithm, but when the same algorithm was tested with 
other stereo images, it worked properly. We eventually concluded that the issue was due to the 
homogeneity of the scenario which means a very repetitive background to provide enough 
reference points for comparison, which is necessary to calculate the depth image for each object 
(this occurred when the simulation only featured the rails, the train, and a car in the middle of the 
tracks). The solution was to break the repetitiveness of the simplest scenario of the simulation by 
adding some objects so that the algorithm had more points for comparison. 

5.3.3 Challenge 3 
Another challenge, which remains unresolved, is the communication between Unreal Engine 5 and 
ROS. The issue is that the “shm” code is inefficient, making the transmission of images very heavy 
and costly. As a result, not all the train's images are received by ROS in time; they get queued up, 
and we are unable to process them all for real-time topic publishing. This is an area that will be 
addressed during validation. However, we have been able to generate videos by saving all the 
frames, which has been extremely helpful for integration testing. 

5.3.4 Challenge 4 
The integration of visual explainability using EigenGrad-CAM has proven computationally 
expensive on embedded hardware (Jetson Orin). While it provides valuable insights into model 
reasoning, it increases inference time drastically — far beyond acceptable thresholds for real-time 
applications. 

Planned actions 

• Compute and store activations during a single forward pass. 
 Avoid multiple forward passes by saving the necessary intermediate activations when the 
input is first processed. 

• Compute and store gradients during a single backward pass. 
 Backpropagate once and cache the required gradients to prevent redundant 
computations. 

• Generate saliency maps in parallel for each target object using the stored activations and 
gradients. 
 Leverage parallel processing to compute maps efficiently across multiple objects of 
interest. 



6 Conclusion  
The MVP demo and all three case studies—space, automotive, and railway—have reached a 
mature stage of integration, with the core system components successfully implemented and 
validated in simulated environments. The SAFEXPLAIN architectural patterns and middleware have 
been effectively applied across domains, demonstrating modularity, redundancy, and diagnostic 
transparency. 

Porting to embedded platforms, particularly the NVIDIA Jetson Orin AGX, has been achieved for 
the MVP, automotive and space demonstrators, ensuring real-time execution and system 
compatibility. Key challenges around synchronization, performance, and deployment have been 
addressed through iterative integration and targeted solutions. 

The focus now shifts to comprehensive testing and scenario-based validation to assess system 
behaviour under nominal and degraded conditions. These upcoming activities will finalize the 
verification of DS3.1 and SP2 compliance and ensure readiness for external evaluation. 
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D5.2 Case study porting and integration  
Version 1.0 

 

Acronyms and Abbreviations 
• AEB – Autonomous Emergency Braking  
• AI – Artificial Intelligence  
• AIKO – AIKO Space Systems S.R.L (project partner)  
• ARM – Advanced RISC Machine (refers to ARM64 architecture)  
• BSC – Barcelona Supercomputing Center (project partner)  
• CNN – Convolutional Neural Network  
• D – Deliverable  
• DLLib – Diagnostic Logic Library (project software library)  
• DS3.1 – Driving Scenario 3.1  
• EC – European Commission  
• GMM – Gaussian Mixture Model  
• GNC – Guidance, Navigation and Control  
• IKR – Institute of Communication Networks and Computer Engineering, University of 

Stuttgart (project partner)  
• IoU – Intersection over Union  
• L0, L1, L2 – Layer 0/1/2 (diagnostic levels in system monitoring)  
• LBP – Local Binary Pattern  
• MCAP – Message Capture Format (used for ROS 2 data logging)  
• MLP – Multilayer Perceptron  
• MVP – Minimum Viable Product  
• NMS – Non-Maximum Suppression  
• PnP – Perspective-n-Point  
• PoC – Proof of Concept  
• RF – Random Forest  
• ROS 2 – Robot Operating System 2  
• RViz – ROS Visualization Tool  
• SAFEXPLAIN – Safe and Explainable AI Architecture (project and middleware)  
• SGBM – Semi-Global Block Matching  
• SHM – Shared Memory  
• SOTIF – Safety of the Intended Functionality  
• SP – Safety Pattern  
• SSD – Single Shot Detector  
• SSDLite – Lightweight Single Shot Detector variant  
• TTC – Time-to-Collision  
• TTC AEB – Time-to-Collision for Autonomous Emergency Braking  
• TTW – Time-to-Warning  
• UE5 – Unreal Engine 5  
• UI – User Interface  
• VAE – Variational Autoencoder  
• ViT – Vision Transformer  
• WP – Work Package  
• YOLO – You Only Look Once (object detection architecture)  
• YOLOS-Tiny – Transformer-based YOLO object detector  
• YOLOPv2 – YOLO Perception Version 2  
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